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Abstract: The monitoring network for the measurement of atmospheric and soil climate parameters
was created at the southern boundary of the permafrost zone within the territory of the Republic of
Buryatia, Russian Federation. Based on the obtained data, the processes of soil freezing and thawing
were studied. Negative temperatures in cold soils occurred within 5.5–6 months, whereas the subsoil
was in a thawed state most of the year. On the contrary, permafrost-affected soils were thawed for
4.5–5 months, remaining frozen in the subsoil for most of the year. We propose referring to the
observed spatial–temporal differences in the temperature dynamics as the “mirror imaging” of the
distribution of heat and cold (frost) in the studied soils of the permafrost zone.

Keywords: atmosphere and soil measurement complex; climate change; permafrost types;
temperature regime of soils; control; freezing and thawing of soils; “mirror imaging”

1. Introduction

The environmental conditions of the Republic of Buryatia, Russian Federation, are characterized
by a mountainous relief, a sharply continental climate, permafrost, spatial heterogeneity of parent
rocks and vegetation, as well as a variety of soil cover [1]. The southern boundary of the cryolithozone
stretches over the entire territory of the Republic (Figure 1a), and current global changes can cause
permafrost degradation [2–4]. Permafrost, lithology, and plant cover are complicated and are related to
terrain dissection, which is why different soils with contrasting weathering and soil formation regimes
have formed in the study area [5,6].

In landscapes in the south of the Vitim Plateau in the period from 1909 to 2008, the ambiguous
response of the seasonal soil thawing layer to global warming has been distinguished [7,8].
The maximum change in the depth of the thawing of soils (to 1.40–1.70 m) over the twentieth century
has been revealed for open steppe spaces. In marshy meadows with sedge and birch shrubs, changes in
permafrost thermal conditions have not been recorded. In larch forests of permafrost areas, a positive
trend has been weakly expressed (0.25–0.30 m).

Thus, the territory of the Republic of Buryatia is characterized by a unique combination of
soil forming factors, is located on the southern border of the permafrost zone, and therefore is an
appropriate model for quantifying the processes of soil freezing and thawing in connection with global
climate change.
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2. Materials and Methods

In Russia, systematic measurements of the temperature profile of soils are performed manually [9].
Measurements from 0 to 0.20 m are only carried out in summer, and measurements from 0.20 to 3.20 m
are performed daily year-round, including in winter.

The established atmosphere and soil measurement complex (ASMC) network [10] allows
information to be promptly received on the indicators of the atmospheric and soil climate and at
regular intervals. Similar data were shown, but only year-round, in Reference [11]. Soil temperatures at
Toolik Station, Alaska, are represented only by daily average values along the profile 0.006, 0.087, 0.120,
0.160, 0.236, 0.280, 0.312, 0.387, 0.463, 0.616, 0.650, 0.768, and 0.978 m. Measurements are made with a
Campbell 107 and MRC Temperature Probe. In such systems, each sensor has a cable. These cables are
usually bundled, and each cable is a heat conductor. This heat adds an error to the measurement due
to the thermal influence of the cables on each other. Therefore, the ASMC temperature probe is free
from these disadvantages.

The ASMC allows the long-term automatic measurement of the vertical profile of temperature
and moisture in the soil–atmosphere system from a depth of 3.20 m to a height of 10.00 m. Data were
read remotely using a GSM modem via a cellular communication channel [12]. Soil temperature was
measured every three hours at depths of 0, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50,
0.55, 0.60, 0.80, 1.00, 1.20, 1.60, 2.40, and 3.20 m. The temperature soil probe was constructed in the
form of a three-wire circuit board with high-precision digital DS18B20 thermometers protected by heat
shrink tubing. The sensor accuracy was adjusted to ±0.1 ◦C. Periods of soil temperature measurements
were averaged data for 10 days, and air temperature and precipitation were monthly averaged data.

The conjugate analysis of the created cartographic information, according to Reference [13],
of different thematic layers of climatic indicators displays their large heterogeneity. For example,
the presented thematic layers showed the air temperature distribution during the coldest (January)
and warmer (July) months, the thickness of the snow cover, and the amount of precipitation at the
beginning (May) and the end (August) of summer in the Baikal region. Such a systematic approach
and a cartographic method of research further allowed us to show the heterogeneous influx of heat
and precipitation to the soil surface as well as their transition and distribution into the soil.

The classification of soils was based on the criteria of the World Reference Base (WRB) system [14].
Physical and chemical properties of soils were determined using conventional procedures [15,16].

Here, pH was determined by a potentiometer in a suspension at a soil/water (or 1 M KCl) ratio of
1:2.5 and single shaking, followed by settling for 30 min (pHH2O) or 18–20 hours with periodic mixing
(pHKCl). Organic carbon was determined by the Tyurin method, which included the wet digestion of
organic substance in a mixture of 0.4 N K2Cr2O7 and concn H2SO4 (1:1) under heating to 150 ◦C for
20 min. Later, measurements were performed by photometry on a SPECOL 211 spectrometer at 590 nm.
Carbonates in the soil were determined using the Kozlovskii procedure. A soil sample was treated
with 2 M HCl, and the released CaCO3 was absorbed by a 0.4 M NaOH solution. Then, a saturated
BaCl2 solution was added to the tube with NaOH, and the excess alkali was titrated with 0.2 M HCl.
Exchangeable cations were determined in nonsaline carbonate-free soils using the Schollenberger
method. These were displaced by multiple washing of the sample with a 1 N ammonium acetate
solution at pH 7. Saline soils were analyzed by the Pfeiffer method after preliminarily washing off
soluble salts with 70% ethanol followed by displacing exchangeable cations with Pfeiffer reagent (0.1 M
NH4Cl in 70% ethanol with pH 7) at a soil/solution ratio of 1:20. Exchangeable Ca and Mg in the
extracts were determined using the atomic absorption technique. Exchangeable Na was determined
by atomic emission spectroscopy on a Kvant-2A spectrometer. Particle-size analysis was performed
for particles <1 mm. After pretreatment with a dispersing agent (4% Na pyrophosphate), the fraction
1–0.25 mm was separated by wet sieving. The content of silty and clay particles (<0.05 mm) was
determined by sedimentation (pipette method).

To compare the soil climate, ASMC was established on different types of permafrost distribution
(Figure 1a):
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1. Continuous: The central part of the Vitim Plateau (Turbic Cryosols (Humic), Bagdarin polygon,
N54◦37’326”, E113◦48’108”, 947 m a.s.l.).

2. Discontinuous: The south of the Vitim Plateau (Luvic Chernozems (Stagnic, Tonguic), Eravna
polygon, N52◦30’530”, E111◦32’443”, 933 m a.s.l.).

3. Sporadic: The north of the Selenginskoye Middle Mountains (Natric Chernozems (Stagnic),
Kizhinga polygon, N51◦82’384”, E109◦82’018”, 726 m a.s.l.) and Eastern Pribaikalye (Entic
Podzols, Goryachinsk polygon, N52◦98’5606”, E108◦28’4349”, 502 m a.s.l.).

Geosciences 2018, 8, x FOR PEER REVIEW  3 of 11 

1. Continuous: The central part of the Vitim Plateau (Turbic Cryosols (Humic), Bagdarin polygon, 95 
N54°37'326'', E113°48'108'', 947 m a.s.l.). 96 

2. Discontinuous: The south of the Vitim Plateau (Luvic Chernozems (Stagnic, Tonguic), Eravna 97 
polygon, N52°30'530'', E111°32'443'', 933 m a.s.l.).  98 

3. Sporadic: The north of the Selenginskoye Middle Mountains (Natric Chernozems (Stagnic), 99 
Kizhinga polygon, N51°82'384'', E109°82'018'', 726 m a.s.l.) and Eastern Pribaikalye (Entic 100 
Podzols, Goryachinsk polygon, N52°98’5606’’, E108°28’4349’’, 502 m a.s.l.).  101 

 
(a) (b) 

Figure 1. (a) Map of the distribution of permafrost types [17] and the scheme of the atmosphere and 102 
soil measurement complex (ASMC) locations; (b) an example of a cartographic method of 103 
investigation. 104 

The characteristics of these soils are given below (Table 1).105 

Figure 1. (a) Map of the distribution of permafrost types [17] and the scheme of the atmosphere and
soil measurement complex (ASMC) locations; (b) an example of a cartographic method of investigation.

The characteristics of these soils are given below (Table 1).

Table 1. Physicochemical properties of studied soils.

Horizon Depth (cm) pH
H2O

pH
KCl

Bulk Density
(g/cm3)

Corg
(%)

CaCO3
(%)

Exchangeable Bases
(meq/100 g soil) «Clay

<0.00»
Moisture Reserve
(0–100 cm) (mm)

Na+ Ca2+ Mg2+

Turbic Cryosols (Humic)
AO 0–1 5.88 5.84 - 6.85 - - - - -

270–290
AY 1–12 (15) 5.87 4.99 0.92 3.34 - - 20.32 10.84 2.02

CRM1 12 (15)–80 (90) 5.58 4.96 1.26 1.18 - - 15.09 8.33 6.71
CRM2 80 (90)–130 6.28 5.58 1.43 0.79 - - 15.51 8.62 5.98

Luvic Chernozems (Stagnic, Tonguic)
AU 0–4 (9) 6.88 6.66 0.94 11.36 - - 31.43 16.61 7.56

250–260

AU 4 (9)–24 (25) 7.05 6.58 1.41 8.58 - 0.18 29.09 14.52 10.40
AUB1 24 (25)–38 (45) 7.20 6.50 1.35 4.91 - 0.18 21.83 18.74 15.61

B1 38 (45)–53 (65) 7.63 7.13 1.42 1.29 - - 19.52 13.41 27.72
CAT 53 (65)–89 (96) 8.18 7.65 1.51 0.84 8,52 - 14.09 14.03 21.01

CATQ 89 (96)–150 8.29 7.86 1.43 0.67 6,90 - 6.32 6.91 19.58
CQ 150–180 7.85 7.30 1.42 0.38 0,30 - 23.12 12.74 8.98

Natric Chernozems (Stagnic)
AUsn 0–2 (3) 7.81 5.79 1.09 2.87 0.08 0.84 5.92 4.98 18.84

195–200
AU 2 (3)–22 (24) 7.49 5.39 1.53 3.98 0.15 0.91 6.78 7.69 32.61

AUB 22 (24)–27 (29) 8.74 6.29 1.49 0.99 0.18 2.04 8.67 9.62 34.59
BCA 27 (29)–75 8.59 7.76 1.61 0.67 14.84 2.72 9.65 10.64 46.57
Cca 75–105 8.51 7.51 1.52 0.50 5.16 2.73 10.67 10.99 38.91

Entic Podzols
O 0–13 (16) 5.21 4.19 0.81 2.91 - - 12.64 0.12 2.63

195–210
E 13 (16)–18 5.61 4.30 1.36 0.71 - - 5.71 0.69 1.87

BHF 18–41 (44) 6.59 5.41 1.41 0.42 - - 4.92 2.08 2.23
C 41 (44)–75 6.51 5.31 1.52 0.26 - - 4.73 0.39 1.92
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Turbic Cryosols (Humic) are formed on the terrace above the floodplain under meadow grasses.
The soil surface is hummocky, with sinks and frost cracks up to 0.02 m width. These soils are
characterized by a gray humus horizon, a weak subangular blocky structure, light texture, slightly
acidic reaction, and a low humus and moisture content in the upper horizons. From a depth
of 0.15–0.20 m, a heavy loamy cryometamorphic horizon is observed, moisture content increases,
and signs of redoximorphism and cryoturbation appear. Permafrost is recorded at a depth of
1.90–1.95 m, and the moisture reserve (0–1.00 m) in these soils is average.

Luvic Chernozems (Stagnic, Tonguic) are found on the lacustrine plain of the Eravninskaya
depression under meadow steppes, with grass communities and fragments of xerophytic communities.
These soils are characterized by a loamy dark humus horizon with a high content of humus,
a neutral pH, and a fine subangular structure. A yellow-brown moist heavy loamy carbonate horizon
with a subangular and angular blocky structure begins from a depth of 0.53 (0.65) m. There are frost
cracks and cryoturbations including gravel and stones throughout the soil profile. Soil moisture
content increases with depth. Permafrost is found at a depth of 2.75–2.80 m, and the moisture reserve
(0–1.00 m) in these soils is average.

Natric Chernozems (Stagnic) are formed in the transit part of the gentle long slope (1–2◦) of
the southern exposition of the Kizhinginskaya depression. Arable land is abandoned. Cereal forb
vegetation has a 5%–10% projective cover. There are single drying cracks on the surface. Fine and
medium gravel covers 10%–15% of the surface. The microrelief is hummocky with polygonal fracturing
(0.20 m in width). These soils are characterized by a thin dry dark-gray turf, loamy texture, and a
granular fine subangular blocky structure. Weak effervescence with HCl is present on the surface. There
is a wet, brownish-dark-gray, very dense, loamy humus horizon in a depth of 0.02 (0.03) to 0.27 (0.29)
m of the blocky-prismatic angular structure. In a dry state, the aggregates are very firm. The carbonate
horizon (0.27 (0.29)–0.75 m) is moist, yellow-brown with dark gray vertical stripes and pockets,
very dense, heavy loamy, and of a nutblocky prismatic angular structure. The clear effervescence with
HCl appears from 0.29 m. There is a moist, light brown, dense, loamy, transitional carbonate horizon
C (carbonate) from 0.75 to 1.05 m, characterized by a subangular and angular blocky structure and
strong effervescence with HCl. The humus content is high in the upper horizons. The middle horizon
contains Na, along with Ca and Mg. Soils freeze seasonally at 2.40–2.45 m, remaining constantly
thawed in the subsoil. The moisture reserve (0–1.00 m) in these soils is low average.

Entic Podzols are found under pine-larch forests mixed with single cedars and birches on the
eastern coast of Lake Baikal. The litter (A0–0.13 (0.16) m) is coarse, consisting of weakly decomposed
remnants of moss, Empetrum nigrum, Vaccinium vitis-idaea, and Rhododendron dauricum roots. Below this
is a 0.02-m-thick layer of wet, light-gray, bleached sand with semidecomposed roots. Middle horizons
B are represented by moist fine-grained structureless and compacted sand, separated in density and
color, from brown to ocher-brown. Horizon C is at a depth of 0.41 (0.44) m, and is moist, grayish-brown
sand with fine gravel and small stones. Soils seasonally freeze at 1.60–1.65 m, remaining constantly
thawed in the subsoil. The moisture reserve (0–1.00 m) in these soils is low average.

Thus, Turbic Cryosols (Humic) and Luvic Chernozems (Stagnic, Tonguic) form in harsh
climatic conditions (cold and long winter, short summer), Natric Chernozems (Stugnic) form in
an extracontinental climate with a cold winter and a dry short summer, and Entic Podzols form in a
humid climate with a relatively “warm” winter and “cool” summer, with an abundance of precipitation
in winter.

3. Results and Discussion

Our in situ measurements of the spatial–temporal variability of the temperature and permafrost
soil regimes on the southern boundary of the cryolithozone are pioneering. Analysis of the
obtained data shows that according to the WRB [14], only Turbic Cryosols (Humic) could be called
permafrost-affected soil (Figure 2a). According to the U.S.S.R.’s classification of the thermal regime
of soils [18], Luvic Chernozems (Stagnic, Tonguic) to the south of the Vitim Plateau also belong to
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permafrost soils (Figure 2b), and Natric Chernozems (Stagnic) of the Kizhinginskaya depression and
Entic Podzols of the Eastern Baikal Region belong to the group of nonpermafrost soils (Figure 3).
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The freezing process of Turbic Cryosols (Humic) in the central part of the Vitim Plateau began in
late September–early October, which was 10, 15, and 30 days earlier than the case of the soils of the
Eravna, Kizhinga, and Goryachinsk polygons, respectively. In Turbic Cryosols (Humic) and Luvic
Chernozems (Stagnic, Tonguic), the active layer froze completely in late October and early November,
with continuous frost at a depth of 1.90–1.95 m in Bagdarin and 2.75–2.80 m in Eravna. The thawing
process of permafrost soils began in early April–mid May. The beginning of a stable freeze usually
coincides with the first week in October. This is the end of the full cycle of freezing and thawing
of the Turbic Cryosols (Humic) and the Luvic Chernozems (Stagnic, Tonguic) in the Vitim Plateau
(Figure 2a,b).

A completely different temperature regime was observed in the nonpermafrost Natric
Chernozems (Stagnic) in the Kizhinginskaya depression and the Entic Podzols of the Eastern
Pribaikalye in comparison to the permafrost soils of the Vitim Plateau. These soils seasonally froze
only in winter to a depth of more than 2.40–2.45 m and 1.60–1.65 m, respectively. The thawing process
began on the soils at the Kizhinga polygon in early April, which was 10, 15, and 20 days earlier than
on the soils of the Goryachinsk, Eravna, and Bagdarin polygons, respectively (Figure 3).

The number of days of freezing of the Turbic Cryosols (Humic) throughout the profile in Bagdarin
averaged over 2 years and 25 days, with a freezing rate of more than 10 cm/day, which was 20, 85,
and 90 days less than in Eravna, Goryachinsk, and Kizhinga, with a speed of 7 cm/day, 1 cm/day,
and 2 cm/day, respectively.

The process of soil thawing occurred faster in the Entic Podzols and lasted 35 days at a rate of
2.0 cm/day. This was 70, 80, and 105 days less than at the Bagdarin, Eravna, and Kizhinga polygons,
where the thawing rate was 1.5 cm/day, 2.0 cm/day, and 1.7 cm/day, respectively.

For the observation period from 2014 to 2016, nonpermafrost soils were in a frozen state for
only 5.5–6 months, remaining thawed in the subsoil for most of the year, whereas in permafrost soils,
the temperature gradients were fundamentally different. Permafrost-affected soils melted seasonally
(4.5–5 months) in summer, and remained in a frozen state in the subsoil for most of the annual cycle. This is
the above-mentioned “mirror imaging” of the temperature regimes of permafrost and nonpermafrost soils.

Comparing the thermoisoplethes of the continuous year-round measurements of the temperature
of permafrost and nonpermafrost soils showed the difference in their depth–time soil profiles. These
spatial–temporal distinctions in temperature are proposed as being called the “mirror imaging” of the
heat and cold (frost) pictures in the studied soils of the cryolithozone.

For an illustrative example, we present a comparison of thermoisoplethes of Turbic Cryosols
(Humic) and Entic Podzols (Figure 4). Permafrost-affected soils of the central part of the Vitim Plateau
thaw seasonally (4.5 months) in the summer, remaining frozen in the subsoil during most of the annual
cycle. On the contrary, the cool soils of the Eastern Baikal region spend 5.5–6.0 months in a frozen
state, remaining in a thawed state at the base of the rock for most of the year. These spatial–temporal
differences in heat and cold (frost) are a clear picture of the “mirror image” of the processes of thawing
and freezing in permafrost-affected and cool soils.

Of great interest is the penetration of positive temperatures and their duration at different depths
of the studied soils. The collection, systematization, and analysis of these data showed a large
heterogeneity of the temperature and permafrost soil regimes (Figure 5). For the analysis, of the
three years studied, data were taken from the full calendar year from January to December of 2015.
The greatest differences were found in the duration of positive temperatures over 0 ◦C at a depth of
1.00 m. Thus, in the Entic Podzols of the Goryachinsk in the Eastern Pribaikalye, this characteristic
was equal to 276 days, which was 85, 147, and 151 days longer than the duration of temperatures in
the soils of the Kizhinga, Eravna, and Bagdarin polygons, respectively.
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The patterns of temperature distribution over 5 ◦C in these soils were somewhat different.
The difference at the beginning and duration of these temperatures at a depth of 1.00 m was the
same in both Kizhinga and Goryachinsk (109 and 110 days), and in permafrost soils, it was much less,
at 33 days in Bagdarin and 88 days in Eravna.

A fundamentally different situation was observed in the distribution and duration of temperatures
above 10 ◦C. Luvic Chernozems (Stagnic, Tonguic) already dominated in this case, with temperatures
above 10 ◦C at a depth of 0.20 m for 94 days, which was 6, 22, and 27 days longer than in Kizhinga,
Bagdarin, and Goryachinsk, respectively. The paradox of the permafrost soils at these depths being
warmer than the nonpermafrost Natric Chernozems (Stagnic) and the Entic Podzols could be explained
by the continental climate of the Vitim Plateau (hot dry summer and cold winter). Here, in May,
the value of the precipitation/evaporation coefficient can reach 0.1–0.2, as if it is a semidesert [5].
Therefore, the heat transfer to the soil is quite active when compared to the “humid” climate of the
Eastern Pribaikalye. These landscapes are characterized by relatively cool summers and mild winters
due to the warming influence of Lake Baikal. It should also be noted that the temperature of 10 ◦C did
not reach the depth of 1.00 m in all of the studied soils.

Thus, based on the collection and analysis of information using modern instruments (ASMC), it
became possible to identify more accurate patterns of temperature dynamics, the rate of thawing, and
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the freezing depth of the soil. The “mirror imaging” of the processes of thawing in the permafrost soils
of the Vitim Plateau and freezing in the nonpermafrost soils of the northern Selenginskoye Middle
Mountains and Eastern Pribaikalye was established. The processes of thawing and freezing primarily
depend on the input of solar radiation and the amount of precipitation. Further temperature distribution
in the soil is related to the nature of the vegetation cover and soil properties (particle size distribution,
humus content, structure and density, moisture supply). It was shown that freezing began at the
Bagdarin polygon at the end of September, which was 10–15 days earlier than in Eravna and Kizhinga,
and 30 days earlier than in Goryachinsk. Soils seasonally froze in winter in Kizhinga and Goryachinsk
to depths of more than 2.40–2.45 m and 1.60–1.65 m, respectively. The freezing speed was five times
faster in the permafrost soils (Vave = 9 cm/day) than in the nonpermafrost ones (Vave = 1.6 cm/day).

It was revealed that thawing started at the beginning of April in the Natric Chernozems (Stagnic).
The thawing process was faster in the Entic Podzols and lasted 35 days at a speed of 2.0 cm/day.
This was 70, 80, and 105 days less than at the soils of the Kizhinga, Eravna, and Bagdarin polygons.

The greatest differences were found in the duration of temperatures >0 ◦C at a depth of 1.00 m:
275 days in the Entic Podzols, and 190, 130, and 125 days in Kizhinga, Eravna, and Bagdarin,
respectively. The number of days with temperatures above 10 ◦C at a depth of 0.20 m was 94 for Eravna,
which was 27, 22, and 6 days longer than in Goryachinsk, Bagdarin, and Kizhinga, respectively.

During the period of measurement in the nonpermafrost soils, negative temperatures were
observed for 5.5–6.0 months, remaining in the subsoil in a thawed state for most of the year.
The permafrost soils seasonally thawed only in summer for 4.5–5.0 months, remaining frozen in
the sole (rocks) for most of the year.

4. Conclusions

The monitoring network of observations, which was developed for the first time at the southern
boundary of the cryolithozone of the Republic of Buryatia, the Russian Federation, allows data on the
indicators of the atmospheric and soil climate to be received promptly and at regular intervals. Based
on the collected information and analysis, it became possible to identify more accurate patterns of
temperature dynamics and the rate of soil thawing and freezing. Thus, the ASMC network is ready to
become part of the WMO’s Regional Climate Center Network [19].

The “mirror imaging” of the processes of thawing in the permafrost-affected soils of the Vitim
Plateau and freezing in the nonpermafrost soils of the northern Selenginskoye Middle Mountains
and Eastern Pribaikalye was established. During the period of observations, in nonpermafrost soils
negative temperatures were observed for 5.5–6 months, remaining in a thawed state in the base of the
rock for most of the year. On the contrary, permafrost soils seasonally melted for 4.5–5 months only in
summer, remaining frozen in the subsoil for most of the year.

A comparison of the thermoisoplethes of the continuous year-round temperature measurements
of permafrost and nonpermafrost soils showed the difference in the patterns of their depth–time soil
profiles. These spatial–temporal differences in temperature are proposed as being called the “mirror
imaging” of the patterns of heat and cold distribution (permafrost) in the soils of the cryolithozone
that were studied.
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