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Abstract: Large amounts of gas hydrate are present in marine sediments offshore Taitao Peninsula,
near the Chile Triple Junction. Here, marine sediments on the forearc contain carbon that is converted
to methane in a regime of very high heat flow and intense rock deformation above the downgoing
oceanic spreading ridge separating the Nazca and Antarctic plates. This regime enables vigorous
fluid migration. Here, we present an analysis of the spatial distribution, concentration, estimate of
gas-phases (gas hydrate and free gas) and geothermal gradients in the accretionary prism, and forearc
sediments offshore Taitao (45.5°—47° S). Velocity analysis of Seismic Profile RC2901-751 indicates gas
hydrate concentration values <10% of the total rock volume and extremely high geothermal gradients
(<190 °C-km~!). Gas hydrates are located in shallow sediments (90-280 m below the seafloor). The
large amount of hydrate and free gas estimated (7.21 x 10" m3 and 4.1 x 1010 m3; respectively), the
high seismicity, the mechanically unstable nature of the sediments, and the anomalous conditions of
the geothermal gradient set the stage for potentially massive releases of methane to the ocean, mainly
through hydrate dissociation and/or migration directly to the seabed through faults. We conclude
that the Chile Triple Junction is an important methane seepage area and should be the focus of novel
geological, oceanographic, and ecological research.

Keywords: BSR; gas hydrate; methane; seepage; active margin; Chile Triple Junction

1. Introduction

Gas hydrate is a crystalline ice-like solid formed by a mixture of water and gasses, mainly methane,
giving place to a clathrate structure [1,2] that can be stored in the pore space of marine sediments under
low temperature (<25 °C) and high pressure (>0.6 MPa) conditions. Methane gas may be produced
biogenically at shallow depths or may migrate from a deeper source through advective transport
along pathways such as fracture networks, faults, or shear zones (e.g., [3]). Since the gas hydrates
are rich in methane, 1 m3 of hydrate will yield 0.8 m® of water and 164 m® of methane at standard
pressure and temperature (STP: 0 °C, 0.101325 Mpa) conditions [4], and a significant amount of hydrate
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represents unconventional and potential energy resources [5]. Moreover, gas hydrates play a part in
global climate change, geo-hazards, and potential drilling hazards (e.g., [6-10]).

It is possible to identify gas hydrates in marine sediments using seismic profiles. The main
indicator is the so-called Bottom Simulating Reflector (BSR), whose presence is related to the
impedance contrast between high velocity gas hydrate-bearing and the underlying low velocity
free gas layer [11-14]. Gas hydrate occurrences along the Chilean margin have been reported in many
places by analysing the available seismic profiles (e.g., [11,14-27]), as well as more recently by direct
identification of cold seeps emitting methane at the seafloor [28-34]. The first discovery of a seepage
area was in 2004, offshore Concepcion. Afterwards, other bathyal seep sites were identified, mainly by
the presence of typical seep communities: (a) off the Limari River at ~30° S (~1000 m water depth); (b)
off El Quisco at 33° S (~340 m water depth); and c) off the Taitao Peninsula at ~46° S (~600 m water
depth) [30-37].

Cold seeps sites are found in both active and passive margins and are related to the expulsion
of methane-rich fluids. Chemosynthetic communities have been observed along active margins
characterized by a well-developed accretionary prism, and along tectonically erosive margins [38]. The
Chile Triple Junction (CT]) area is a spectacular example of tectonic erosion (e.g., [39]). Even though
many investigations are associated with seepage identification and gas expulsion quantification (gas
bubbles) (e.g., [29,38,40-42]), there are few cases where the objective was to estimate the size of the gas
source, as concentrations of gas hydrate and free gas [43].

Furthermore, the studies that report estimates of gas hydrates concentrations along the Chilean
margin are scarce, even though, in the last decades, gas-phase concentrations have been estimated
by fitting modelled velocity with theoretical velocity in the absence of gas [44]. These estimates
reach an average of 15% and 1% of the total volume of gas hydrate and free gas concentrations,
respectively [22,24,25,27]. A recent investigation of the southernmost Chilean continental margin
showed that a regionally extensive methane hydrate reservoir, characterized by high gas hydrate and
free gas concentrations, is present in the Patagonian marine sediments [27]. This could be an important
natural resource for Chile, but because of the hydrate decomposition, this also potentially poses a great
environmental threat.

On the other hand, the Chilean south-central margin is one of the tectonically most active
regions on Earth, with very large and mega-scale earthquakes occurring every 130 and 300 years,
respectively [45]. The margin segment close to the CTJ is characterized by high seismicity [46,47] that
may trigger submarine sediments sliding and eventual gas hydrate dissociation. Some authors suggest
that large subduction zone earthquakes have the potential to trigger hydrocarbon seepage to the ocean
and possibly to the atmosphere (e.g., [29,48]). In this context, known gas hydrate quantities stored
beneath marine sediments play an important role in the geohazard assessment. Besides, in subduction
zones such as the Chilean margin, fluids play a key role in the nucleation and rupture propagation of
earthquakes [49], and are a major agent of advective heat transfer from depth to the Earth’s surface. For
this reason, it is crucial to know the pathways where methane-rich fluids could migrate. The release
of this methane stored in the forearc wedge could have consequences for the ocean and atmosphere
systems, and the destabilized gas hydrate-bearing sediments are a formidable geohazard, in the form
of submarine slumps, induced earthquakes, and tsunamis (e.g., [2,6,50-54]).

The particularity of the Chilean margin close to the CTJ, with anomalous heat flow and high
seismicity, together with the presence of hydrothermal systems (e.g., [55]) and possible seafloor seeps,
offers a unique scenario to study hydrate deposits. The aim of this study is to characterize and estimate
the methane concentrations (hydrate and free gas phases) stored in the marine sediments in order to
understand the potential amount of this gas that could be released through these natural pathways,
likely affecting the geochemical properties of the seawater and, consequently, the marine ecology.
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Geological Setting

The CT]J (Figure 1) is the site of the intersection of three tectonic plates: Nazca, Antarctic, and
South America [39,56,57]. Here, the Chile Rise (CR), an active spreading centre, is being subducted
beneath the South American continental margin. Ridge subduction began near Tierra del Fuego
~14 million years ago (Ma) and then migrated northwards to its current position north of the Taitao
Peninsula (e.g., [15]). The Nazca plate subducts beneath South America in an ENE direction at a rate
of about 70 km-Ma~! north of the CTJ, and the Antarctic plate subducts in an ESE direction at about
20 km-Ma~! south of the CT] (e.g., [56]). The CR spreading rate has been estimated to have been about
70 km-Ma~! over the past 5 Ma, but within the last 1 Ma, it has slowed down to about 60 km-Ma~1

(e.g., [58]).

Figure 1. Location map of the study area offshore Taitao Peninsula. The bathymetry is based on
GEBCO_08 Grid (version 20091120, http:/ /www.gebco.net) and integrated with the IFREMER grid
(cruise of the R/V L’Atalante, 1997). Tectonic setting of the Nazca, Antarctic, and South American
plates: dashed black lines show the main Fracture Zones (FZ), red star marks a triple junction of the
plates (CTJ), and dashed square corresponds to Figure 2.


http://www.gebco.net
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Figure 2. Heat flow (in m-Wm~2) large-scale colour-coded based on BSR-derived heat flow and heat
probes available for the area studied (after [26]). See text for description.

Close to the CT]J, the gas hydrate environment has peculiar characteristics relative to hydrate
occurrences elsewhere. In fact, the ridge-trench collision perturbs pressure and temperature (PT)
conditions within the sediment where hydrates have formed [11]. Excessively high heat flow, higher
than 250 m-Wm ™2, was estimated above practically zero-age subducted crust (Figure 2). This is based
on heat flow values derived from the depth of gas hydrate bottom-simulating reflectors [26,59] and
direct measurements during the last decades [57,60].

The BSR-derived heat flow values are in general agreement with probe and borehole
measurements [61]. Besides, high temperature gradients of 80-100 °C-km~! were obtained at the toe
of the continental wedge (e.g., Site 863 in Figure 2), just above the subducted zero-age crust [55]. The
thermal anomaly in the region varies rapidly due to the presence of a strong convective circulation [62].

More recently, explorative work at the seafloor close to the CTJ has provided evidence for a
sediment-hosted hydrothermal source near (~50 km) a methane-rich cold-seep area [63]. Advective
methane transport operates within 5 km of the toe of the accretionary prism [59,64]. However, in
the interior regions of the wedge, free gas migration and in situ gas production (within the hydrate
stability region) build-up the hydrate [15], and BSR-depth towards the trench appears to rise in the
sediments in proximity of the spreading ridge [15,26].

Moreover, gas at the base of the hydrate layer at the CT] could also be produced from hydrate
dissociation when changes in PT conditions shift the zone of hydrate stability upward, not only due to
the accumulation of overburden, but also due to changes in PT conditions associated with active ridge
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subduction [11]. Increasing heat flow, associated with the approach of the CR, may have caused the
base of the hydrate stability field to migrate ~300 m upwards in the sediments [15].

In this complex region, we find both active margin tectonic regimes: subduction erosion and
subduction accretion occurring in close proximity (e.g., [65]). Bourgois et al [66] assumes that the
tectonic evolution of the Chile margin in the area reflects the evolution of the tectonic regime at depth:
subduction erosion from 5-5.3 to 1.5-1.6 Ma, followed by subduction accretion since 1.5-1.6 Ma. [67],
indicates that subduction accretion occurring today along the pre-subduction segment is linked to a
dramatic post-glacial increase in trench sediment supply. From evidence found by drilling at Ocean
Drilling Program (ODP) Site 863 (Figure 2) at the CT] proper, it was concluded that accretion ceased in
late Pliocene, and presently, the small frontal accretionary prism is undergoing tectonic erosion [39,55].

2. Materials and Methods

2.1. Database

The analyzed seismic line was acquired in 1988 onboard the vessel R/V Robert Conrad within the
framework of the project entitled “Paleogene geomagnetic polarity timescale” for Empresa Nacional
del Petroleo (ENAP). The seismic profile was acquired using an air gun array with a size of 0.062 m3.
The shot spacing was approximately 50 m, and the streamer length was 3000 m and included 236
channels with an intertrace of 12.5 m. The seismic line RC2901-751 analyzed in this study was modelled
to estimate gas hydrate and free gas concentrations.

During ODP Leg 141, the Site 863 located a few km south of the CT] was drilled along the profile
RC2901-751 in an area where the axis of the spreading ridge is subducting at 50 ka (Figure 2). Porosity
and temperature data were obtained from this site.

2.2. Methods

The processing was performed using open source Seismic Unix software and codes ad-hoc [68]
and includes a tested method reported in several studies [14,22,24,25,27,43,69]: (a) BSR identification,
(b) seismic velocity modelling, (c) gas-phases estimates, and (d) geothermal gradient estimation.

(a) BSR identification: a stacking section was obtained by using standard processing (i.e. geometry
arrangement, spherical divergence, velocity analysis, normal-moveout corrections, stacking, and
filtering). The objective was to identify the BSR in a selected part of the stacking section. Once the BSR
was recognized, the seismic velocity was modelled.

(b) Seismic velocity modelling: An in-depth velocity model was obtained using the Kirchhoff
Pre-stack Depth migration (PreSDM) iteratively with a layer stripping approach (details in [70,71]).
This approach uses the output of the PreSDM, the common image gathers (CIGs) [71]. In the seismic
profile, three layers were modelled: the first between the seawater level and the seafloor reflector (SF
layer); the second between the seafloor and the BSR (BSR layer); and the third between the BSR and the
Base of Free Gas (BGR layer). It started with an initial constant velocity model equal to 1480 ms™.. After
four iterations, the SF reflector in the CIGs was flat, suggesting that the migration velocity was correct.
The correct migration for BSR and BGR was reached after 25 and 15 iterations, respectively. Below
the BGR, a velocity gradient was included and, to improve the migration result, the final velocity
model was smoothed. Finally, band-pass filtering and mixing were applied to improve the final
PreSDM image. The sensitivity was considered a depth error equal to 2.5% proposed by [22] after a
sensitive test.

(c) Gas-phases estimates: Once the final velocity model had been built, it was converted into
gas hydrate and free gas concentrations. At first, a qualitative estimate was performed, comparing
the modelled velocity curves against theoretical curves in the absence of gas. Afterwards, positive
anomalies were associated with gas hydrate presence, while negative anomalies were related to free
gas presence. Modified Hamilton’s curves [72] were adopted to estimate the theoretical velocity curves
in the absence of hydrates and free gas or full water saturated sediments [73]. Gas hydrates and free
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gas concentrations were modified until the velocity model fitted the theoretical model, to obtain a
quantitative estimate. The resultant is a concentration model in terms of total volume (for more details
see [44]). Regarding the sensitivity, errors for gas hydrate and free gas estimates were assumed to be
equal to 1.2% and 0.3% of volume, respectively. These errors were evaluated by [74], who performed a
sensitive test to determine the influence of each parameter on the estimation of gas hydrate and free
gas content. In fact, the main error was related to the assumptions of sediment properties.

(d) Geothermal gradient estimation: The geothermal gradient, indispensable to calculating the
theoretical BSR-depth, was estimated using the following relation:

dT/dZ = (Tgsr — Tsga )/(ZBsr — Zsga), 1)

where BSR and seafloor depths (Zpsr, Zsga) were extracted from the PreSDM section. Seafloor
temperatures (Tsga) were based on measurements from CTD data collected during ODP Leg 141 [75],
while BSR temperatures (Tgsr) were based on the dissociation temperature-pressure function of gas
hydrates [4]. Our estimation only considers methane because ethane concentration is negligible [22].
With regard to sensitivity, an error of depth equal to 2.5% was considered for seismic data [22].

3. Results

3.1. BSR Identification

The Kirchhoff PreSDM section (Figure 3) shows:

(a) A normal fault at a distance of 7 km representing the boundary between the lower and upper
part of the continental rise and slope, respectively. Moreover, evidence of slip affecting the seafloor, as
shallow faults and fractures, is registered from 8 to 15 km of distance;

(b) A strong and almost continuous BSR on the section that only gets weak or null where faults
and fractures appear. Below the BSR, it is possible to recognize a weak but continuous reflector
interpreted as BGR and, so, a free gas layer with a thickness of about 70 m;

(c) A variable depth of the BSR ranging between 80 and 150 m below seafloor (mbsf). The
maximum depth of BSR was detected at about 2200 meters below sea level (mbsl) from 0 to 6 km,
while the minimum depth (about 80 mbsf) was identified upwards (from 7 to 16 km). From 16 to 21 km
of distance (in the “uplift part” of Figure 3), the BSR depth increases, reaching a depth of 150 mbsf.

3.2. Seismic Velocity Model

Above the BSR, a layer with a velocity ranging from 1650 to 1740 m/s was identified, while below
the BSR, the velocity decreases from 1288 to 1550 m/s. Besides, below the BSR, the velocity decreases
upwards (from 15 to 21 km of distance; see Figure 3 dark blue color), reaching its minimum value. An
opposite velocity trend was observed above the BSR; in fact, when the velocity increases above the
BSR (from 10 to 21 km of distance), the minimum velocity values are found below it. The BSR depth
increases to the east, as shown by the velocity curves in Figure 3.
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Figure 3. Velocity model superimposed in the Kirchhoff PreSDM section. The three inserts show the
modelled velocity curves (solid black lines) and the theoretical curves in the absence of hydrates and
free gas (dashed black lines) along the velocity model. Below, the rectangles indicate the position of the
zooms in panel (a) and (b), in which red arrows indicate BSR and BGR (if present). The white dotted
lines indicate faults and fractures.

3.3. Gas-Phases Estimates

High gas hydrates concentrations areas are located from 7 to 14 km of distance at approximately
1000 mbsl, reaching values ranging between 7 and 10% of total volume. Low gas hydrates
concentrations regions (with values from 1 to 3% of total volume) are located from 1 to 6 km of
distance at 2200 mbsl and from 15 to 20 km of distance at 600 mbsl (Figure 4). At shallow water depths,
from 15 to 20 km of distance, high free gas concentrations were estimated, with values up to 0.8% of
total volume. Note that hydrate and free gas concentrations show an opposite trend. In fact, from 7 to
14 km of distance, where gas hydrate concentrations increase (above the BSR), free gas concentrations
decrease (see Top and Bottom panels in Figure 4). On the other hand, from 15 to 20 km of distance,
where gas hydrate concentrations decrease, free gas concentrations increase.
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Figure 4. Gas hydrate and free gas concentration models and profiles relative to RC2901-751 seismic

profile. Top panel: gas hydrate concentration values. Middle panel: gas-phase concentration model.

Bottom panel: free gas concentration values. Dashed lines in the top and bottom panels correspond to

the average gas hydrate and free gas concentrations, respe

3.4. Geothermal Gradient

The anomalous geothermal gradients calculated a
between 35 to 190 °C/km (Figure 5). The geothermal gra

ctively.

re variable in the seismic profile, ranging
dient increases towards the west (Figure 5),

and the maximum values are at 2200 mbsl (see Figure 3). The minimum values were calculated on
the east side of the profile (Figure 5) in correspondence of a water depth ranging from 600 to 1000 m.
There are two isolated peaks (at ~9 and ~14 km of distance) of about 125 and 170 °C/km (Figure 5).
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Figure 5. Geothermal gradient of the seismic profile RC2901-751. See text for details.

3.5. Gas Hydrate and Free Gas Volume at Standard Temperature and Pressure Conditions

In order to estimate the amount of methane stored in the marine sediments close to the CTJ region,
bulk estimates of hydrate and free gas concentrations at standard temperature and pressure (STP)

conditions were calculated using the following values:
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e  For gas hydrate: 4% of the total volume (dashed line in the upper panel of Figure 4), 50% porosity,
thickness of the gas hydrate layer equal to 108 m, and a total projected area of about 2300 km?.
Considering these assumptions, the methane budget is 7.21 x 10! m3 at STP conditions;

e  For free gas: 0.27% of the total volume (dashed line in the lower section of Figure 4), 50% porosity,
thickness of the free gas layer equal to 85 m, and a total projected area of about 2300 km?.
Considering these assumptions, the methane budget from gas hydrates is 4.1 x 10 m3 at
STP conditions.

The projected area was delimited based on the multi-resolution gridded Global Multi-Resolution
Topography (GMRT) Synthesis [76] data and it comprises a part of the continental slope. The area was
visually identified as the region that begins at the shelf break in the seaward edge of the shelf until it
merges with the deep ocean floor at approximately 3000-3400 mbsl. All analyses were conducted with
the open source Quantum Gis 3.4 (Qgis) and Generic Mapping Tools 5.4.4 (GMT) projects.

The free gas-volume expansion ratio was calculated using the Peng-Robinson equation of state [77],
applying the methodology explained by [78]. Here, we assume that free gas is only composed of
methane and it is located just below the gas hydrate stability zone. We divided the area containing free
gas into five sub-areas to better assess the in-situ geothermal and pressure conditions and variations
of the volume expansion ratios. Table 1 shows the free gas volume at in-situ and STP conditions.
The rate of free gas volume expansion was calculated to estimate the volume of free gas content at
STP conditions. The area was subdivided into five different regions, and at each one, pressure and
temperature were calculated according to the corresponding geothermal gradient.

Table 1. Free gas volume at in-situ and STP conditions.

Interval Area (m?) Temperature Pressure Volume Volume STP Volume
(mbsl) K (MPa) in-situ (m%) (m®) Expansion Ratio
500-1000 4.19 x 108 285.8 7.6 4.25 x 107 3.69 x 10° 86.8
1000-1500 437 x 108 289.7 12.7 444 x 107 6.71 x 10° 151.2
15002000 559 x 108 291.0 17.7 5.68 x 107 1.20 x 1010 212.2
2000-2500 3.69 x 108 291.5 22.8 3.75 x 107 9.90 x 10° 263.9
2500-3000 2.79 x 108 292.1 27.9 2.84 x 107 8.67 x 10° 305.5
Total 2.06 x 10° 2.10 x 108 410 x 100

4. Discussion

The seismic section showed evidence of active tectonics; in fact, a large normal fault zone located
at 7 km of distance represents the boundary between the western and eastern sectors (Lower and
Uplift part in the Figure 3). Morphological features close to the normal fault can be associated with
active tectonic extension and uplift processes above the subducting CR seafloor spreading centre [39].
Further upslope deformation is characterized by normal faults and fractures with small offsets affecting
shallow sediments (Figure 3). The weak seismic character of BSR in the seaward (westward sector) is
related to low free gas concentrations, while in the uplifted landward (eastward sector), a continuous
and strong BSR can be related to high free gas concentrations up to 0.8% (Figure 4). These values are
consistent with free gas concentrations reported by [11] along Seismic Line 745, located northward
of this study area. A shallow BSR depth (average ~100 mbsf) can be explained by a high heat flow
(average > 200 mW /m?) and geothermal gradient (average ~90 °C/km), as reported by [26] and in
agreement with this study. In addition, vertical and lateral velocity variations above and below the BSR
can be associated with gas hydrate and free gas presence and their concentration changes. Maximum
velocity values above the BSR (up to 1740 m/s) can correspond to high gas hydrate concentrations,
whereas low velocities below the BSR (around 1290 m/s) are related to high free gas concentrations
(Figures 3 and 4). In fact, this low velocity can only be explained with free gas presence.

The gas-phase concentration distribution is in general agreement with heat flow reported by [26].
Moreover, low concentrations of gas hydrate and free gas coincide with high values of heat flow
and geothermal gradients close to the Chile trench and the plate boundary (Figures 2 and 5), while
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high concentrations of gas hydrate and free gas are associated with a low heat flow and geothermal
gradient further up the continental slope. A similar pattern was also recognized by [22] on the Chilean
continental slope around 44° S.

The observation that both gas hydrate and free gas concentrations in the sediments have lower
values close to the trench in the CT]J area could be explained as a result of gas hydrate dissociation
and free gas migration in a regime of fluid advection under high heat flow conditions [59]. High heat
flow is caused by the subduction of the Chile Rise [11,26,57,59,60], and geothermal fluids are supplied
from deeper strata [67] that are undergoing deformation, anomalous compaction, and de-watering
(e.g., [55,65]). The highest values of heat flow are located close to the heat source near the trench
(Figures 2 and 5). We assume that in this area, the advective heat transfer in a regime of rising heat
flow can change the pressure-temperature conditions, causing gas hydrate dissociation in the past
and likely in the present. Low concentrations of free gas close to the trench (~0.1% of total volume),
can be explained due to a variable production. Here, the dissociated hydrates is released as free gas
and can migrate up into the hydrate stability zone, giving place to gas hydrate formation in higher
areas (from 7 to 14 km of distance in Figure 4), increasing gas hydrate concentrations (~8% of total
volume). However, active faults and fractures in the lower forearc can destroy stratigraphic seals and,
consequently, impede free gas storage (e.g., [26,43]) above the subducting spreading ridge. This may
explain the low concentrations of gas hydrate and free gas layers calculated close to the trench and high
concentrations in shallow waters, where the lower values of heat flow were found, and deformation is
less prevalent (Figures 3 and 4). Note, however, that low concentrations of gas hydrate and free gas
were also found close to faults and fractures because of the enhancement of fluid-escape (Figures 3
and 4). Therefore, high heat flow due to spreading ridge subduction, tectonic faulting, and vigorous
fluid advection at the leading edge of the overriding South American plate may indeed be a major
factor for hydrate and gas reservoir distribution offshore Taitao Peninsula. Moreover, the highest value
of free gas concentration, located in the shallower part of the accretionary wedge (~16 km of distance;
Figure 4), can be explained by the upward migration of gas towards an impermeable hydrate layer,
forming a structural trap [22]. Note also that this sector is characterized by the absence of faults that
could act as pathways for upward fluid migration.

The anomalous heat flow close to the CTJ changes the stable PT conditions for the gas hydrate,
promotes its dissociation and fluid escapes. The dissolved methane from gas hydrates could enter into
the ocean through fluid ventings or as gas bubbles [79]. Some of the dissolved methane is diluted and
oxidized as it rises through the ocean interior. However, an increase in gas methane entering the ocean
above seawater saturation could lead to methane reaching the ocean surface mixed layer and being
transported to the atmosphere via sea-air exchange [80].

A question worth discussing here is whether some of the methane in gas hydrates in the lower
continental slope may in fact have been formed by abiotic processes (e.g., [81]) during the formation
of serpentinite from ultramafic rocks. This can be valid for hydrates present in sediments just above
the youngest crust of the CR subducted (near the trench), where active serpentinization and methane
venting can initiate, develop, and survive, as was observed in similar regions (e.g., [82]). ODP Site 863
(see Figure 2 and [55]) is located on the seismic line presented in this study, right above the subducting
oceanic spreading ridge. Pore waters squeezed from the drill cores recovered at ODP Site 863 show
very high pH values up to 10.5, especially at drillhole depths greater than 600 meters below the sea
floor. Along with the concentration profiles of F, B, Cl, and SOy, this suggests that the pore fluids could
be created from a sequence of reactions involving Mg-depleted fluids (see Figure 6 and description
on p. 406 of [55]). This can be taken as an indication of metasomatic alteration in the serpentinized
peridotite of the oceanic mantle (e.g., [83,84]) belonging to the downgoing plate at depth. Recently,
Suess et al. [85] has shown that gas hydrates involving abiotically formed methane might be formed
in sediment drifts overlying altered oceanic crust and mantle in slow-spreading environments. It is
possible to envisage a similar scenario here, with the difference that the sediments of the lowermost
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continental slope are not directly sedimented above the spreading ridge, but are tectonically thrusted
over the downgoing plate.

Finally, the estimated volume of gas hydrate calculated in the present study was lower than the
values calculated in other regions along the Chilean margin (e.g., [27]). We hypothesize that this can
be explained by the following reasons: (a) limited sediment accumulation due to the shortening of the
wedge close to the CTJ, which causes unfavourable conditions for the formation of gas hydrates [11,39];
(b) the presence of faults and fractures that can locally promote fluid escape and prevent gas hydrate
formation (e.g., [43,85]); (c) faults identified in the seismic profile (Figure 3) cross the transition layer
of the gas hydrate phase and serve as pipes that drain water and methane to the seafloor (e.g., [85]);
(d) the CT]J is characterised by an anomalous thermal state (e.g., [26]) that inhibits the formation of gas
hydrates, by changing the gas hydrate stability zone.

5. Conclusions

The results of this research for the gas hydrate in the margin close to the Chile Triple Junction
lead us to conclude that:

e  The values for gas hydrate concentration are lower than 10% of the total rock volume. The highest
concentrations are calculated in shallower waters, where the geothermal gradient is low and
deformation is less prevalent;

e The amount of hydrate and free gas estimated over the studied area were 7.21 x 10!! m® and
4.1 x 10'° m3, respectively;

e Aninverse correlation between gas-phase concentrations and geothermal gradient is recognized.
Low gas hydrate and free gas concentrations coincide with high values of geothermal gradients
over the studied area;

e  Anextremely high geothermal gradient close to the trench was calculated, reaching values up to
190 °C-km™~!, caused by the subduction of the CR at the CTJ, altering the stable PT conditions for
the gas hydrate, which promotes its dissociation and upward migration, and fluid escapes;

e High heat flow, tectonic faulting, and vigorous fluid advection may be important factors for
hydrate and gas reservoir distribution offshore Taitao Peninsula;

e The CTJ is an important methane seepage area and should be the focus of novel geological,
oceanographic, and ecological research.
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