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Abstract: This work is focused on the landslide susceptibility assessment, applied to Mauritius
Island. The study area is a volcanic island located in the western part of the Indian Ocean and it is
characterized by a plateau-like morphology interrupted by three rugged mountain areas. The island
is severely affected by geo-hydrological hazards, generally triggered by tropical storms and cyclones.
The landslide susceptibility analysis was performed through an integrated approach based on
morphometric analysis and preliminary Geographical Information System (GIS)-based techniques,
supported by photogeological analysis and geomorphological field mapping. The analysis was
completed following a mixed heuristic and statistical approach, integrated using GIS technology.
This approach led to the identification of eight landslide controlling factors. Hence, each factor
was evaluated by assigning appropriate expert-based weights and analyzed for the construction of
thematic maps. Finally, all the collected data were mapped through a cartographic overlay process
in order to realize a new zonation of landslide susceptibility. The resulting map was grouped into
four landslide susceptibility classes: low, medium, high, and very high. This work provides a
scientific basis that could be effectively applied in other tropical areas showing similar climatic
and geomorphological features, in order to develop sustainable territorial planning, emergency
management, and loss-reduction measures.

Keywords: landslide susceptibility; GIS mapping; photogeology; geomorphological field mapping;
Mauritius Island

1. Introduction

Landslide susceptibility maps provide valuable information for disaster mitigation works and land
planning strategies [1]. The evaluation and the identification of sensitive areas where the probability of
landslides is high became a very important phase in the process of territorial planning by enabling a
timely start of preventive and remedial actions [2]. Landslide susceptibility is defined as a quantitative
or qualitative assessment of the classification, volume (or area), and spatial distribution of landslides
that exist or potentially may occur in an area [3]. In more detail, it is the likelihood that a landslide
phenomenon happens in a specific area based on local terrain conditions, but without any specification
about when it could happen. This estimate of “where” landslides are likely to occur involves a
degree of interpretation and is based on the correlation of several factors (i.e., topography, geology,
geomorphology, geotechnical properties, climate, vegetation, and anthropogenic factors) with the
distribution of past events [4-6].

Various methods for landslide susceptibility assessment can be encountered in the scientific
literature. In general, they are divided into two groups: qualitative and quantitative methods, with the
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most important difference represented by their degree of objectivity. Landslide occurrence, in space
or time, can be inferred from numerous approaches such as inventory-based mapping, deterministic
techniques, probabilistic techniques, heuristic techniques, statistical analysis, and multi-criteria decision
making analysis [3,7-15]. Remotely-sensed (RS) data combined with the Geographical Information
System (GIS) were largely used for landslide susceptibility mapping. These innovative techniques
offer the ability to manipulate significant volumes of data for large geographical areas and also
encourage collecting basic landslide inventory data suitable for site-specific studies and for refining
landslide hazard assessments in the future [16,17]. The GIS environment is widely used in models
for the generation of thematic data layers, computation of different controlling factors, assignment
of weights, data integration, and generation of landslide susceptibility maps. Such GIS-based
models are represented by Weighted Overlay, Decision Tree model, Analytical Hierarchy Process,
and physically-based landslide hazard models [18,19]. Nevertheless, it is recognized that in both
qualitative and quantitative models, the results are prone to the inherent uncertainties related to
various analysis parameters such as errors and variability in model choice, weighting factors, data
availability, and human judgment [20].

In the current study, the achievement of landslide susceptibility maps is intended for use as a
general guide to depicting areas of relative susceptibility to slope failure and as a predictor of landslide
hazards at specific sites. The objective of the research was to better define the spatial distribution of
landslide susceptibility, poorly known in the previous thematic studies, and to individuate the main
critical areas all over the Mauritius Island. In detail, the type and degree of landslide susceptibility were
derived from a mixed heuristic and statistical analysis, based on either direct (geomorphological field
mapping in specific-site investigations) and indirect (photogeology and GIS data processing) analysis.
The overall results led to the realization of a new zonation of landslide susceptibility for Mauritius
Island, identifying four classes marking low, medium, high, and very-high landslide susceptibility.

Mauritius is a large volcanic island located in the western part of the Indian Ocean, approximately
900 km east of Madagascar (20°12’ S, 57°30” E, Figure 1a). The island presents a plateau-like morphology,
gently sloping towards the coastal plains, interrupted by three mountainous environments in the
SW and SE sectors, and just S of the capital Port Louis. It is characterized by a humid tropical
maritime climate and it is mostly affected by SE trade winds. The area is severely affected by
geo-hydrological hazards, especially during the rainy season when heavy rainfall events cause the
flooding of the river plain areas and trigger landslides with strong damages and fatalities [21].
The island is strongly influenced by a variety of morphostructural contexts (i.e., steep mountain areas,
flat highlands, gentle sloping lowlands, and flat coastal areas) under different local climate features,
which influence the type, intensity, spatial, and temporal distribution of geomorphological processes.
Hence, the main geomorphological hazards affecting Mauritius Island are floods [22], landslides [23],
and soil erosion [24,25]. The aim of this work was to prepare a reliable landslide susceptibility map
through a multidisciplinary analysis concerning aerial-photos analysis and geomorphological field
mapping, integrated with GIS processing, in order to provide a further advancement in the well-known
methods for susceptibility assessment [26-30]. Furthermore, this work could represent an effective tool
in geomorphological hazard studies for tropical areas, readily available to interested stakeholders, and
it could provide a scientific basis for the implementation of sustainable territorial planning, emergency
management, and loss-reduction measures.

2. Study Area

Mauritius, together with Réunion (capital Port Mathurin; 19°41” S, 63°25’ E), Rodrigues (capital
St. Denis; 20°52” S, 55°27” E) and some further smaller islands, is part of the Mascarene Archipelago,
situated along the southern part of the Mascarene submarine ridge in the Indian Ocean (Figure 1a).
The island has an overall surface area of about 1860 km? with a maximum elevation of 828 m a.s.l.
in the Black River Gorges National Park, near Chamarel (Figure 1b). It comprises the remnants of a
massive shield volcano that has a covering of younger volcanic rocks. Some of the volcanic craters
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still contain lakes and, locally, the rivers give rise to impressive waterfalls. From a physiographic
standpoint, it consists of a broken ring of mountain ranges, encircling a central plateau extended at an
altitude of about 600 m a.s.l. and surrounded by gentle slopes down to the coastal plains. The whole
island is rimmed by a coral shelf and the related lagoon.
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Figure 1. (a) National Geographic World Map of the western part of Indian Ocean [31], the red box
indicates the location of Mauritius Island; (b) shaded relief image of Mauritius Island from 40 m Digital
Terrain Model (DTM).

Situated north of the Tropic of Capricorn, Mauritius has a humid tropical climate characterized by
cyclones in the summer period (from November to March) and by moderate to low rainfall during the
winter period (from April to October). The mean annual temperature ranges between 23 and 28 °C
and the mean annual rainfall is ~2000 mm (ranging from ~600 to ~4000 mm) [32-34].

Based on the orography of the landscape, the island can be subdivided into different physiographic
domains according to [35]: mountain areas (a), central uplands (b), southern highlands (c), lava plains
(d), and coastal areas (e) (Figure 2).

(@) The mountain areas are characterized by sectors with moderate elevation (ranging from
~600 to ~800 m a.s.l.), dominated by peaks and ridges, with steep slopes and precipitous wall-like
escarpments towards the inland areas and more gentle slopes with outer spurs projecting towards the
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sea. These domains are located in the north-western sector showing a NE-SW direction dominated by
Pieter Both; in the central-eastern sector with an E-W trending ridge dominated by the relief of Mt.
Camizard, and in the south-western sector showing a NNE-SSW direction interrupted by the Black
River Gorges.

(b) The central uplands are in the Moka District, showing a morphology from planar to gently
radial sloping towards the coast. This domain reaches an altitude of about 400 m a.s.l. and includes
two of the main urban areas of the island (Quatre Bornes and Plaines Wilhems). It also includes most
of the area within the caldera of the main island volcano.

(c) The southern highlands are in the Savanne and Grand Port districts and comprise the southern
side of the main caldera showing a planar morphology mostly above 500 m a.s.L.

(d) The lava plains include the surrounding coastal plains and inland gentle slopes, with a wavy
morphology, mostly below 300 m a.s.l. These plains are incised by the main rivers of the island, which
locally generate deep gorges and valleys.

(e) The coastal areas show a morphology characterized by flat lowlands with bays and straight
coasts. This domain is surrounded by a coral reef and the related lagoon, except for two stretches along
the western and southern sectors of the island.
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Figure 2. Physiographic map of Mauritius Island.
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The geological history of Mauritius Island and its volcanism are historically well documented [36—40].
The island was built up during three distinct episodes of volcanic activity (from 10 to 0.02 My), which
can be described, according to a geological chronology [35], as follows: Ancient Lava Series (10-5 My)
including the breccia series (10-7.8 My), which caused the emergence of the island, and the Old Lava
Series (7.6-5 My), which consisted of ancient basalts and phonolite building the primitive island shield
volcano, whose central part collapsed to form the main Mauritius Caldera; the Intermediate Lava Series
(or Early Volcanic Series) (3.5-1.7 My) consisting mostly of pyroclasts and basaltic flows; and the Recent
Lava Series (also named Late Lavas, 0.7-0.02 My), the most important and extensive volcanic event
in terms of aerial coverage (about 70% of the island), comprising basalts, scoria, tuff, and pyroclasts
(Figure 3).
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Figure 3. Geo-lithological scheme of Mauritius Island (modified from Giorgi et al. [40]).

Carbonate deposits constitute the coral reef and the related lagoons built-up all around the
coastline. Superficial deposits are widespread on the island, mainly consisting of alluvial, slope,
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and landslide deposits. The alluvial, alluvial fan, and colluvial deposits are present in the main
fluvial plains, and debris, landslide, and slope deposits are developed in the mountain environments.
The coastal domain is characterized by the presence of coraline sandy beaches and sand dunes
bordering approximately 20% of the coastline.

3. Methods

The landslide susceptibility assessment was achieved through an integrated approach based
on the combination of morphometric analysis and preliminary GIS-based techniques, supported by
photogeological analysis and geomorphological field mapping.

Morphometric and slope analysis was carried out with the GIS software (ArcMap® 10.6.1, ESRI,
Redlands, CA, USA). It was performed using topographic maps (1:25,000-1:10,000 scale) and supported
by the use of a 40 m Digital Terrain Model (DTM) as a base map, and by the creation of a Digital
Elevation Model (10 m DEM) derived from 1:10,000 scale technical maps. This analysis was based
on the definition of the orographic features and the drainage network of the island. By means of the
SHALSTAB model [41,42], a preliminary map was produced in order to outline the spatial distribution
of the landslide susceptibility. This model is able to capture the physics involved in landslides triggered
by rainfall in tropical and mountainous terrains and could be implemented successfully to identify
slopes prone to failure with only a high-resolution Digital Elevation Model.

The geomorphological analysis was based on stereoscopic air-photo interpretation and field
mapping. Aerial photo interpretation and photogeological analysis of high resolution (15 cm)
orthophoto images allowed us to map homogeneous areas prone to landslides and slope instability.
Field mapping was carried out at an appropriate scale (1:5,000-1:10,000), according to international
guidelines [43], Italian geomorphological guidelines [44—46], and the thematic literature concerning
geomorphological mapping and analysis in different geological and climatic contexts [47-51].
We focused on the definition of lithological features, superficial deposit cover, and the type and
distribution of geomorphological landforms with reference to the main landslides affecting the island.
Field survey and schematic geological-geomorphological field sketches allowed to analyze landslide
geometry and their state of activity, as well as the anthropogenic influence. The analysis of the major
lithological features was performed by integrating field data with the geological map of Mauritius
Island at 1:50,000 scale [40,52]; while, the land-use analysis was based on a 1:100,000 scale map [53]
and information about the soil types have been derived from a soil map at a 1:50,000 scale [54]. Special
attention has been devoted to mapping superficial deposits (i.e., colluvial, alluvial, landslide, and slope
deposits), which had been poorly mapped in previous geological maps [40,52].

The landslide susceptibility assessment was based on a mixed heuristic and statistical analysis,
according to the most relevant literature [55-60]. This approach led to the identification and combination
of relevant parameters for the mechanism of landslide occurrence. Regarding the study area, eight
parameters (slope, aspect, topographic curvature, drainage pattern, vegetation cover, lithology,
soil cover, and rainfall) were considered as landslide controlling factors. All the factors were portrayed
in thematic maps and divided into different classes. Each class of every single factor was rated following
a weighting system based on comparative judgments and synthesis of priorities [61-64]. This iterative
procedure allowed us to rate individual classes in order to provide an immediate measure of the role
played by each factor and its related classes on the landslide susceptibility. In detail, this stepwise
approach led to compare the factor dataset with the preliminary GIS-based landslide susceptibility
and with the distribution of the different types of landslide (i.e., rockfalls, landslides, and rapid earth
flows). The analysis was performed through the calculation of the “Landslide index” (Li), expressed
by the equation [65,66]:

Li = (Al/At), 1)
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where Al is the surface area of every class of the factors, and At is the whole surface area of the island.
Moreover, a parameter reclassification was performed in order to better assign the appropriate weight
to each class, using the following equation [65,66]:

W =[(Lip - Lirnin) J[(Limax — Limin)]r ()

where Lij is the landslide index for a specific class of the considered factor, Liy, is the minimum
landslide index value of all classes for a given factor, and Limax is the maximum landslide index value
of all classes for a given factor. Then, a categorization of the factors according to their role in the
weighting system was realized. Each class was normalized to 100 percent so that calibration would
have the same scale in all factors. The convenience of such a normalization consists in the possibility to
weigh the contribution among classes belonging to factors with different ranges of Li-values. All the
weighted factors were summed altogether, using the ArcGIS Raster Calculator tool, and reclassified to
obtain the landslide susceptibility for each mass movement type, as follows:

S= Z (WE, * orfy), 3)

where Wf; is the weight of each factor and crf; is the contribution ratio, evaluated through an
expert-based approach. This summation resulted in the final susceptibility mapping, where the higher
the S value, the higher the susceptibility to different types of mass movements (rockfalls, landslides, or
rapid earth flows). Finally, all the collected data, portrayed in three thematic maps, were integrated
into the GIS software through a cartographic overlay process [67,68] in order to portray the spatial
distribution of the landslide susceptibility.

3.1. Landslide Controlling Factors

Landslide susceptibility analysis involves data collection and construction of a spatial database
from which relevant factors are extracted. Selecting those independent variables with a major role is,
however, a difficult task. There are neither universal criteria nor guidelines. Hence, the selection of
factors needs to take into account the nature of the study area and data availability [69-71].

The eight factors considered for the susceptibility analysis were: slope, aspect, topographic
curvature, drainage pattern, vegetation cover, lithology, soil cover, and rainfall. Each factor, described
in the following paragraphs, was selected and subdivided into different classes in order to best
commensurate the diversity of the data source and difference in the scales and to clearly delineate its
role in the mechanism of landslide occurrence in the wider geological and geomorphological context
of the island.

3.1.1. Slope

The slope angle is commonly used in landslide susceptibility studies since landsliding is directly
related to this factor [58,65,72,73]. In this study, the slope has been divided into ten classes (Figure 4a).
The predominant class is 0-5° and it is homogeneously present in correspondence of flat areas along
coastal and lava plains. Some wide sectors of the lowlands and uplands show slope values ranging
from 5-15° to 25-35°, with steep slopes affected by landslides and earth flows. The higher slope values
are related to peaks and ridges of the mountain areas which present sub-vertical slopes (over 55°),
affected by rockfalls.

3.1.2. Aspect

Aspectis considered a less important factor in landslide susceptibility studies [55,72]. Nevertheless,
aspect-associated parameters, such as exposure to sunlight, drying winds, and rainfall may influence
the occurrence of landslides [73-75]. The aspect map has been classified into ten classes (Figure 4b).
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The overall shape of the island outlines a specific aspect distribution, in which slopes facing north to
northwest and south to southwest are slightly predominant over east to southeast facing slopes.

3.1.3. Topographic Curvature

The term curvature is theoretically defined as the rate of change of slope gradient (profile curvature)
and/or aspect (planform curvature), usually in a specific direction [76,77]. Positive values of profile
curvatures define convexity; negative values of profile curvatures characterize slope concavity [73].
Positive values of topographic curvature characterize ridges, while negative ones define valleys. Values
around zero indicate flat surfaces, whatever the slope is. The topographic curvature map (Figure 4c)
combines both the profile and planform curvatures. The highest values characterize the three mountain
areas with scarps, ridges, deep valleys, and gorges where rockfalls and landslides may occur. Moderate
values locally affect the southern highlands and the lava plains along the main fluvial incisions.

3.1.4. Drainage Pattern

The drainage network, strictly influenced by the underlying lithology, can be used to extract
information on the general direction of surface water flows towards individual basin outlets,
the angle of intersection between the tributaries and the main channels, and the overall confluences
distribution, which can control the drainage discharge and the related instability, particularly in critical
hydrological conditions.

The drainage network was divided into nine homogeneous drainage patterns (Figure 4d).
The predominant pattern is sub-dendritic, although in some sectors it is absent due to the high
permeability of lavas and pyroclasts. Parallel patterns and parallel with meandering channels
characterize the central and southern highlands especially in the southern sector of the island. Radial,
centripetal, and rectangular patterns are locally present. The drainage network is totally absent in the
northern sector of the island.

3.1.5. Vegetation Cover

The vegetation cover plays an important role in slope stability. In general, sparsely, or poorly
vegetated areas are affected by faster soil erosion and greater instability than forested ones [26,58,72].
In the study area, a vegetation map (Figure 4e) was derived from the photogeological analysis and
the land-use map [53]. Vegetation cover was classified into eight classes, in which areas with absent
vegetation correspond to urban areas. The predominant vegetation type is shrub crops, including
sugar canes, which cover most of the lava plains, and the central and southern highlands, whereas
forests (heavy tree canopy and sparse trees) cover large parts of the mountain areas.

3.1.6. Lithology and Soil Cover Deposits

Lithology and soil cover are important factors in landslides susceptibility analysis, since different
lithological units may be affected by different landslide types with variable susceptibility degrees.
Moreover, soil cover deposits, mostly exposed to weathering, may influence land permeability, geotechnical
parameters and, therefore, the landslide type, as known from thematic literature [26,73,78,79].

The predominant lithological units are: fresh basaltic flows (Recent Lava Series), mostly
outcropping in the lava plains and the central and southern highlands and poorly affected by
mass movements; pyroclasts and weathered basaltic flows (Intermediate Lava Series) outcropping
in the central and southern highlands, and locally affected by landslides and earth flows; ancient
basalts and phonolites (Ancient Lava Series), outcropping in the mountain areas and largely affected
by rockfalls; colluvial deposits, widespread at the base of the mountainous slopes, largely affected by
earth flows and translational-rotational landslides (Figure 3).

For the study area, the soil types were grouped into eight units depending on their typology
and the related thickness (Figure 4f). The most widespread type is the brown to red-brown soil with
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rocky fragments and basalt outcrops, which usually increases in thickness (from few to >100 cm) in the
middle and lower part of the mountain areas, and variably rocky soil of moderate thickness.
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3.1.7. Rainfall

Rainfall and heavy rainfall events play a key role in the mechanism of landslide triggering.
This mechanism depends on rainfall distribution and it is controlled by the interactions of different
factors, such as orography and hydrography, lithology, land use and vegetation, etc. [80-83].
The analysis of the rainfall and temperature data, evaluated from a 29-year time record (1971-2000),
proved certain features of the climate on the island (Figure 5). The island is characterized by a humid
tropical maritime climate and by permanent SE trade winds. The mean annual temperature ranges
between 23 and 28 °C. The mean summer (November—March) rainfall is 1300 mm; the mean winter
(April-October) rainfall is 660 mm. The mean annual rainfall is greater in the central uplands (4000 mm)
and windward slopes (~1400 mm on the eastern coast) and lower in the western slopes (600 mm on
the coast). Occasionally, tropical cyclones and storms affect the island inducing geomorphological
effects, such as the events occurred in March—-April 2013 and in March 2015 [25,32-34]. The average
summer rainfall was used in the weighting procedure to best represent the link between rainfall data
and landslide susceptibility in this dynamic climatic context.
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Figure 5. (a) Average winter rainfall map; (b) average summer rainfall map; (c) termo-pluviometric
diagram of the western region (Medine); (d) termo-pluviometric diagram of the central region (Vacoas);
(e) termo-pluviometric diagram the eastern region (Fuel); (f) termo-pluviometric diagram of the
northern region (Pamplemousses).



Geosciences 2019, 9, 493 11 of 26

4. Results

4.1. Preliminary GIS-Based Landslide Susceptibility Map

A preliminary susceptibility map (Figure 6) was produced using GIS technology. This map allowed
us to outline the critical areas in terms of potential spatial distribution of landslide susceptibility.
For this kind of analysis, SHALSTAB model provides a DEM modeling calculation and applies a
topographic index suggesting that surface topography is a primary indicator of where landslides are
most likely to occur. In the current study, different areas marking low, medium, high, and very-high
landslide susceptibility were identified. The analysis allowed us to identify areas with high and very
high landslide susceptibility in correspondence to the three mountain areas, to some sectors of the
southern highlands, and to the incision of the main rivers. Central uplands, southern highlands, and
lava plains show the lowest values in accordance with the morphology of the island. A region that has
no class values presents no landslide susceptibility and mostly corresponds to coastal areas.
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Figure 6. Preliminary GIS-based landslide susceptibility map produced using the SHALSTAB model.
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4.2. Photogeological Analysis

The photogeological analysis was carried out to support and verify the preliminary GIS mapping.
The analysis allowed for outlining the main landslide-prone areas, considering previous studies and
technical reports provided by the Mauritius Ministry of Environment and Sustainable Development.
According to the orographic (elevation and slope), hydrographic (drainage pattern), vegetational,
geological (lithology and soil cover) and geomorphological (slope gravity landforms and processes)
features, a detailed analysis was performed in the three mountain areas of the island with reference
to some specific and mostly representative sites (Chitrakoot, Quatre Sceurs, Chamarel, and Corps
de Garde) (Figure 7). Each of the mapped sites is located in a different sector of the island and it is
characterized by a specific geomorphological setting highlighting the development of different types
of mass movements, such as rockfalls, landslides, and rapid earth flows.

. - Slope
Elevation | Slope Drainage . . ; ;
% Vegetation Lithology gravity Site
(ma.s.l.) ©) pattern PlocsEsEs
(a) | 100-250 | 25-35 | Subdendritic| Sparsetree | LaNISIGC || andsiides | 1c
eposits
()| 0-50 | 5-15 |Subdendritic | Shurb crops |  cOlluvial Complex | o,
deposits landslides
Pyroclasts and ;
(c) | 250-400 | 45-50 | Subdendritic| "2V 1€ | weatnereq | RAR €A | 5
Py basaltic flows
@ | >500 >73 | Absent Absent | AnCient 0asallic| goqpans | ag

Figure 7. Examples of photogeological analysis; for investigation sites’ locations see Figure 10. The red
line indicates the area involved by landslide phenomena. (a) Landslide area of Chitrakoot (Port Louis
District); (b) landslide area of Quatre Soeurs (Flacq District); (c) earth flow area of Chamarel (Black
River District); (d) rockfalls along the scarps of Corps de Garde (Plaines Wilhems District).

Chitrakoot area (Figure 7a) is in the Port Louis District, located at moderate elevation (ranging
from 100 to 250 m a.s.l.) with low to moderate slope (25-35°) in the lower part, passing to more
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gentle slopes in the upper part. The drainage pattern is subdendritic and this site shows sparse tree
vegetation, with some patches of heavy three canopy. The bedrock lithology is ancient basalt, generally
covered by landslide deposits. Slope gravity processes are referable to large landslides affecting the
middle and lower sectors of the area.

Quatre Soeurs area (Figure 7b) is in the Flacq District, located at low elevation (ranging from 0
to 50 m a.s.l.) with low slope values (5-15°). The drainage pattern is almost subdendritic with small
drainage lines perpendicular to the slope. This site shows heavy tree canopy in the very upper part,
with dense shrub crops in most of the urban areas along the coast. The bedrock lithology is ancient
basalt, covered by colluvial deposits. The area is affected by slope gravity processes referable to a
complex landslide located in the lower part of the slope near the coastal area.

Chamarel area (Figure 7c) is in the Black River District, located at intermediate elevation (ranging
from 250 to 400 m a.s.l.); slope values are around 45-50° with some vertical scarps in the lower
sector. The drainage pattern is subdendritic and the vegetation is characterized by heavy tree canopy.
The bedrock lithologies are pyroclastic rocks and interbedded weathered lavas, covered by thick
to moderately thick brown soil. The area shows evidence of rapid earth flows along the main
drainage lines.

Corps de Garde area (Figure 7d) is in the Plaines Wilhems District and it is represented by a
vertical scarp at an altitude >500 m a.s.l. with high slope values (>73°). The hydrography is absent,
and the vegetation is absent as well. The main geomorphological feature is represented by a wide
scarp representing the detachment area of rockfalls.

4.3. Geomorphological Field Survey

The field survey was performed to verify the presence, geometry, typology, and state of activity
of mass movements in specific and most representative sites (Chitrakoot, Quatre Sceurs, Chamarel,
and Corps de Garde). The main landslides-prone areas were mapped in the field by collecting
data on specific field sheets, including geological-geomorphological field sketches (Figure 8) and
photo documentation (Figure 9), showing the relationship between landslides, bedrock lithology, and
superficial deposits.

Chitrakoot area is characterized by the presence of the main landslide scarp on the ancient
basalts lithologies. In the middle part of the slope, moving towards the urban area, the wide
gently-undulating sector is referable to a landslide terrace, with small counterslopes, that could be
connected to a large landslide involving the whole slope, with a possible deep slip surface (>20-30 m).
This area is also affected by shallow to moderately-slow landslides involving the colluvial deposits
and inducing secondary landslide scarps, tilting, severe cracks, and damages to residential houses.
This geomorphological setting is supposed to be linked to the superimposition of small slides on a
large complex landslide, probably triggered by heavy rainfall events (Figure 8a).

Quatre Soeurs area is also dominated by the main landslide scarp on the ancient basalts lithologies,
partly covered by slope deposits. In the middle part of the slope a wide counterslope, with small
swamps and small scarps, is present, affecting colluvial and slope deposits. In the lower part of
the slope, the houses are affected by wide cracks and tilting both down-slope and counterslope.
At the base of the slope, finally, small springs are present and strong damages affect the main road.
This geomorphological setting is supposed to be linked to the superimposition of shallow small
rotational or complex landslides on a wide deep translational-rotational landslide, sliding on the main
slip surface (Figure 8b).

Chamarel area presents a geomorphological setting variable from the upper to the lower sector of
the slope, according to the complex morphological setting. The upper sector of the slope, developed
on pyroclast rocks and weathered basaltic flows, is characterized by small valleys with V- and U-shape,
arranged in subdendritic drainage pattern. These valleys are affected by gully erosion and earth flows
during heavy rainfall events. In the middle and lower part of the slope, the alternation of thick layers of
basalts and pyroclastic rocks induced a step-like morphology affected by small landslides and rockfalls;
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the latter affects mainly the lower layer of ancient fractured basalts, with the formation of rock blocks
up to >10 m in size (Figure 8c).
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Figure 8. Field geomorphological survey. Panoramic view and schematic geological-geomorphological
field sketches; for investigation site locations see Figure 10. Black lines on the left represent the
trace of the field sketches. (a) Large complex landslide area of Chitrakoot, (Port Louis District);
(b) rotational and translational landslide area of Quatre Soeurs (Flacq District); (c) earth flow and
rockfall area of Chamarel (Black River District); (d) rockfalls along the scarps of Corps de Garde (Plaines
Wilhems District).

Corps de Garde’s ridge is characterized by several main rockfall scarps. The main ones are in the
northeastern and southern side (up to 200 m high); while, the minor ones are present in the western
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side. These scarps are in a dormant state; they do not show evidence of very recent activity but could
easily be reactivated. In the lower sectors of the area, slope and landslides deposits are covered by
shrub vegetation unless some blocks that are still uncovered. This aspect confirms a dormant state of
the landslide phenomena (Figure 8d).

Figure 9. Photo documentation of geomorphological features of Mauritius Island. (a) Corps de Garde,
vertical basalt scarps affected by rockfalls; the light color outlines a recent rockfall detachment, at the
base of the slope the vegetation covers the rockfall accumulation; (b) Le Morne, detail of a recent
rockfall detachment scarp (reddish colored area); (c) Pieter Both, the second-highest peak in Mauritius,
one of the symbols of the island, characterized by a poorly stable large block; (d) Grand River North
West, landslides affecting the fluvial scarp of one of the main rivers of the island; (e) Chitrakoot, in the
background large basalt scarps affected by rockfalls, in the foreground scarps and terraces related to a
large complex landslide; (f) Chitrakoot, building damaged due to the landslide activity.

4.4. Landslide Distribution

The spatial distribution of landslide susceptibility resulted from the combination of photogeological
analysis and field survey. In detail, it was produced by merging data from aerial photo interpretation
of high-resolution orthophoto images in the three mountain areas of the island and data from
geomorphological field activity in specific-site investigations, defined considering technical reports
provided by the Mauritius Ministry of Environment and Sustainable Development. This analysis
allowed us to characterize different geomorphological homogeneous areas showing evidence of slope
gravity processes such as rockfalls, landslides (complex landslides, translational and rotational slides),
and rapid earth flows. This arrangement is summarized and graphically shown in Figure 10.
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Figure 10. Landslide spatial distribution in the three mountain areas of Mauritius Island,
with investigation site locations. This graphical representation includes rockfalls, landslides (complex
landslides, translational and rotational slides) and rapid earth flows.

Rockfalls occur on steep or vertical wall-like escarpments in the mountain areas, at elevations
ranging from about 500 to 800 m a.s.l., showing the highest slopes values (from 50 to >73°).
The escarpments are on the bare rock (mostly ancient basalts lithologies with no vegetation and
no soil cover). Surface hydrography is generally absent, only related to surface water runoff and
infiltration due to rock fracturation. The main landslide scarps represent the detachment areas of
rockfalls and at the base large talus slopes deposits are present, made up of large blocks embedded
in coarse debris resulting from repeated rock falls, and mostly covered by thick shrub and tree
vegetation. Large complex landslides affect the middle and lower parts of the slopes and are located at a
moderate elevation ranging from 150 to 500 m a.s.l. on concave or convex—concave slopes surrounding
the mountain areas, with moderate slope values (25-35°); locally gentle landslides terraces occur.
The bedrock lithology is represented by ancient basalts or pyroclasts, generally covered by superficial
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deposits (colluvial and slope deposits). The drainage pattern is mostly subdendritic or parallel (locally
radial). The main sites show sparse tree vegetation, with some patches of heavy tree canopy in the
middle and upper part.

Translational and rotational landslides mostly occur at low elevations ranging from 0 to 150 m a.s.1.
showing low slopes values (5-15°), changing to steeper slopes in the upper sectors (15-25°); they affect
the basal slopes surrounding the mountain areas and in some cases the slopes of the central and
southern highlands. The bedrock lithology is represented by intermediate basalts or pyroclasts, covered
by colluvial deposits. The drainage pattern is almost parallel with small drainage lines perpendicular
to the slope. Most of the sites show a heavy tree canopy in the very upper part, and dense shrub crops
and shrubs in most of the area. Locally, this type of slide occurs also along the fluvial scarps of the
main rivers.

Rapid earth flows are located at intermediate elevations ranging from 150 to 500 m a.s.l. in the
southern highlands and locally around the mountain areas. The slope values are usually around
15-25°, locally increasing in the correspondence of vertical scarps. The bedrock lithologies are mostly
pyroclastic rocks and interbedded weathered lavas, covered by colluvial deposits. The drainage pattern
is mostly subdendritic; the vegetation is characterized by sparse trees and in many cases by shrub
crops (sugar cane).

5. Discussion

Landslide susceptibility assessment was performed through the analysis and the cartographic
overlay of susceptibility to different types of mass movements: rockfalls, landslides (including rotational
and translational slides, complex landslides, general slow landslides) and rapid earth flow. The analysis
was based on the interaction between controlling factors, which provides certain clues for landslide
susceptibility, such as orographic features (slope, aspect, profile, and planar curvature), hydrographic
features (drainage pattern), geological features (lithology and soil cover), vegetation features, and
rainfall data. Original data were converted to digital form and individual factors were processed
through digitization in a GIS environment. All the factors were portrayed in thematic maps and
divided into different classes. Each class of every single factor was analyzed through a weighting
procedure to provide an immediate measure of the role played on the landslide susceptibility. In detail,
this stepwise approach allowed us to compare the factor dataset with the preliminary GIS-based
landslide susceptibility and with the distribution of the different types of landslide (i.e., rockfalls,
landslides, and rapid earth flows). The correlation between controlling factors and landslides has been
computed by evaluating the “Landslide index” (Li) for the individual classes into which each factor
has been divided. Then, a categorization of the factors according to their role in the weighting system
was realized. Each class was normalized to 100 percent to best weigh the contribution among classes
belonging to factors with different ranges of Li-values and work with the same scale in all factors.
This weighting procedure is summarized in Table 1. Moreover, with reference to the physiographic
context of the island, the slope factor was considered as a primary indicator of slope instability and it
was processed to define its significant role in the occurrence of different types of landslides (Table 2).
The slope was classified into ten classes from 0 to >73°, and each class was weighted defining Li and
W [65,66], separately for different landslide types. Class 1 of the slope layer (slope ranging 0-5°) has
almost no observed rockfalls area, resulting in zero weight; while, for example, class 9 (slope ranging
65-73°) has the maximum Li, resulting in the maximum weight (defined as 100), since sub-vertical
slopes are largely affected by rockfalls. As for landslide distribution, the highest Li values are for class 2
(slope ranging 5-15°) and class 3 (slope ranging 15-25°), resulting in a 100 and 23 weight, respectively.
As for rapid earth flow distribution, the highest Li values are again for class 2 (5-15°), resulting in a
100 weight, and for classes 3 to 7 (15-55°).
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Table 1. Weighting procedure of controlling factors considered for landslide susceptibility analysis.

Factors Classes Li A\
Flat 3.6933 0
North 10.3748 61
Northeast 139633 94
East 14.6110 100
Aspect Southeast 14.1709 96
South 10.8813 66
Southwest 10.0864 59
West 10.8134 65
Northwest 13.3353 88
Concave 3.9874 0
Topographic Curvature Planar 5.5731 2
Convex 90.9802 100
Subdendritic 0.6838 4
Subdendritic with meanders 18.6742 100
Radial 0.7771 4
Rectangular 0.0038 0
Drainage Pattern Parallel 0.1688 1
Parallel with meanders 0.0731 0
Centripetal 0.0064 0
Absent with lake 0.0009 0
Absent 0.0006 0
Grass 0.6905 1
Sparse trees 11.0480 18
Heavy tree canopy 15.4641 26
Vegetation Cover Shrub 0.0065 1
Shrub crops 60.0157 100
Tree crops 0.1558 0
Absent with lake 0.0095 1
Absent 11.3788 19
Superficial deposits 11.4012 11
Lithology Recent Lava Series 6.7308 0
Intermediate Lava Series 32.8782 62
Ancient Lava Series 49.1925 100
Variably rocky, brown to red-brown soil ~ 11.0524 26
Variably rocky red-brown soil 12.4840 31
Red-brown soil with rocky fragments 2.3900 0
Soil Cover Brown rocky soil 9.3969 21
Moderately rocky soil 16.6108 43
Thick red-brown soil 35.3307 100
Basalt outcrops 5.1546 8
Mainly thick soil 7.6720 16
0-200 1.4451 0
200-500 9.8541 40
Average Summer 500-800 22.2566 100
Rainfall (mm) 800-1000 16.6550 73
1000-1200 19.1520 85
1200-1500 14.3273 62

1500-2400 163115 71
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Table 2. Slope factor weighting procedure.

Slope Rock falls Landslides Earth Flows
Class Value (°) Li W Li W Li w
1 0-5 0 0 0.0002 5 0.0004 5
2 5-15 0.0048 1 0.0034 100 0.0057 100
3 15-25 0.0083 2 0.0008 23 0.0030 23
4 25-35 0.0221 5 0.0002 6 0.0027 6
5 35-45 0.0416 10 0.0002 6 0.0046 6
6 45-50 0.0755 19 0 0 0.0038 0
7 50-55 0.1544 39 0 0 0.0033 0
8 58-65 0.2391 60 0 0 0.0021 0
9 67-73 0.3979 100 0 0 0 0
10 >73 0.3662 92 0 0 0 0

To better calibrate and testify the role played by landslide controlling factors, an overall contribution
ratio (crfi) was assigned to each factor (Table 3). This process of calibration was performed, through
an expert-based approach, considering the influence of factors and related classes in the mechanism
of occurrence of different types of mass movements. In detail, the contribution ratio was defined
by combining data obtained from photogeological analysis and geomorphological field surveys in
specific-site investigations. The analysis revealed that the contribution of each influencing factor varies
across the island. The spatial variation showed that morphological factors are important driving
parameters for slope failures and have multiple influences on landslide susceptibility. The slope factor
directly affects shear stress and, generally, gentle slopes are expected to have lower susceptibility to
landsliding than steep ones. Profile and planar curvature express the shape of the slope and were
rated in order to reflect the topography of the island. Lithological features also influence the landslide
susceptibility with strong effects on hydrological and mechanical characteristics of rock mass. Hence,
lithology was considered as to the different role played in the mechanism of occurrence of different
types of mass movements. Even though Ancient Lava Series are considered as hard and stiff rocks,
due to the high fragmentation they are favorable to rock falls. Loose and high erodible formations, like
superficial deposits, tuff, pyroclasts, and weathered basaltic flows, are prone to generate rotational and
translational slides, and general slow landslides, since they are unconsolidated formations.

Table 3. Landslide controlling factors and related contribution ratio for rockfalls, landslides, and rapid
earth flows susceptibility.

Contribution Ratio

Factors
Rockfalls Landslides Earth Flows

Slope 1.2 1.2 1.2
Aspect 0.3 0.3 0.3
Profile curvature 1.2 1 1.2
Planar curvature 0.1 0.1 0.1
Drainage pattern 0.1 0.2 0.2
Vegetation cover 0.2 0.2 0.2

Lithology 1 1 1

Soil cover 0.7 1 1
Rainfall 0.4 0.6 0.8

Finally, all the weighted factors were summed altogether, using the ArcGIS Raster Calculator
tool, and reclassified to portray the spatial distribution of landslide susceptibility in thematic maps
(Figure 11). This analysis allowed us to produce three different susceptibility maps for rockfalls,
landslides (including rotational and translational slides, complex landslides, general slow landslides),
and rapid earth flows.
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Figure 11. (a) Rockfall susceptibility map; (b) landslide susceptibility map (including rotational and
translational slides, complex landslides, general slow landslides); (c) rapid earth flow susceptibility

map; (d) landslide susceptibility map of Mauritius Island.

Rockfall susceptibility map (Figure 11a) shows very high values all along the main escarpments
and the upper part of the slopes on bare basalt rocks of the mountain areas (Port Louis, Pamplemousses
district, and Le Morne); high values are in the eastern side, along the main scarps of the Flacq and
Grand Port districts and in the south-western side, along the main escarpments of the Black River
District; in the latter areas rockfalls are partly prevented by the high vegetation cover (heavy tree
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canopy). Some patches of medium to high values occur on rock scarps along the main rivers in the
southern and north-western side of the island.

Landslide susceptibility map (Figure 11b) shows very-high levels in the lower part of the main
slopes of the mountainous-hilly areas of the northern, eastern, and south-western parts of the island.
These areas are mostly on ancient basalt rocks in the upper part and on basalt or pyroclastic rock in
the lower part, covered by superficial deposits. They are characterized by sparse trees and shrubs
vegetation cover and show the presence of several scarps and landslides terraces outlining an irregular
convex-concave morphology.

Rapid earth flow susceptibility map (Figure 11c) shows very high values from the upper to
the lower part of the main slopes of the mountainous and hilly areas of the northern, eastern, and
south-western sides of the island, even though these are covered by sparse trees and tree canopy. High
values are also present in some hilly or gently undulated landscapes that developed on pyroclastic
rocks and recent lavas, covered by sugar cane crops, on the southern side of the island (Savanne District;
i.e., Chamarel area).

These maps were summed altogether and reclassified to define, through a cartographic overlay
approach into the GIS software [64,67,68], the spatial distribution of landslide susceptibility (Figure 11d).
This analysis depicts four main classes (low, medium, high, and very high); thus, the maximum values,
resulting from the combination of the three mass movements susceptibility maps, are classified as the
maximum susceptibility value.

The spatial distribution of susceptibility related to the different types of mass movement outlines
that high/very high landslide susceptibility is strictly consistent with the distribution of the overall
“Landslide index” (Li) derived from the statistical approach and confirmed by photogeological analysis
and field survey. This is mostly related to the steep slopes on basalt rocks (mostly affected by rockfalls)
and to the steep to moderately steep slopes at the base of the basalt rock slopes (potentially affected
by landslides and rapid earth flows). Concerning the medium class, the large areas are particularly
significant, since they are mostly related to moderate to gentle slopes characterized by superficial
deposits (i.e., colluvial and slope deposits), outlined by the photogeological and field survey, potentially
affected by large complex landslides.

6. Conclusions

This paper presents a landslide susceptibility assessment realized following a multidisciplinary
approach, which involves morphometric analysis, GIS-based analysis, photogeological analysis, and
geomorphological field mapping. This detailed investigation shows clearly that the geomorphological
response of the island is highly variable and dependent on a range of eight parameters including slope,
aspect, topographic curvature, drainage pattern, vegetation cover, lithological features, soil cover, and
rainfall, which can be considered as landslide controlling factors. The landslide susceptibility maps
created are intended for use as a general guide to depicting areas of relative susceptibility to slope
failure and as a predictor of landslide hazards at specific sites. Areas of high and very high landslide
susceptibility depict the potential for slope failure to occur but do not depict the time frame of the
failure, the type of failure nor the volume of the mass involved. The study was performed using
input data from different scale (ranging from 1:5000-1:100,000) in order to best summarize all the
bibliographic information and to describe landslides in the wider context of their geomorphological
situation with their role in landscape development assessed so as to understand the likelihood and
potential magnitude of any hazards [84]. In order to avoid inaccuracy in the results, it was verified
by detailed geological-geomorphological field mapping and photogeological analysis in specific
and most representative sites. The type and degree of landslide susceptibility were derived from
mixed heuristic and statistical analysis, based on either direct (photogeological analysis and field
mapping) or indirect (GIS data processing) analysis. The overall results of this work allowed us to
realize a new zonation of landslide susceptibility for Mauritius Island, identifying four landslide
susceptibility classes (low, medium, high, and very high). This work gave a better comprehension of
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the relations between morphological, lithological, and geomorphological conditions, and the rainfall
events triggering mass movements, such as rockfalls, landslides, and rapid earth flows. Therefore,
this methodological approach was useful to identify areas that are susceptible to mass movements.
Moreover, the comparison between preliminary GIS-based susceptibility map (Figure 6) and final
susceptibility maps (Figure 11d) clearly outlines the significant contribution of photogeology analysis
and geomorphological field survey, together with mixed heuristic—statistical procedure, to develop
a technique for landslide susceptibility assessment. This approach allowed us to reduce and refine
the spatial distribution of high and very-high landslide susceptibility and made it possible to map
a large distribution of medium susceptibility that mostly pertains to the occurrence of landslides on
moderate to gentle slopes not outlined by the preliminary maps and poorly known in the previous
thematic studies. In conclusion, this approach allowed for a better calibration of landslide susceptibility
analysis, for the improvement of results in terms of consistency with mass movements distribution,
and for the definition of the main critical areas all over the Mauritius Island. Hence, landslide
susceptibility assessment provides a scientific basis for the implementation of land use, emergency
management, climate change resilience actions, and loss-reduction measures. This approach could be
effectively applied in other tropical areas showing similar climatic and geomorphological features in
order to identify landslide-prone areas and give information for disaster mitigation works and land
planning strategies.
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