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Abstract: Recent experimental studies showed that shear band development starts at the beginning
of triaxial tests. In experimental testing, it is impossible to obtain a soil sample with a homogeneous
void ratio. Therefore, a homogeneous deformation, i.e., an element test, is questionable well before
the peak. In this article we carry out finite element simulations of fine-meshed biaxial tests with the
constitutive model barodesy, where the stress rate is formulated as a function of stress, stretching
and void ratio. The initial void ratio in the simulations is normally distributed over all elements in a
narrow range. In this article, we evaluate the pre-peak shear band development. We further compare
stress paths and stress-strain curves of the biaxial test of relevant elements (e.g., in- and outside the
shear band) with the results of the average response of all elements. We show how the response in
an element test differs from the average response of the fine-meshed test. We present the resulting
potential for understanding (early) shear band development and stress-strain behaviour in a biaxial
test: The inhomogeneous void ratio distribution in a sample favours early shear band development.
This effect is modelled with barodesy. The obtained stress paths and stress-strain curves show that
the maximum deviatoric stress is higher in the element test than it is in the average response of the
fine-meshed test.

Keywords: barodesy; constitutive modelling; numerical modelling; shear bands; biaxial test;
soil mechanics

1. Introduction

Soil is a material which consists of different grain sizes and grain shapes. The density or void ratio
in a soil sample is naturally scattered and is thus not constant. Even for an ideal material consisting of
spheres of the same size, inhomogeneities are to be expected due to inhomogeneous sample mounting.
Experiments, e.g., triaxial tests, are carried out to investigate soil behaviour. In the evaluation of stress
and strain, it is common to assume the sample to be a single homogeneous element with rectilinear
deformation. In experimental testing, however, it is impossible to obtain a completely homogeneous
sample with constant void ratio. In addition, the deformation of the sample in the experiment is not
rectilinear: lateral barreling of the sample and/or development of shear band(s) are observed.

Finite element simulations on homogeneous samples lead to homogeneous deformations and
not to development of shear bands. However, the pronounced localization in a biaxial test results in
different stress-strain curves in- and outside the shear band. Thus, a single element test obviously
cannot reproduce a realistic stress-strain response, e.g., [1]. To obtain shear bands, at least one weak
element must be included in the simulation, e.g., [2–4]. Tomographic investigations on experiments by
Desrues et al. [5] show that shear bands develop from the very beginning of triaxial tests. Therefore, a
homogeneous deformation, i.e., an element test, is questionable well before the peak.
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We perform finite element simulations of fine-meshed biaxial tests with barodesy [6]. Barodesy is
a material model which includes the void ratio as a state variable. In this article, the initial void ratio
is normally distributed over all elements in a narrow range, comparable to [7]. Thus, the natural
scattering of density is modelled. The randomly distributed void ratio leads to a scatter of dilatancy
and therefore in a scatter of peak strength in the elements. Hence, patterns of shear bands develop
from the very beginning of the biaxial test. We evaluate stress-strain curves, stress paths and the
pattern of the shear bands with ongoing deviatoric strain [8].

The innovative part of this research is to scatter the void ratio in combination with an evaluation
of the average response of stress and strain of the fine-meshed test. The aim of this work is to find out
whether and in which cases the approximation of a soil sample by a single element is justified and
valid. In this context, it is possible to distinguish what has to be modelled by the constitutive relation
and what by the numerical approach. We therefore compare the different response of a single element
test with the average response of a fine-meshed test.

2. Material and Methods

2.1. Constitutive Model—Barodesy

Barodesy is a material model that differs from conventional elasto-plastic models: it does not
distinguish between elastic and plastic deformations and does not require expressions such as yield
function, plastic potential or flow rule. The stress rate is formulated as a tensorial function of the
current stress, stretching and the void ratio, i.e., σ̊ = h(σ, D, e). Thus, barodesy has certain similarities
with hypoplasticity [9,10]. Appendix A summarizes all equations of barodesy.

2.1.1. Critical State Soil Mechanics

The following concepts from Critical State Soil Mechanics are included in the mathematical
formulation of barodesy [6]:

• A critical stress state locus [11,12], which is a line, the Critical State Line (CSL), in the p′-q plot:

q = M · p′ (1)

with M = 6 sin ϕc/(3− sin ϕc) for axisymmetric triaxial compression, ϕc is the critical friction
angle. In three dimensional stress space, the critical stress locus of barodesy practically coincides
with the Matsuoka–Nakai failure criterion [11], see Figure 1.

• A stress dependent critical void ratio ec (CSL from [13]) in the p′-e plot, in order to distinguish
between normally to slightly overconsolidated soil (e > ec) and highly overconsolidated soil
(e < ec):

ln(1 + ec) = N − λ∗ ln
2 p′

σ∗
. (2)

• The isotropic normal compression line (NCL) from [14], in order to define the loosest
possible packing:

ln(1 + e) = N − λ∗ ln
p′

σ∗
, (3)

σ∗ = 1 kPa is a reference stress, N and λ∗ are soil parameters from Critical State Soil Mechanics.

Further details of the mathematical formulation of barodesy are given in [6,12,15–19]. For the
calibration procedure, we refer to [6].
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Figure 1. Matsuoka-Nakai and Mohr-Coulomb failure surface are compared with barodesy in the
deviatoric plane. Barodesy and Matsuoka-Nakai practically coincide [11]. Figure modified from [12].

2.1.2. Barotropy and Pyknotropy

By including the actual void ratio e as a state variable in barodesy, effects such as pyknotropy
(i.e., the dependence of stiffness and strength on density) and barotropy (i.e., the dependence of
stiffness and strength on stress level) can be modelled. In Figure 2 consolidated drained (CD)
triaxial tests with Weald clay (parameters in Table 1) with the initial void ratio eini = const are
simulated with barodesy. Highly overconsolidated samples (grayed area) dilate, normally and slightly
overconsolidated samples contract, see Figure 2a. The stress states and the void ratios then reach the
critical state. Highly overconsolidated samples achieve higher peak friction angles than the critical
friction angle. The stress states reach the CSL after softening.
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Figure 2. Barotropy in barodesy, figure modified from [19]: simulations with barodesy of CD triaxial
tests with Weald clay with eini = const. (a) mean stress - void ratio plot: highly overconsolidated
samples (grayed area) dilate, normally and slightly overconsolidated samples contract under shearing.
(b) mean stress - deviatoric stress plot: highly overconsolidated samples reach peak states which are
higher than critical strength. (c) axial strain - stress ratio plot: highly overconsolidated samples reach
higher stress ratios/mobilized friction angles than the critical friction angle.

Table 1. Critical state soil mechanics parameters used for the calibration of barodesy.

Material ϕc N λ∗ κ∗ Source

Weald clay 24◦ 0.8 0.059 0.018 Mašín [10]
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Similar results are obtained if the mean stress p′ is kept constant and the void ratio is varied:
In Figure 3 consolidated drained (CD) triaxial tests with Weald clay with p′ini = const are simulated
with barodesy. The highly overconsolidated samples dilate, the normally and slightly overconsolidated
samples contract, see Figure 3b. The lower the initial void ratio is, the higher is the maximum deviatoric
stress q, see Figure 3b. Again the highly overconsolidated samples reach peak friction angles that are
larger than the critical friction angle of 24◦, see Figure 3c.
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Figure 3. Pyknotropy in barodesy: simulations with barodesy of CD triaxial tests with Weald clay with
p′ini = const. (a) mean stress - void ratio plot: highly overconsolidated samples (grayed area) dilate,
normally and slightly overconsolidated samples contract under shearing. (b) axial strain - deviatoric
stress plot: the lower the initial void ratio is, the higher is peak strength. (c) axial strain - stress ratio
plot: highly overconsolidated samples reach higher stress ratios/mobilized friction angles than the
critical friction angle.

2.2. Biaxial Tests

We simulate drained plane strain triaxial compression (biaxial) tests, i.e., ε2 = 0 and
σ′3 = 100 kPa = const. Biaxial tests on Weald clay with different overconsolidation ratios are
investigated. The parameters of Weald clay are in Table 1. It is common to define the
overconsolidation ratio (OCR = p′e/p′) by means of the so-called Hvorslev’s equivalent consolidation
pressure p′e = exp

(
N−ln(1+e)

λ∗

)
, divided by the actual mean stress p′. p′e is the value of mean stress on

the isotropic normal consolidation line which refers to the current specific volume (1 + e).

2.2.1. Initial Conditions

We simulate biaxial tests, with a width of 37 mm and a height of 74 mm, see Figure 4a.
Multiple elements and the stress boundary condition (σ′3 = const) allow barreling of the sample
in direction 3. The shear band thickness in finite element simulations is mesh-dependent, as the mesh
serves as an internal length parameter, e.g., [20]. As the stress-strain curves in- and outside the shear
band differ, the thickness certainly has an effect on the average response, see [21,22] and Figure 4b,c.
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Figure 4. (a) FE model (b) Final shear band at global deviatoric strain of εq = 8.8%, displayed as
deviatoric strain, green: εq = 22% to red: εq = 53% (c) Stress-strain curves in- A and outside B the
shear band, single element test.

Gylland et al. [23] report about shear band thicknesses in the range of 2 to 8 mm for clay. In
our simulations, the number elements (5000) have been chosen in a way that the final shear band
thickness is in the reported range. In Figure 4b the final shear band is about 3 mm. By determining the
preferred shear band thickness, we expect realistic predictions in the average response of strain and
strain. This approach is only applicable for small dimensions due to the large number of elements. To
overcome the mesh-dependency, a regularization technique is required [2,20,21].

The simulations in this work are carried out with ABAQUS 6.14 [24]. Four-node plane strain
elements are used, see Figure 4b. The UMAT of barodesy [6] is available at SoilModels [25].
Finite element applications with barodesy can be found in [4,26,27].

In our simulations the initial void ratio is randomly and normally distributed over all
5000 elements in a narrow range (The standard deviation in our simulations is 0.005. In the simulations
by Schneider-Muntau et al. [3], one weak element with an increased void ratio of 0.02 was included to
obtain a shear band.) for different overconsolidation ratios according to Table 2.

Table 2. Initial conditions for the FE simulations.

OCR Mean Value ēini Standard Deviation p′ini

1.5 0.656 0.005 100 kPa
3 0.590 0.005 100 kPa
6 0.526 0.005 100 kPa

54 0.340 0.005 100 kPa

For an OCR of 6, the void ratio distribution is shown in Figure 5a. The mean value of ēini = 0.526 is
marked with a black line. The red lines show the standard deviation, i.e., ēini ± 0.005. In order to better
estimate the size of this standard deviation, we mark ēini and ēini ± 0.005 in the mean stress—void ratio
plot with black and red lines in Figure 5b.
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Figure 5. For OCR= 6 follows the mean value ēini = 0.526, black line. The standard deviation is
0.005. The red lines mark the standard deviation, i.e., ēini ± 0.005. (a) The initial void ratio is normally
distributed over all 5000 elements. (b) shows the range in the e-p′ plot with ēini and ēini ± 0.005.

2.2.2. Evaluation of Stress Paths in the Deviatoric Plane

The deviatoric direction of a stress path is indicated by the Lode angle ασ, Equation (4):

ασ =
1
3

arcsin
−3
√

6 det σ∗

|σ∗|3 with σ∗ = σ − tr σ

3
1 (4)

ασ = 30◦ refers to triaxial compression, ασ = −30◦ refers to triaxial extension. Nakai [28] reports that
stress paths of plane strain conditions lie within 0◦ < ασ < 15◦. The experimental findings by Nakai
have been carried out on normally consolidated Fujinomori clay. However, the values also provide
an indication for overconsolidated samples. Investigations under plane strain conditions were carried
out with barodesy in [12,26].

2.2.3. Evaluation of the Inclination of Final Shear Band

The higher the overconsolidation ratio is, the steeper is the inclination of the final shear band.
In barodesy, for a higher overconsolidation ratio there is a higher dilatancy and thus a higher mobilized
friction angle, see Figure 3. The angle of dilatancy ψ under plane strain conditions (e.g., [29]) is

ψ = arcsin
ε̇1 + ε̇3

−ε̇1 + ε̇3
. (5)

The orientation of the shear band is reported (e.g., [23,30]) to lie between Roscoe’s
solution [31] with

θR = 45◦ + ψ/2 (6)

and the Mohr-Coulomb solution with

θMC = 45◦ + ϕmax
m /2 . (7)

Arthur et al. [32] propose

θA =
1
2
(θMC + θR) (8)

based on their experimental results. The angle ψ in Equations (6) and (7) is the angle of dilatancy at
the peak of q. ϕmax

m is the maximum mobilized friction angle, which is for the simulations in this article
at the peak of q.
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3. Results

In this Section we evaluate the simulations of fine-meshed biaxial tests. The results of the
overconsolidation ratios 1.5, 3, 6 and 54 are discussed. We focus on early shear band development,
stress-strain behaviour, stress paths in the deviatoric plane and inclination of the final shear band.
All simulations are carried out with the material model barodesy [6]. Further details concerning the
model are in Section 2.1. Information about the initial conditions and evaluation of the biaxial tests are
in Section 2.2.

3.1. Early Shear Band Development

In Figures 6–9 we show the development of shear bands at different global deviatoric strain
εq. Figure 6 corresponds to an OCR of 1.5, Figure 7 to an OCR of 3, Figure 8 to an OCR of 6 and
Figure 9 to an OCR of 54. For all overconsolidation ratios, it is visible that shear bands develop well
before the peak. The peak state is marked in the figures or figures captions. For example, Figure 6a–c
show pre-peak pattern of shear bands, (d) is just at peak state and (e,f) show the final shear band.
As expected, the smaller the OCR, the more pronounced is the barreling of the sample. For all OCRs
a final shear band develops. The development of the final shear band has a strong influence on the
shape of the average response of the stress-strain curve, especially in the post-peak range.
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Figure 6. OCR = 1.5: Shear band development displayed with deviatoric strain in each element εel
q at

different global deviatoric strain εq, peak in q is at εq = 9.8%. (a–c) show pre-peak pattern of shear
bands, (d) peak and (e,f) post-peak pattern of shear bands.
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Figure 7. OCR = 3: Shear band development displayed with deviatoric strain in each element εel
q at

different global deviatoric strain εq, peak in q is at εq = 7.4%. (a–c) show pre-peak pattern of shear
bands, (d) peak and (e,f) post-peak pattern of shear bands.



Geosciences 2019, 9, 20 8 of 17

εq = 2.5%

εel
q = 2.6% (blue)

εel
q = 3.0% (red)

(a)

εq = 3.8%

εel
q = 3.9% (blue)

εel
q = 4.5% (red)

(b)

εq = 5.9%

εel
q = 5.9% (blue)

εel
q = 6.7% (red)

(c)

εq = 7.2%

εel
q = 6.3% (blue)

εel
q = 8.8% (red)

(d)

εq = 7.6%

θ = 49.5◦θ = 49.5◦

εel
q = 6.3% (blue)

εel
q = 10.1% (red)

(e)

εq = 8.2%

εel
q = 6.2% (blue)

εel
q = 30.0% (red)

(f)

1

Figure 8. OCR = 6: Shear band development displayed with deviatoric strain in each element εel
q at

different global deviatoric strain εq, peak in q is at εq = 7.0%. (a–c) show pre-peak pattern of shear
bands, (d–f) post-peak pattern of shear bands.
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Figure 9. OCR = 54: Shear band development displayed with deviatoric strain in each element εel
q at

different global deviatoric strain εq, peak in q is at εq = 7.0%. (a–c) show pre-peak pattern of shear
bands, (d) peak and (e,f) post-peak pattern of shear bands.

In Figures 10–13 the result of an element test (blue), as well as the average response of the
fine-meshed test (red) are shown for the OCRs of 1.5, 3, 6 and 54. The average densities of the
fine-meshed biaxial test and the single element test coincide for each OCR. The global deviatoric
strain corresponding to Figures 6–9 is marked in Figures 10–13. In Figure 10, the average response
of the fine-meshed test (red) and the element test (blue) give similar results until εq ≈ 8%.
An overconsolidation of 1.5 corresponds to a slightly overconsolidated specimen. Therefore,
the element test does not show any softening. It is interesting to note that the average response
of the fine-meshed test has a peak with subsequent softening. Biaxial tests on loose Hostun sand
samples [33] show a similar stress-strain behaviour. For all OCRs, the peak and subsequent softening
is more pronounced in the average response of the fine-meshed test than it is in the element test.

In the element test, the maximum deviatoric stress is higher than in the fine-meshed test. The lower
the initial overconsolidation ratio is, the larger is the difference, see Table 3. For the OCR of 1.5,
the difference is 9.64% and for the OCR of 54, 0.37%. In Table 3 the maximum mobilized friction
angles ϕmax

m in the element tests and in the average response of all elements are added for the different
overconsolidation ratios.
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Table 3. Maximum deviatoric stress qmax in the element test and in the average response of all elements
and maximum mobilized friction angles ϕmax

m in the element test and in the average response of
all elements.

OCR
qmax

Difference in q
ϕmax

m
Difference in ϕm

Element Test FE Element Test FE

1.5 149.46 kPa 136.32 kPa 9.64% 27.43◦ 25.86◦ 6.07%
3 151.05 kPa 147.57 kPa 2.36% 27.62◦ 27.23◦ 1.43%
6 167.61 kPa 166.88 kPa 0.44% 29.33◦ 29.40◦ 0.24%

54 241.38 kPa 240.50 kPa 0.37% 35.44◦ 35.37◦ 0.18%

—— element test

—— average response of all elements

(a) εq = 1.7 %
(b) εq = 4.2 %
(c) εq = 8.0 %
(d) εq = 9.8 %
(e) εq = 12.5 %
(f) εq = 13.4 %

◦ peak in q at εq = 9.8 %

(a)
(b)

(c)
(d)

(e)
(f)

εq (%)

q
(k

Pa
)

1

Figure 10. OCR = 1.5: The global deviatoric strain εq marked with (a–f) corresponds to Figure 9a–f.

—— element test

—— average response of all elements

(a) εq = 3.2 %
(b) εq = 5.0 %
(c) εq = 6.1 %
(d) εq = 7.4 %
(e) εq = 8.3 %
(f) εq = 9.1 %

◦ peak in q at εq = 7.4 %

(a)
(b)

(c)
(d)

(e)
(f)

εq (%)

q
(k

Pa
)

1

Figure 11. OCR = 3: The global deviatoric strain εq marked with (a–f) corresponds to Figure 7a–f.
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—— element test

—— average response of all elements
◦ peak in q at εq = 7.0 %

(a) εq = 2.5 %
(b) εq = 3.8 %
(c) εq = 5.9 %
(d) εq = 7.2 %
(e) εq = 7.6 %
(f) εq = 8.2 %

(a)
(b)

(c)
(d)

(e)
(f)

εq (%)

q
(k

Pa
)

1

Figure 12. OCR = 6: The global deviatoric strain εq marked with (a–f) corresponds to Figure 8a–f.

—— element test

—— average response of all elements
◦ peak in q at εq = 7.0 %

(a) εq = 4.8 %
(b) εq = 5.4 %
(c) εq = 7.0 %
(d) εq = 7.1 %
(e) εq = 7.4 %
(f) εq = 7.7 %

(a)
(b)

(c)

(d)
(e)
(f)

εq (%)

q
(k

Pa
)

1

Figure 13. OCR = 54: The deviatoric strain εq marked with (a–f) corresponds to Figure 9a–f.

After the peak, the average response of the fine-meshed test shows a pronounced decrease in
deviatoric stress compared to the single element test. The pronounced decrease results from the varying
stress-strain curves in the individual elements, during softening, see Figures 14a–17a. The stress-strain
curves that are close to the element test are inside the shear band. The stress-strain curves that are
similar to unloading curves are outside the final shear band, see also Figure 4c and [22]. The average
response shows a typical stress-strain curve of a biaxial test (e.g., [33]). Figures 14b–17b show the
volumetric behaviour. Again the average response differs from the single element test.
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Figure 14. OCR = 1.5: (a) Deviatoric strain εq-deviatoric stress q plot; (b) Deviatoric strain εq-volumetric
strain εv plot; (c,d) Stress paths for OCR = 1.5 in the deviatoric plane normalized with the mean effective
stress p′.

3.2. Stress Paths in the Deviatoric Plane

In Figures 14c–17c the Lode angles according to Equation (4) ασ = 0◦, 15◦ and 30◦ are marked.
At failure, stress paths of the average response of all elements (red line) as well as the stress paths
of the element test in the simulations do not leave the range of 0◦ < ασ < 15◦ for the OCR = 1.5, 3
and 6. The experimental findings by Nakai [28], that the Lode angles under plane strain compression
are within 0◦ < ασ < 15◦ have been carried out on normally consolidated samples. The element
test in Figure 14c reaches the locus of critical stress states of barodesy, whereas the average response
reached a lower maximum mobilized friction angle which is inside the locus of critical stress states,
see Figure 14d.
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Figure 15. OCR = 3: (a) Deviatoric strain εq-deviatoric stress q plot; (b) Deviatoric strain εq-volumetric
strain εv plot; (c,d) Stress paths for OCR = 1.5 in the deviatoric plane normalized with the mean
effective stress p′.

For the simulation with OCR = 54, the increase of σ′2 is larger than in the simulations with lower
overconsolidation ratios. The higher the OCR is, the higher is the dilatancy. By keeping the lateral
expansion to zero (ε2 = 0), higher stresses σ′2 develop for the OCR of 54 in Figure 17c,d than for OCR
of 1.5, 3 and 6, see Figures 14–16c,d.

As expected, the highly overconsolidated samples in Figures 16 and 17c,d include peak states
which lie outside the locus of critical stress states; see also Figure 2b.

3.3. Inclination of the Final Shear Band

The shear band inclination is evaluated for the tests with ψ > 0◦, that are the highly
overconsolidated samples with OCR 6 and 54. The orientations of the shear bands are estimated
according to Equations (6)–(8), see Table 4. In the finite element simulations, the inclination of the
shear band is evaluated just after the peak as soon as the inclination of the shear band is clearly visible,
see Figures 8e and 9d.

For an OCR of 6, the measured angle of θ = 49.5◦ lies between Roscoe’s solution (θR = 49.4◦) and
Arthur et al.’s predictions (θA = 53.0◦), see Table 4. For the OCR of 54, the measured angle of θ = 60◦

is close to Roscoe’s solution with θR = 59.4◦, see Table 4.

Table 4. Inclination of final shear band.

OCR ψ ϕmax
m = ϕmax

FE θR θMC θA θ

6 2.8◦ 29.4◦ 46.4◦ 59.7◦ 53.0◦ 49.5◦

54 28.9◦ 35.4◦ 59.4◦ 62.7◦ 61.1◦ 60◦
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Figure 16. OCR = 6: (a) Deviatoric strain εq-deviatoric stress q plot; (b) Deviatoric strain εq-volumetric
strain εv plot; (c,d) Stress paths for OCR = 6 in the deviatoric plane normalized with the mean effective
stress p′.
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Figure 17. OCR = 54: (a) Deviatoric strain εq-deviatoric stress q plot; (b) Deviatoric strain εq-volumetric
strain εv plot; (c,d) Stress paths for OCR = 1.5 in the deviatoric plane normalized with the mean effective
stress p′.

4. Discussion and Conclusions

Soil is an inhomogeneous material as it consists of different grain sizes and grain shapes.
A constant void ratio distribution over the entire sample is therefore not possible. Inhomogeneities in
the samples density are also generated due to inhomogeneous sample mounting.

• Inhomogeneities in the samples density may be one cause for early shear bands development.
Finite element simulations of fine-meshed biaxial test with the material model barodesy show this
effect: In barodesy, the density is considered with the void ratio as state variable. A randomly
distributed void ratio results in a scatter of dilatancy. Thus, pre-peak patterns of shear bands
develop from the very beginning of the biaxial tests.

• The stress-strain behaviour of a biaxial test—in particular the post-peak behaviour—cannot be
modelled with a single element test. In our simulations, the number of elements has been chosen
in a way that the final shear band thickness is in the experimental confirmed range. A realistic
estimation of the shear band thickness results in a realistic average response of the stress-strain
behaviour, due to the pronounced localization.

• The stress paths in the deviatoric plane show reasonable results: The Lode angles of the stress
paths for the OCRs 1.5, 3 and 6 are in the range of 0◦ < ασ < 15◦, which is experimentally
confirmed for plane strain failure.

• The maximum deviatoric stress in the element test is higher than the maximum deviatoric stress
of the average response of the fine-meshed test. The lower the initial overconsolidation ratio is,
the larger is the deviation in peak strength.

• The inclination of the final shear band is dependent on the overconsolidation ratio: The higher
the overconsolidation ratio is, the larger is the inclination of the final shear band.
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The investigations and results of this work can only be used for qualitative purposes.
Future investigations should compare experiments with simulations. Other material models, e.g.,
hypoplastic models, which include the void ratio as a state variable are also suitable for the simulations.
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Abbreviations

The following abbreviations, symbols and notations are used in this article:

CSL Critical State Line
NCL Normal Compression Line
OCR OverConsolidation Ratio
σ Cauchy stress, stresses are considered as effective ones.
D stretching tensor; D is the symmetric part of the velocity gradient.
σ′i principal stresses, convention of mechanics, σ′i is defined negative for compression
X Tensors are written in bold capital letters, e.g., X
p′ mean effective stress p′ = − 1

3 tr σ

q deviatoric stress q =
√

1
2 [(σ

′
22 − σ′33)

2 + (σ′33 − σ′11)
2 + (σ′11 − σ′22)

2] + 3(τ2
23 + τ2

31 + τ2
12)

εvol volumetric strain εvol = tr ε

εq deviatoric strain εq =
√

2
9 [(ε22 − ε33)2 + (ε33 − ε11)2 + (ε11 − ε22)2] + 1

3 (γ
2
23 + γ2

31 + γ2
12) with γij = 2εij.

For plane strain conditions with ε2 = 0, ε22 = γ23 = γ12 = 0

ϕm mobilized friction angle ϕm = arcsin
σ′1 − σ′3
σ′1 + σ′3

Appendix A. Equations of Barodesy

In this appendix, all equations of barodesy for clay [6] are summarized.

σ̊ = h · ( f R0 + gσ0) · |D| (A1)

R = − exp(αD0) with α =
ln K√

3/2− tr D02/2
(A2)

K = 1− 1
1 + c1(m− c2)2 with m =

−3tr D0√
6− 2tr D02

(A3)

h = c3|σ|c4 (A4)

f = c6 · β · tr D0 − 1
2

(A5)

g = (1− c6) · β · tr D0 +

(
1 + e
1 + ec

)c5

− 1
2

(A6)

ec = exp
(

N − λ∗ ln
−2/3 tr σ

σ∗

)
− 1 (A7)

β = − 1
c3Λ

+
1√
3

2c5λ∗ − 1√
3

(A8)

Λ = −λ∗ − κ∗

2
√

3
tr D0 +

λ∗ + κ∗

2
(A9)
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The constants c1–c6 can be determined on the basis of the critical state soil mechanics parameters
ϕc, N, λ∗ and κ∗ [6].
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