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Abstract: A titanian clinohumite-bearing dunite was recently found in the Ulamertoq ultramafic
body within the 3.0 Ga Akia Terrane of southern West Greenland. Titanian clinohumite occurs as
disseminated and discrete grains. Titanian clinohumite contains relatively high amounts of fluorine,
reaching up to 2.4 wt.%. The high-Fo content of olivine (Fo93) coupled with low Cr/(Cr + Al) ratio of
orthopyroxene implies that the dunite host is not of residual origin after melt extraction by partial
melting of the primitive mantle. Olivine grains are classified into two types based on abundances
of opaque mineral inclusions: (1) dusty inclusion-rich and (2) clear inclusion-free olivines. Opaque
inclusions in coarse-grained olivines are mainly magnetite. Small amounts of ilmenite are also present
around titanian clinohumite grains. The observed mineral association indicates partial replacement of
titanian clinohumite to ilmenite (+magnetite) and olivine following the reaction: titanian clinohumite
= ilmenite + olivine + hydrous fluid. The coexistence of F-bearing titanian clinohumite, olivine,
and chromian chlorite indicates equilibration at around 800–900 ◦C under garnet-free conditions
(<2 GPa). Petrological and mineralogical characteristics of the studied titanian clinohumite-bearing
dunite are comparable to deserpentinized peridotites derived from former serpentinites. This study
demonstrates the importance of considering the effects of hydration/dehydration processes for the
origin of ultramafic bodies found in polymetamorphic Archaean terranes.

Keywords: titanian clinohumite-bearing ultramafic rock; Archaean terrane; West Greenland;
serpentinite; dehydration

1. Introduction

Archaean rocks are widely exposed in southern West Greenland. Several tectonomagmatic
terranes comprise southern West Greenland, which can be sub-divided based on age and metamorphic
evolution: from north to south the Akia, Akulleq, and Tasiusarsuaq terranes [1,2] (Figure 1a). Exposures
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of ultramafic rocks are minor, but are important components of the Archaean terranes in southern
West Greenland [3–10]. These ultramafic rocks could provide direct information on the evolution of
the Earth’s mantle. The origins of these ultramafic rocks and their tectonic settings are, however, still
enigmatic [4,6,8–14]. Two conflicting origins are proposed for the ultramafic rocks in the Archaean
terranes in southern West Greenland: (1) residue after partial melting, and (2) ultramafic cumulate
formed by mafic mineral accumulation or crystallization from komatiitic melts [11,15]. The tectonic
setting for these ultramafic rocks is also unclear. Whole rock and mineral compositions are similar
to abyssal peridotites [6], whereas other chemical indicators suggest a potential subarc origin [12,14].
The B-type fabric of olivine, which is generally interpreted as hydrous deformation, was reported and
also further supports a subarc origin [16] for these ultramafic rocks. It should be noted, however, that
some ultramafic rocks in the 3.8–3.7 Ga Isua Supracrustal Belt (Akulleq terrane, Figure 1) are highly
serpentinized, carbonatized and metasomatized [4,17,18]. In comparison to the ultramafic bodies in
the Isua Supracrustal Belt, the ultramafic bodies of the Akia terrane have not been studied in detail.

The Ulamertoq ultramafic body (1 km × 1.5 km in size) is the largest ultramafic body in the
Akia terrane [5,9,11]. In this ultramafic body, a titanian clinohumite-bearing peridotite was recently
identified and is the focus of the present study. Titanian clinohumite (M8Si4O16M1−xTix(OH)2−2xO2x,
where M is Mg, Fe2+, Mn and Ni and x > 0.5) [19–21] is an important hydrous mineral in ultramafic
rocks [22,23]. Titanian clinohumite-bearing ultramafic rocks are reported to be exposed as part of
the ultramafic bodies in the Isua Supracrustal Belt [12,24]. Titanian clinohumite is also reported
from mantle xenoliths [22,23,25,26] and metamorphosed ultramafic rocks [27–36]. In this study,
we document the petrology and mineral chemistry of this new titanian clinohumite-bearing ultramafic
rock from the Akia terrane and discuss the pressure-temperature conditions for its genesis, as well as
its implication for the tectonic evolution in the studied area.

2. Sampling Locality and Methods

2.1. Geological Background

The Ulamertoq ultramafic body occurs within the amphibolite-granulite facies orthogneiss of the
3.0 Ga Akia terrane [37–39]. Small ultramafic lenses, a few meters to a few tens of meters in size, are
also commonly observed in the orthogeneiss around the Ulamertoq body [5,9,11]. Norite is observed
in the northeastern part of this ultramafic body. Granitic rocks that locally cut the ultramafic body are
commonly present (Figure 1c).

Ultramafic rocks in Ulamertoq are heterogeneous in mineral mode (Figure 2). Phlogopite and
amphiboles are frequently observed in the Ulamertoq peridotite and locally dominate at the boundary
with the surrounding orthogneiss (Figure 2a). Harzburgite to amphibole-bearing orthopyroxenite
are also present (Figure 2b,c). Chromitite layers are rare, and their host rocks are variable in mineral
modes [40]. Dunitic rocks are dominant in the Ulamertoq body, although modal abundances of
orthopyroxene and amphibole are variable from locality to locality. We examined 9 representative
ultramafic samples and only one dunite sample contains titanian clinohumite. Dunitic rocks including
the studied titanian clinohumite-bearing peridotite (Figure 2d), occur far from the surrounding gneiss
(Figure 1c). It is essentially impossible to identify titanian clinohumite-bearing peridotite in the field.
Therefore, it is not currently clear what the spatial extent of titanian clinohumite-bearing rocks are
within the Ulamertoq ultramafic body.
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Figure 1. (a) Simplified geological map of the Nuuk region of southern West Greenland after [1]; (b) 
Map showing various peridotite bodies in the central part of the Akia Terrane after [15]; (c) Simplified 
lithological map of the Ulamertoq peridotite body after [5] showing the sample locality of the studied 
titanian clinohumite-bearing peridotite. 

 
Figure 2. (a) Biotite- and amphibole-rich ultramafic rock in the area at the contact with tonalitic 
orthogneiss. (b) Harzburgite. Less-eroded rounded-shaped spots are orthopyroxene. (c) Amphibole-
bearing olivine orthopyroxenite (some amphiboles are marked by black arrows). Orthopyroxenes 
(OPX) are indicated by yellow arrows. (d) Outcrop of the studied titanian clinohumite-bearing dunite. 
Note its smooth surface compared to other outcrops. 

Figure 1. (a) Simplified geological map of the Nuuk region of southern West Greenland after [1];
(b) Map showing various peridotite bodies in the central part of the Akia Terrane after [15];
(c) Simplified lithological map of the Ulamertoq peridotite body after [5] showing the sample locality
of the studied titanian clinohumite-bearing peridotite.
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Figure 2. (a) Biotite- and amphibole-rich ultramafic rock in the area at the contact with tonalitic
orthogneiss. (b) Harzburgite. Less-eroded rounded-shaped spots are orthopyroxene. (c) Amphibole-
bearing olivine orthopyroxenite (some amphiboles are marked by black arrows). Orthopyroxenes
(OPX) are indicated by yellow arrows. (d) Outcrop of the studied titanian clinohumite-bearing dunite.
Note its smooth surface compared to other outcrops.
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2.2. Sample Description

In general, serpentinization of ultramafic rocks in the Ulamertoq body is very limited but
commonly observed along the grain boundaries of olivine. Orthopyroxene sometimes occurs as
poikilitic grains including olivines or fine-grained aggregates, particularly when its modal abundance
is relatively high. Orthopyroxene is partially replaced by talc. Chlorite is often observed around spinel.

The studied titanian clinohumite-bearing peridotite is a medium-grained chlorite-bearing dunite
with equigranular texture (Figure 3a,b). Orthopyroxene occurs as discrete grain in the studied dunite.
Modal abundances of orthopyroxene and spinel modes are 2–4 vol.% and 1–2 vol.%, respectively,
based on image processing from X-ray intensity maps (Figure 3c). Occurrence of some minerals as
fine grains coupled with edge effect for X-ray intensity maps may cause some uncertainties in the
mode estimation. During the image analyses, chlorite and titanian clinohumite modes were ignored
because of their very fine grain size and low modal abundances (<1 vol.%). Olivine grains are classified
into two types: (1) dusty olivine, which is characterized by many opaque mineral inclusions, and
(2) clear olivine, which is free of opaque mineral inclusions (Figure 4). The clear olivines (usually
<1 mm) are smaller than the dusty olivines (>1 mm). It is commonly observed that olivine grains
with dusty cores have clear margins/rims (Figure 4a,e,f). Opaque mineral inclusions in the dusty
olivines are mainly magnetite. Ilmenite is locally observed in olivine grains that are in contact with
titanian clinohumite (Figure 4f). Dusty olivine is also commonly observed in other peridotites from the
Ulamertoq body [40]. Orthopyroxene has a finer grain size (200 µm in average) compared to olivine
and is uniformly distributed (Figure 3c). Talc occurs locally around orthopyroxenes. Dark-colored
spinels, mainly ferrichromite-magnetite (<300 µm), are always associated with chlorite (Figures 3
and 4). Titanian clinohumite is distinguished by its yellow color using optical microscopy under
plane-polarized light and occurs as disseminated discrete grains. It is worth noting that a titanian
clinohumite grain is directly in contact with olivine and chlorite in Figure 4d. Carbonate grains are
present and are in contact with olivine and titanian clinohumite (Figure 4e,f). Carbonate minerals are
mainly calcium carbonate (not shown in tables).
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bright small phases are orthopyroxene, and other phases are mainly olivine. 

Figure 3. Thin section images of titanian clinohumite-bearing peridotite from the Ulamertoq ultramafic
body. (a) Plane-polarized light image with black-colored small phases which are mainly spinel; (b) Cross
polarized light image of (a); (c) Si intensity map of (a). Dark, small phases are spinel, bright small
phases are orthopyroxene, and other phases are mainly olivine.
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Figure 4. Photomicrographs and back-scattered electron images of the titanian clinohumite-bearing
peridotite from the Ulamertoq ultramafic body. (a) Discrete grains of dusty and clear olivine.
Plane-polarized light image. C = Clear olivine, D = Dusty olivine, OPX = orthopyroxene, Spl =
spinel, Ti-Cl = Titanian clinohumite; (b) Cross polarized light image of (a); (c) Dusty olivine (D) with
clear rim (C); (d) Cross polarized light image of (c); (e) Back-scattered electron image of magnetite
inclusions in dusty olivines; (f) Back-scattered electron image of titanian clinohumite (Ti-Cl) and
other minerals. Fine-grains of ilmenite and magnetite are aligned with olivine around the titanian
clinohumite grain (red arrows). Dark phases are chlorite (Chl). Ol = olivine, Spl = spinel.
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2.3. Analytical Methods

Major-element compositions of minerals were determined using an electron probe micro-analyzer
(EPMA) (JEOL JXA-8800 Superprobe, JEOL Ltd., Akishima, Toyko, Japan) at Kanazawa University.
The analyses were performed with an accelerating voltage of 20 kV and beam current of 20 nA,
using a 3 µm beam diameter. Natural and synthetic mineral standards were used for calibration
and JEOL software using ZAF corrections is applied for data reduction. In-house mineral standards
(olivine, chromian spinel, diopside and K-feldspar) were measured repeatedly to monitor data quality.
The measured concentrations in these minerals are consistent with the averaged values from long-term
analyses within 1 σ standard deviation for all the elements. Data precision, which is established by
multiple analyses of one point in the house-prepared standard minerals, is better than 5% and 10%
relative standard deviation from the averaged values for elements with abundances > 0.5 wt.% and
<0.5 wt.%, respectively. Details of EPMA are given in [41,42]. Major element compositions of minerals
are shown in Tables 1–5.

Table 1. Major element compositions of olivine from the representative samples from Ulamertoq
peridotite body.

wt.% SiO2 FeO* MnO MgO NiO Total Si Fe* Mn Mg Ni Total Fo

Dusty

Grain1 40.9 6.8 0.2 51.6 0.4 99.9 0.993 0.137 0.003 1.866 0.007 3.007 93.1

Grain1 40.9 7.1 0.1 51.8 0.4 100.3 0.990 0.144 0.003 1.866 0.007 3.010 92.9

Grain2 41.5 6.7 0.2 52.5 0.4 101.3 0.993 0.134 0.003 1.869 0.007 3.007 93.3

Grain2 41.1 7.1 0.1 52.4 0.4 101.1 0.987 0.142 0.003 1.874 0.008 3.013 93.0

Grain3 41.1 6.9 0.1 51.7 0.4 100.3 0.994 0.139 0.003 1.862 0.008 3.006 93.1

Grain3 41.0 6.7 0.1 51.2 0.4 99.3 0.999 0.135 0.002 1.857 0.008 3.001 93.2

Grain9 41.2 7.1 0.1 52.3 0.4 101.1 0.989 0.142 0.003 1.869 0.007 3.010 93.0

Grain9 41.5 6.8 0.2 52.5 0.4 101.4 0.992 0.135 0.003 1.869 0.008 3.008 93.3

Grain10/1 41.0 6.9 0.1 51.7 0.4 100.3 0.991 0.139 0.002 1.862 0.007 3.001 93.1

Grain10/1 40.8 6.7 0.1 51.5 0.4 99.5 0.993 0.137 0.003 1.867 0.008 3.007 93.2

Grain11/1 41.0 6.6 0.1 51.2 0.4 99.3 0.998 0.135 0.003 1.858 0.008 3.001 93.2

Grain12/1 40.7 6.8 0.1 52.7 0.4 100.7 0.981 0.137 0.003 1.892 0.008 3.019 93.3

Grain13 40.8 6.8 0.1 50.2 0.4 98.3 1.004 0.140 0.003 1.841 0.008 2.996 92.9

Grain13 41.4 6.9 0.1 51.5 0.4 100.3 1.000 0.139 0.002 1.851 0.008 3.000 93.0

Grain14 41.1 7.0 0.1 51.3 0.4 100.0 0.996 0.141 0.003 1.854 0.008 3.003 92.9

Grain20/1 41.3 6.9 0.1 51.5 0.4 100.2 0.998 0.140 0.002 1.854 0.008 3.002 93.0

Grain20/1 41.0 7.2 0.1 51.6 0.4 100.3 0.993 0.145 0.002 1.859 0.007 3.007 92.8

Dusty Low-NiO

Grain15 40.8 7.0 0.12 51.0 0.12 99.0 1.00 0.14 0.00 1.86 0.00 3.00 92.8

Clear

Grain1 40.7 7.3 0.11 51.6 0.37 100.1 0.99 0.15 0.00 1.87 0.01 3.01 92.7

Grain1 40.7 7.1 0.13 51.7 0.39 100.0 0.99 0.14 0.00 1.87 0.01 3.01 92.9

Grain1 40.8 7.1 0.10 51.8 0.41 100.2 0.99 0.14 0.00 1.87 0.01 3.01 92.8

Grain1 41.1 6.7 0.13 52.1 0.45 100.5 0.99 0.14 0.00 1.87 0.01 3.01 93.3

Grain5 41.3 6.8 0.07 51.7 0.42 100.3 1.00 0.14 0.00 1.86 0.01 3.00 93.1

Grain7 41.1 7.3 0.14 52.0 0.37 100.9 0.99 0.15 0.00 1.86 0.01 3.01 92.7

Grain10/2 40.2 7.3 0.14 52.4 0.39 100.5 0.98 0.15 0.00 1.89 0.01 3.02 92.8

Grain11/2 41.3 7.3 0.12 51.9 0.40 100.9 0.99 0.15 0.00 1.86 0.01 3.01 92.7

Grain11/2 40.9 7.1 0.11 50.9 0.41 99.4 1.00 0.14 0.00 1.85 0.01 3.00 92.8
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Table 1. Cont.

wt.% SiO2 FeO* MnO MgO NiO Total Si Fe* Mn Mg Ni Total Fo

Grain12/1 40.8 7.2 0.10 51.8 0.38 100.3 0.99 0.15 0.00 1.87 0.01 3.01 92.7

Grain13/2 41.1 7.1 0.15 51.6 0.40 100.4 0.99 0.14 0.00 1.86 0.01 3.01 92.8

Grain13/2 40.9 7.2 0.14 50.9 0.40 99.6 1.00 0.15 0.00 1.85 0.01 3.00 92.6

Grain20/2 41.2 6.9 0.09 51.8 0.42 100.4 0.99 0.14 0.00 1.86 0.01 3.00 93.0

Detection limit of analyses is as follow: <0.04 wt.% for TiO2, <0.03 wt.% for Al2O3, <0.07 wt.% for Cr2O3, <0.03
wt.% for CaO, Na2O and K2O %. FeO* and Fe* = all Fe as Fe2+. Cations are calculated as total oxygen = 4. Fo =
100 Mg/(Mg + Fe) atomic ratio.

Table 2. Major element compositions of orthopyroxene from the representative samples from the
Ulamertoq peridotite body.

wt.% Grain9 Grain2 Grain2-2 Grain10 Grain11 Grain3 Grain20 Grain20 Grain7 Grain7

SiO2 56.9 57.3 56.9 57.0 57.2 57.5 57.2 57.2 56.9 56.8
TiO2 0.10 0.08 0.07 0.09 0.08 0.10 0.08 0.12 0.08 0.09

Al2O3 1.6 1.5 1.3 1.6 1.5 1.6 1.6 1.8 1.5 1.6
Cr2O3 0.16 0.16 0.19 0.17 0.20 0.19 0.20 0.22 0.22 0.22
FeO* 5.3 5.6 5.4 5.4 5.3 5.3 5.5 5.4 5.2 5.4
MnO 0.17 0.14 0.14 0.13 0.15 0.15 0.16 0.12 0.13 0.16
MgO 35.4 35.4 35.5 35.2 35.4 35.5 35.2 35.2 35.1 35.3
CaO 0.15 0.14 0.10 0.13 0.14 0.16 0.12 0.15 0.09 0.16
NiO - 0.06 0.06 0.06 - - 0.07 0.06 - 0.07
Total 99.9 100.3 99.7 99.7 99.9 100.6 100.1 100.2 99.2 99.8

Si 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Al 0.07 0.06 0.05 0.06 0.06 0.06 0.06 0.07 0.06 0.07
Cr 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01
Fe* 0.15 0.16 0.16 0.16 0.15 0.16 0.15 0.15 0.16 0.15
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mg 1.81 1.81 1.82 1.80 1.81 1.80 1.81 1.80 1.80 1.80
Ca 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.01
Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 4.01 4.01 4.01 4.00 4.00 4.00 4.00 4.00 4.00 4.00
XMg 0.922 0.919 0.921 0.921 0.923 0.921 0.923 0.922 0.919 0.921
XCr 0.061 0.067 0.085 0.067 0.082 0.067 0.082 0.073 0.079 0.076

Detection limit of analyses is as follow: <0.03 wt.% for Na2O and K2O%, and <0.05 wt.% for NiO. “-” indicates than
detection limit of analyses. Cations are calculated as total oxygen = 6.

The rare earth element (REE) and trace element (Li, Ti, Sr, Y, Zr, and Nb) compositions
of orthopyroxene and titanian clinohumite are determined by 193 nm ArF Excimer laser
ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) at Kanazawa University
(Agilent 7500S equipped with MicroLas GeoLas Q-plus). Orthopyroxene and titanian clinohumite
were analyzed by ablating 100 µm and 60 µm spot diameters at 8 Hz, respectively, because of the
size of analyzed minerals. The NIST SRM 612 standard was used as the primary calibration standard
and is analyzed at the beginning of each batch of <8 unknowns, with a linear drift correction applied
between each calibration. The element concentrations of NIST SRM 612 standard for the calibration are
selected from the preferred values of [43]. Data reduction is facilitated using 29Si as internal standard,
based on Si contents obtained by EPMA following a protocol essentially identical to that outlined
by [44]. NIST SRM 614, which is a synthetic silicate glass with a nominal concentration of 1 ppm for
61 elements including REEs, was analyzed for quality control during measurement. The measured
concentrations in NIST SRM 614 glass are consistent with previously reported values to within 10 %
relative, and the data precision is better than 10% relative standard deviation for all the analytical
elements. Details of the analytical method and data quality control are given in [45]. Representative
trace-element compositions of orthopyroxenes and titanian clinohumite are shown in Table 6.
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Table 3. Major element compositions of titanian clinohumite from the representative samples from Ulamertoq peridotite body.

Grain 1 Grain 1 Grain 1 Grain 1 Grain 1 Grain 1 Grain 2-1 Grain 2-1 Grain 2-1 Grain 2-1 Grain 2-1 Grain 2-2 Grain 2-2 Grain 2-2 Grain 3 Grain 3

wt.% margin margin margin margin margin rim margin core margin rim rim core rim margin margin margin
SiO2 37.6 37.3 36.8 37.0 37.5 37.9 37.4 38.2 37.2 37.6 37.9 37.2 37.4 36.5 37.0 36.8
TiO2 2.3 2.4 2.4 2.4 2.1 2.2 2.1 1.7 2.2 2.0 1.9 2.0 1.9 2.2 2.1 2.2
FeO* 5.4 5.4 5.2 5.3 5.4 5.1 5.3 5.6 5.2 5.4 5.3 5.4 5.3 5.5 5.4 5.3
MnO 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
MgO 51.7 52.1 51.9 52.0 51.5 52.4 52.2 51.6 52.1 51.7 51.6 52.4 51.4 51.9 52.5 52.3
NiO 0.3 0.2 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.3

F 2.3 2.2 2.1 2.2 2.1 2.2 2.4 1.6 2.0 1.7 1.5 2.1 2.0 2.1 2.1 2.0
H2O 1.7 1.8 1.8 1.7 1.8 1.8 1.6 2.0 1.8 2.0 2.1 1.8 1.8 1.8 1.8 1.8
O = F 1.0 0.9 0.9 0.9 0.9 0.9 1.0 0.7 0.8 0.7 0.7 0.9 0.8 0.9 0.9 0.8
Total 100.3 100.5 99.7 100.1 99.9 101.0 100.4 100.4 100.1 100.0 100.0 100.4 99.4 99.5 100.3 100.0

Si 4.03 3.99 3.97 3.98 4.04 4.03 4.00 4.09 3.99 4.04 3.98 4.05 3.95 3.95 3.95 4.08
Ti 0.19 0.19 0.19 0.19 0.17 0.17 0.17 0.14 0.18 0.16 0.16 0.15 0.17 0.18 0.18 0.15
Fe 0.48 0.49 0.47 0.48 0.49 0.46 0.48 0.50 0.47 0.49 0.48 0.48 0.48 0.48 0.49 0.48
Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Mg 8.26 8.31 8.33 8.32 8.26 8.31 8.33 8.24 8.33 8.28 8.35 8.29 8.37 8.36 8.35 8.27
Ni 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Total 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00
XMg 0.941 0.942 0.943 0.942 0.941 0.945 0.943 0.940 0.944 0.941 0.943 0.942 0.942 0.941 0.943 0.942
XF 0.39 0.37 0.35 0.38 0.36 0.37 0.41 0.27 0.34 0.28 0.26 0.35 0.34 0.36 0.35 0.34
M 8.78 8.82 8.84 8.83 8.78 8.80 8.83 8.77 8.83 8.80 8.77 8.86 8.80 8.87 8.88 8.87

M/Si 2.18 2.21 2.23 2.22 2.17 2.18 2.21 2.14 2.21 2.18 2.15 2.23 2.17 2.25 2.25 2.25

Detection limit of analyses is as follow: <0.03 wt.% for Al2O3, CaO, Na2O and K2O%, and <0.07 wt.% for Cr2O3. Cation is calculated as total oxygen = 17. All Fe is treated as FeO. H2O is
calculated on the basis of F and Ti contents and the exchange between TixO2xM1−x(OH)2−2x after the cation total is normalized to 13.
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Table 4. Major element compositions of spinel from the representative samples from Ulamertoq peridotite body.

Grain9-1 Grain9-2 Grain5 Grain1 Grain10 Grain12 Grain4 Grain4 Grain20 Grain13 Grain7-1 Grain7-2 Grain7-3

wt.% core core in ol core core core core rim core core core core core
TiO2 <0.04 0.30 0.32 0.33 0.26 1.33 0.09 0.33 0.23 0.47 0.34 0.32 0.22

Al2O3 0.07 2.34 0.31 3.08 8.76 6.55 26.76 9.92 4.14 2.15 2.53 3.49 2.18
Cr2O3 6.2 38.9 21.2 45.2 38.9 29.1 34.4 39.6 36.8 41.0 42.0 42.6 30.5
FeO* 85.6 51.1 70.2 43.5 43.4 55.3 27.1 42.6 53.0 48.9 48.0 45.9 59.1
MnO 0.04 0.64 0.40 0.69 0.60 0.42 0.30 0.51 0.53 0.71 0.62 0.74 0.45
MgO 0.7 3.1 2.4 3.5 5.0 4.0 11.2 5.8 3.4 3.1 3.6 4.1 2.6
NiO 0.37 0.16 0.61 0.14 0.29 0.47 0.12 0.29 0.25 0.26 0.14 0.10 0.28
Total 93.1 96.6 95.4 96.5 97.2 97.2 100.0 99.1 98.3 96.7 97.1 97.4 95.4

Ti - 0.01 0.01 0.01 0.01 0.04 0.00 0.01 0.01 0.01 0.01 0.01 0.01
Al 0.00 0.10 0.01 0.13 0.36 0.27 0.96 0.40 0.17 0.09 0.11 0.15 0.10
Cr 0.19 1.13 0.62 1.31 1.08 0.81 0.83 1.07 1.04 1.19 1.21 1.21 0.90

Fe3+ 1.80 0.75 1.34 0.53 0.54 0.86 0.20 0.51 0.77 0.68 0.66 0.61 0.99
Fe2+ 0.95 0.82 0.86 0.80 0.73 0.77 0.49 0.70 0.81 0.82 0.80 0.77 0.85
Mn 0.00 0.02 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01
Mg 0.04 0.17 0.13 0.19 0.26 0.21 0.51 0.30 0.18 0.17 0.19 0.22 0.15
Ni 0.01 0.00 0.02 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.01

Total 3.00 3.00 3.00 3.01 3.00 2.99 3.00 3.00 3.00 3.00 3.00 3.00 3.00
XMg 0.043 0.170 0.135 0.194 0.262 0.215 0.509 0.297 0.181 0.172 0.194 0.223 0.147
XCr 0.984 0.918 0.979 0.908 0.748 0.749 0.463 0.728 0.856 0.928 0.917 0.891 0.904
YCr 0.094 0.572 0.316 0.664 0.544 0.418 0.416 0.539 0.524 0.606 0.611 0.615 0.452
YAl 0.002 0.051 0.007 0.067 0.183 0.140 0.483 0.201 0.088 0.047 0.055 0.075 0.048

YFe3+ 0.904 0.377 0.677 0.269 0.273 0.442 0.101 0.260 0.388 0.347 0.333 0.310 0.499

Detection limit of analyses is as follows: <0.03 wt.% for SiO2, CaO, Na2O and K2O. Cation is calculated as total oxygen = 4. Fe2O3 and FeO are calculated based on stoichiometry. XMg =
Mg/(Mg + Fe2+), XCr = Cr/(Cr + Al), YCr = Cr/(Cr + Al + Fe3+), YAl = Al/(Cr + Al + Fe3+), YFe3+ = Fe3+/(Cr + Al + Fe3+).
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Table 5. Major element compositions of chlorite from the representative samples from Ulamertoq
peridotite body.

wt.% Grain1/2 Grain1 Grain1 Grain2 Grain3

SiO2 32.1 31.6 31.5 32.3 30.8
TiO2 <0.04 0.09 0.06 <0.04 0.06

Al2O3 17.4 17.3 17.4 15.7 17.2
Cr2O3 1.6 1.7 1.7 1.9 1.6
FeO 2.2 2.5 2.5 2.5 2.5
MgO 32.6 32.5 32.2 33.0 32.3
NiO 0.21 0.21 0.21 0.21 0.2
Total 86.1 85.8 85.5 85.6 84.8

F wt.% 0.12 0.15 0.35 0.18 0.36
Si 2.83 2.81 2.80 2.87 2.77
Ti - 0.01 0.00 - 0.00
Al 1.81 1.80 1.82 1.65 1.82
Cr 0.11 0.12 0.12 0.13 0.12
Fe 0.16 0.18 0.18 0.19 0.19
Mg 4.28 4.29 4.27 4.38 4.33
Ni 0.01 0.02 0.02 0.01 0.01

Total 9.21 9.23 9.22 9.24 9.26
XMg 0.964 0.959 0.959 0.959 0.958
XCr 0.058 0.062 0.062 0.073 0.06

Detection limit of analyses is as follow: <0.07 wt.% for MnO, and <0.03 wt.% for CaO, Na2O and K2O%. All Fe is
treated as Fe2+. Cation is calculated as total oxygen = 13. XMg = Mg/(Mg + Fe) atomic ratio, XCr = Cr/(Cr + Al)
atomic ratio.

Table 6. Trace element compositions of orthopyroxene and titanian clinohumite.

ppm OPX DL for 100 Ti Clinohumite DL for 60

Li 8.4 7.6 8.7 0.1 13 9 7 0.6
B 3.3 2.1 3.3 0.2 14 8 11 1.0
Sc 30.98 34.38 33.49 0.03 6 8 7 0.1
Ti 438 478 444 0.1 10,930 11,253 7866 0.2
V 74 73 74 0.02 26 32 19 0.1
Cr 1771 1738 1722 0.6 77 81 53 1.9
Co 44 43 43 0.006 127 121 129 0.0
Ni 497 475 497 0.3 2552 2423 2733 0.7
Rb < < < 0.008 < < < 0.029
Sr 0.005 0.005 0.010 0.002 0.097 0.095 0.101 0.007
Y 1.87 2.23 1.92 0.002 0.023 0.074 0.418 0.004
Zr 0.73 0.74 0.58 0.004 1.663 1.721 0.987 0.007
Nb 0.016 0.018 0.020 0.002 6.649 7.100 5.038 0.000
Cs < < < 0.005 < < < 0.017
Ba < < < 0.011 < < 0.053 0.033
La < 0.002 0.004 0.001 < 0.020 0.161 0.004
Ce 0.008 0.009 0.015 0.001 < 0.076 0.439 0.004
Pr 0.002 0.003 0.002 0.001 < 0.008 0.043 0.004
Nd 0.021 0.022 0.019 0.006 < 0.042 0.173 0.019
Sm 0.022 0.025 0.017 0.004 < < 0.033 0.017
Eu 0.003 0.003 0.003 0.003 < < < 0.004
Gd 0.065 0.071 0.048 0.008 < < 0.041 0.024
Tb 0.020 0.021 0.017 0.002 < < < 0.005
Dy 0.229 0.270 0.228 0.004 < < 0.052 0.016
Ho 0.067 0.083 0.070 0.002 < < 0.017 0.007
Er 0.299 0.357 0.321 0.005 < < 0.060 0.011
Tm 0.055 0.066 0.060 0.002 < 0.002 0.011 0.006
Yb 0.468 0.530 0.496 0.007 0.019 0.033 0.084 0.015
Lu 0.072 0.086 0.079 0.002 0.007 0.009 0.014 0.005
Hf 0.071 0.072 0.061 0.007 0.035 0.048 0.026 0.024
Ta < < < 0.002 0.155 0.184 0.133 0.004
Pb 0.059 0.013 0.044 0.011 0.090 0.071 0.074 0.028
Th < < < 0.004 < < 0.043 0.015
U < < < 0.004 0.041 0.017 0.071 0.008

“<” indicates lower than detection limit, OPX = orthopyroxene, DL = detection limit of analyses, Ti Clinohumite =
Titanian clinohumite.
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3. Results

The forsterite (=100 Mg/(Mg + Fe2+) atomic ratio), NiO and MnO contents of olivine are 93.0 ±
0.2, 0.40 ± 0.02 wt.% and 0.13 ± 0.02 wt.% for the dusty olivine, and 92.8 ± 0.2, 0.40 ± 0.02 wt.% and
0.11 ± 0.02 wt.% for the clear olivine, respectively, except for one analytical point with 0.1 wt.% of
NiO content for a dusty olivine (Figure 5). The clear olivine is likely lower in Fo value than the dusty
olivine, but they are identical within 1 sigma variations.
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Figure 5. Olivine compositions. (a) Relationships between the Fo content and NiO; (b) the Fo content 
and MnO. Olivines from the titanian clinohumite-bearing peridotites from the Isua Supracrustal Belt 
are from [12,24]. 

XMg (=Mg/(Mg + Fe2+) atomic ratio) of orthopyroxene is 0.92. The Al2O3 and Cr2O3 contents of 
orthopyroxenes are 1.3–1.8 wt.% and around 0.2 wt.%, respectively, resulting in low XCr (=Cr/(Cr + 
Al) atomic ratio) (Figure 6). The TiO2 and CaO contents of orthopyroxene are <0.12 wt.% and <0.2 

Figure 5. Olivine compositions. (a) Relationships between the Fo content and NiO; (b) the Fo content
and MnO. Olivines from the titanian clinohumite-bearing peridotites from the Isua Supracrustal Belt
are from [12,24].

XMg (=Mg/(Mg + Fe2+) atomic ratio) of orthopyroxene is 0.92. The Al2O3 and Cr2O3 contents
of orthopyroxenes are 1.3–1.8 wt.% and around 0.2 wt.%, respectively, resulting in low XCr (=Cr/(Cr
+ Al) atomic ratio) (Figure 6). The TiO2 and CaO contents of orthopyroxene are <0.12 wt.% and
<0.2 wt.%. Chondrite-normalized REE patterns for orthopyroxenes show an abrupt decrease from
heavy rare earth elements (HREEs) to light REEs, exhibiting negative Eu anomalies (Figure 7a).
Primitive mantle-normalized trace element patterns of orthopyroxene show negative anomalies of Eu
as well as Sr, and positive anomalies of HFSEs, such as Ti, Zr, and Nb (Figure 7b).

The TiO2 and F contents of titanian clinohumite are 1.6–2.4 wt.% and 1.7–2.4 wt.%, respectively
(Figure 8). Trace element compositions of titanian clinohumites are variable, but are characterized by
low middle REEs and LILEs, but high HFSEs, such as Ti, Zr, and Nb (Figure 9).
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Data for abyssal peridotites recovered from mid-ocean ridges are from [46].
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Spinel group minerals are high in Fe3+, mainly ferrichromite, chromemagnetite to magnetite,
except for one ferrialuminochromite (Figure 9). The TiO2 content of spinels are generally lower than
0.5 wt.%, except for analytical point of 1.4 wt.% (Figure 10).
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Chlorite is chromian (1.6–1.9 wt.% for Cr2O3, XCr = 0.06–0.07), and their F contents of chlorite is
<0.4 wt.%.

4. Discussion

4.1. Pressure-Temperature Conditions for the Titanian Clinohumite-Bearing Peridotite

No garnet, including potential relics, has been observed in peridotites from the Ulamertoq
ultramafic body, which indicates pressures lower than about 2 GPa during its (re-)crystallization. This
is consistent with the lack of Ti-chondrodite, which also belongs to the humite group minerals, in the
Ulamertoq samples. Ti-chondrodite is stable at higher pressure conditions (2 GPa) than Ti-clinohumite
in a peridotite system [31,47,48]. Partial substitution of fluorine for OH in titanian clinohumite and
substitution of Cr for Al in chlorite stabilize these hydrous minerals at higher temperature conditions
compared to F-free clinohumite and Cr-free chlorite [20,29,35,49–51]. Evans and Trommsdorff [35]
suggested that fluorine-rich compositions are probably critical for the stability of clinohumite from the
garnet-peridotite stability field down to amphibolite facies conditions.

In Figure 11, the stability reactions for an F-free and F-bearing titanian clinohumites, and divariant
fields for titanian clinohumite, olivine, and ilmenite are shown in grey-colored areas. The presence of
tiny ilmenites (+magnetites) in olivine adjacent to titanian clinohumite in the studied sample suggests
that part of the titanian clinohumite was decomposed by the reaction: titanian clinohumite = olivine +
ilmenite + fluid. The divariant field for titanian clinohumite with XF = 0.4, olivine and ilmenite, shown
as the orange-colored area, is located at temperature lower than 900 ◦C and pressure of 0.5–2.0 GPa
(Figure 11). At this pressure condition, chromian chlorite would be stable together with olivine and
orthopyroxene (dark orange-colored area of Figure 11). Therefore, the temperature conditions for
the coexisting F (XF = 0.3–0.4)-bearing titanian clinohumite, and chromian chlorite in peridotite can
be roughly estimated as around 800 ◦C (Figure 11). We note that this temperature is consistent with
granulite facies metamorphism in the Akia Terrane (~820–850 ◦C under 0.8–1 GPa), which likely
occurred in the period 2857–2700 Ma [38] (Figure 11).

A calcium carbonate, found in contact with olivine, is the only Ca-rich phase in the studied sample.
In peridotite-CO2-H2O systems, the stability and nature of carbonate minerals depends on pressure,
temperature, and CO2 fugacity conditions. Orthopyroxene and dolomite are stable at pressure >2 GPa
at 800 ◦C, whereas olivine, diopside, and CO2 are stable at lower pressure conditions [52–54]. Olivine
and calcite are stable >500 ◦C at around 1–2 GPa in CaO-bearing system at reasonable CO2 fugacity
conditions [54]. Olivine and calcite can coexist with F-poor titanian clinohumite at around 500 ◦C.
However, the temperature conditions for the F (XF = 0.3–0.4)-bearing titanian clinohumite formation in
the studied peridotite were roughly estimated as around 800 ◦C. In addition, the minor occurrence of
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carbonate minerals, and their texture indicates that carbonates might have formed during a late stage
where calcium carbonate components infiltrated locally.geosciences 2018, 8, x FOR PEER REVIEW  6 of 21 
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residue after partial melting from primitive mantle compositions.  

Orthopyoxene in the studied sample is geochemically characterized by being low in Al2O3 and 
Cr2O3. Low-Al2O3 and Cr2O3 orthopyroxenes are observed in deserpentinized peridotites [57–60]. It 
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Figure 11. P-T conditions for the studied titanian clinonumite-bearing peridotite (light red field). The
reaction curves of the F-free (XF = 0) titanian clinohumite (XTi = 0.28, XFe = 0.04, where XTi = 2Ti/(2Ti +
OH)) and the F-bearing (XF = 0.47) one (XTi = 0.19, XFe = 0.03) after [51]. The divariant fields for the
presence of titanian clinohumite, olivine, and ilmenite are shown as grey-colored fields the dashed
and solid lines are for each clinohumite. The incorporation of Cr in chlorite expands its stability
field (schematically shown as blue-colored dashed line with arrows towards increasing Cr) to higher
temperature conditions. Chromium-free chlorite stability field are compiled by [55]. The peak P-T
conditions estimated for metapelites and metabasite from the Akia terrane are shown as fields with red
and violet outlines, respectively [38]. Pyp/Spl = the reaction from pyrope (Pyp) + olivine = enstatite +
spinel (Spl), Chl = chlorite, Crd = cordierite stability field, En = enstatite, Fo = forsterite, Ilm = ilmenite,
Ol = olivine, Ti-Cl = titanian clinohumite.

4.2. Petrogenesis of the Studied Titanian Clinohumite-Bearing Ultramafic Rock

The studied peridotite is an orthopyroxene-bearing chlorite dunite. Orthopyroxene in the studied
dunite plots at the highest XMg end of the compositional range of abyssal peridotites recovered from
the mid-ocean ridges, whereas its XCr is almost at the lowest end (Figure 6). The Cr2O3 content in
orthopyroxene is generally low. Trace element patterns of orthopyroxene show negative anomalies of
Sr and Eu (Figure 7), which suggest the role of plagioclase during (re-)crystallization of the studied
ultramafic rocks. Also, the HREE contents of the Ulamertoq orthopyroxenes are considerably more
enriched than those from residual peridotite [56]. The orthopyroxene composition, combined with
the absence of clinopyroxene, indicates that the host harzburgite is not a simple residue after partial
melting from primitive mantle compositions.
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Orthopyoxene in the studied sample is geochemically characterized by being low in Al2O3 and
Cr2O3. Low-Al2O3 and Cr2O3 orthopyroxenes are observed in deserpentinized peridotites [57–60].
It is noteworthy that magnetite inclusion-rich olivine, like the dusty olivine in this study, is commonly
observed in deserpentinized peridotites. Some deserpentinized peridotites, in fact, contain titanian
clinohumite and its derivative mineral assemblage that resulted from its breakdown [24,30,36].
Magnetite inclusions in olivine can be interpreted as remnants of former serpentinite after dehydration,
probably under relatively high oxygen fugacity conditions. Several other mechanisms can also explain
the origin of magnetite inclusions in olivine: oxidation of olivine and exsolution from ultra-high
pressure olivine in decompression [61]. However, orthopyroxene inclusions associated with magnetite
inclusions are absent, and the lack of evidence for ultra-high-pressure conditions in the studied sample
makes oxidation or ultra-high-pressure decompression of olivine unlikely explanations. We suggest
that dehydration of former serpentinites, under granulite-facies conditions, could explain the magnetite
inclusions in the olivine. Dusty olivine is also commonly observed in the Seqi ultramafic body in the
Akia Terrane [9], indicating that deserpentinized ultramafic rocks might occure in several ultramafic
bodies in the Akia terrane. Szilas and colleagues [9] calculated pseudosections using PerpleX [62] for
ultramafic rocks from the nearby Seqi ultramafic body. Their results suggest that the studied peridotites
could be derived from lower grade serpentinized peridotite during granulite facies metamorphic
overprint. This scenario is certainly a possibility given the complex polymetamorphic evolution of the
Akia Terrane [38].

Low-Al2O3 and Cr2O3 orthopyroxenes are also reported from metasomatized peridotites by
subducting slab-derived silica-rich metasomatic agents [25,63–65]. Iizuka and Nakamura [66]
confirmed the formation of titanian clinohumite in an experimental simulation of slab-mantle
interactions. The effect of metasomatism in the studied rocks can be deduced from field occurrences of
phlogopite-amphibole-rich metasomatized ultramafic rocks and amphibole-bearing orthopyroxenite
in the Ulamertoq body (Figure 2). Orthopyroxene in some Ulamertoq peridotites can occur as poikilitic
and/or fine-grained aggregate, which is different from the typical textures of residual harzburgite.
Although the studied samples come from a relatively small ultramafic body included in a large
crustal domain (Figure 1), and from the field perspective have apparently no clear connection with
a subducting environment, we suggest that further studies on the potential metasomatism of these
rocks could be useful and should be conducted.

4.3. Comparison with Titanian Clinohumite-Bearing Ultramafic Rock in the Isua Supracrustal Belt and
Its Significance

Titanian clinohumite-bearing peridotites were reported from the 3.8 Ga Isua Supracrustal Belt,
which is part of the Itsaq Gneiss Complex [12,24]. Olivine grains with and without magnetite inclusions,
which are similar to the dusty and clear olivines in the present study, are also reported in the Isua
titanian clinohumite-bearing peridotites [24]. Dymek et al. [24] pointed out that the Isua peridotites are
metamorphosed peridotites from the former serpentinites, followed by later serpentinization. As we
have discussed above, the titanian clinohumite-bearing dunite in our study is also likely formed by the
dehydration of serpentinite. We suggest that the effects of hydration/dehydration processes should
therefore be considered carefully in future studies on the origin of ultramafic bodies found within
Archaean metamorphic terranes.

There are certain differences between the Ulamertoq and Isua titanian clinohumite-bearing
peridotites, and especially the mineral compositions in the Isua titanian clinohumite-bearing ultramafic
rocks, are not identical to those of the studied sample. The Fo content of olivine is higher in the Isua
bodies than the Ulamertoq. Several factors likely contributed to the differences in the Fo content
between these ultramafic bodies. The volume of magnetite grains in deserpentinized olivines can
control the Fo content of olivines, because less magnetite results in olivine with lower Fo content,
whereas abundant magnetite olivine increases Fo during subsolidus exchange [67]. The volume of
chromite can also control the Fo content on cooling; samples with high chromite concentration have
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higher Fo content. Varying iron content of the former serpentine is also an important controlling factor
for the differences in the Fo content. Careful comparison of magnetite volumes within olivine between
the Ulamertoq and the Isua bodies are required to fully evaluate the relationships to the corresponding
Fo contents. The Isua titanian clinohumites have higher TiO2 content and lower F contents than the
Ulamertoq (Figures 5 and 8). Sánchez-Vizcaíno et al. [36] reported titanian clinohumite grains from
a deserpentinized peridotite body in Cerro del Almirez, SE Spain, which show differences in the degree
of dehydration. Their results suggest that OH-titanian clinohumite occurs in antigorite serpentinite
whereas F-OH-titanian clinohumite is only observed in chlorite harzburgite. Antigorite serpentinite is
not commonly observed in the Ulamertoq body, and it is possible that the Ulamertoq ultramafic body
suffered from a high degree of deserpentinization from former serpentinites.

Another difference is the presence of titanian chondrodite in the Isua peridotite [12,24].
Experimental results and studies on natural samples suggest that the titanian chondrodite-bearing Isua
peridotite is stable at higher pressure conditions than the studied titanian clinohumite-bearing dunite
from Ulamertoq, and that the Isua rocks likely suffered ultra-high pressure conditions [31,47,48].

The tectonic settings of ultramafic rocks in the Archaean terranes of southern West Greenland
are still not clear. The present study demonstrates that titanian clinohumite-bearing peridotites occur,
at least locally in the Akia Terrane, and are thus distributed in several Archaean terranes in southern
West Greenland. It is interesting to note that titanian clinohumite-bearing ultramafic rocks have been
observed at the convergent plate margins, including (ultra-) high pressure metamorphic belts and
subduction zones [30,32,36,48,68]. Polat et al. [69] compared the Mesozoic Suru orogenic belt, China,
and the Supracrustal Belts in various Archaean terranes, and suggested that remarkable similarities
exist between them. That study suggested that all lithological packages of the Archaean terranes of
southern West Greenland are similar to those from the Mesozoic Suru orogenic belt, indicating that
both Archaean ultramafic and crustal rocks were probably formed at convergent plate boundaries.

5. Conclusions

A titanian clinohumite-bearing chlorite dunite was found in the Ulamertoq ultramafic body of
the 3.0 Ga Akia Terrane, southern West Greenland. Geochemical characteristics of the chlorite dunite
host for titanian clinohumite do not fit residual peridotites after melt extraction from the primitive
mantle. The titanian clinohumite is fluorine-bearing and has partly decomposed to ilmenite and
olivine. This observation, coupled with the coexistence with chromian chlorite, indicates equilibration
at around 800-900 ◦C under garnet-free conditions (<2 GPa), which is consistent with granulite facies
metamorphic conditions reported from the Akia Terrane. The occurrence of magnetite inclusion-rich
dusty olivines, together with pyroxene compositions in the studied titanian clinohumite-bearing
peridotite, suggests a reaction involving deserpentinized peridotites from former serpentinites in the
Ulamertoq ultramafic body. In light of our results, we suggest that the effects of hydration/dehydration
processes, and their potential association with subduction environments, should be considered in
future studies on the petrogenesis of ultramafic bodies found in polymetamorphic Archaean terranes.
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