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Abstract: Generalized linear models are routinely used in many environment statistics problems
such as earthquake magnitudes prediction. Hu et al. proposed Pareto regression with spatial random
effects for earthquake magnitudes. In this paper, we propose Bayesian spatial variable selection
for Pareto regression based on Bradley et al. and Hu et al. to tackle variable selection issue in
generalized linear regression models with spatial random effects. A Bayesian hierarchical latent
multivariate log gamma model framework is applied to account for spatial random effects to capture
spatial dependence. We use two Bayesian model assessment criteria for variable selection including
Conditional Predictive Ordinate (CPO) and Deviance Information Criterion (DIC). Furthermore,
we show that these two Bayesian criteria have analytic connections with conditional AIC under
the linear mixed model setting. We examine empirical performance of the proposed method via a
simulation study and further demonstrate the applicability of the proposed method in an analysis of
the earthquake data obtained from the United States Geological Survey (USGS).

Keywords: earthquake hazard; DIC; CPO; model selection

1. Introduction

The earthquake magnitude data has become increasingly popular over the last decade. Statistical
models for earthquake have been proposed since 1800s. Since large earthquakes are rare, it is difficult
to fit simple linear models. Many different parametric models (Gamma model, Weibull model) have
been considered to analyze earthquake magnitudes, but some earthquakes with very small magnitudes
are not reported by seismic centers. The Pareto-type distribution is a popular choice for analyzing
earthquake magnitudes data (e.g., [1–3]), as the Pareto distribution is a heavy-tailed distribution with
a lower threshold. In statistical analysis, a regression model is used to connect dependent covariates
of earthquakes to the magnitude of the earthquake. A generalized linear model strategy can be used
for the Pareto regression. Existing seismology literatures pay less attention to spatially dependent
structure on earthquake magnitudes. They just built simple linear regression models or generalized
linear models to explore covariates effects on earthquake magnitudes [4]. Hu and Bradley [5] proposed
using the Pareto regression with spatial random effects for earthquake magnitudes, but they did not
consider the model selection problems. In order to have more explicit understanding of dependent
covariates of earthquake magnitudes, variable selection approaches should be considered in a Pareto
regression model with spatial random effects.

Variable selection and Bayesian statistics have received widespread attention and become
increasingly important tools in the field of environment and ecology [6,7]. For hierarchical spatial
model, it is difficult to do inference for latent variables. Bayesian approach provides a convenient
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way for estimating latent variables in hierarchical models. Compared with the frequentist approach,
a Bayesian approach can bring some prior information on parameters of the model. It is an important
part of a statistical analysis. In practice, we may want to measure how good a model is for answering
a certain question or comparing different models to see which model is best suited. There are
many popular variable selection criteria, including Akaike’s information criterion (AIC) [8] and
Bayesian information criterion (BIC) [9], Bayes factor, conditional predictive ordinate (CPO) [10,11],
L measure [12], and the deviance information criterion (DIC) [13]. Chen et al. [14] provide the
connections between these popular criteria for variable subset selection under generalized linear
models. However, there are some difficulties for Bayesian variable selection to carry out because of the
challenge in assigning prior distributions for the parameters. In order to tackle this issue, we consider
the multivariate log-Gamma distribution (MLG) based on Bradley et al. [15], which is conjugate with
the Pareto distribution [5]. Hence, the Bayesian approach to variable selection is straightforward for
our model. Consequently, we use CPO and DIC criteria to carry out Bayesian variable selection for
Pareto regression models due to the performance of the conjugate priors (see [16], for a discussion).

Both CPO and DIC are criteria-based methods and they have some advantage over other criteria.
Compared with regularized estimation approach, these two criteria consider goodness of fit of
the candidate models. Furthermore, compared with negative log probability density or RMSE for
predictions, these two criteria consider the model complexity. Like the AIC or BIC, these two criteria
compromise the tradeoff between the goodness of fit and model complexity. The CPO provides a
site-specific model fit metric that can be used for exploratory analysis and can be combined at the
site to generate a logarithm pseudo marginal likelihood (LPML) as an overall model fit measure.
The CPO is based on leave-one-out-cross-validation. It estimates the probability of observing data on
one particular location in the future if after having already observed data. The LPML is a leave-one-out
cross-validation with log likelihood as the criteria which can be easily obtained from an Markov chain
Monte Carlo (MCMC) output (see [17]). More details about two criteria will be discussed in Section 2.2.
The major contribution of this paper is that we introduce two Bayesian model selection criteria in
generalized linear model with spatial random effects. Furthermore, we exam the relationship between
the two criteria with conditional AIC (cAIC) in random effects model. Other than the variable selection
problem in regression model, our criteria can also be used in model selection in the presence of spatial
random effects. In general, our proposed criteria can select important covariates and random effects
model simultaneously.

The remaining sections of this article are organized as follows. Section 2 introduces our proposed
statistical model, and review two Bayesian model assessment Criteria including LPML and DIC [13].
In Sections 3 and 4, we present MCMC scheme and a simulation study for two scenarios, and use
two criteria to select true model. In Section 5, we carry out a detailed analysis of the US earthquake
dataset from United States Geological Survey (USGS) and use two criteria to select the best model(s).
Finally, Section 6 contains a brief summary of this paper. For ease of exposition all proofs are given
Appendix A.

2. Methodology

2.1. Pareto Regression with Spatial Random Effects

In many regression problems, normality may not be always held. Generalized linear models allow
a linear regression model to connect the response variable with a proper link function. For some heavy
tailed data with minimum value, it is common to use the Pareto model to fit these data. From the
expression of Gutenberg–Richter law, it is possible to derive a relationship for the logarithm of the
probability to exceed some given magnitude. The standard distribution used for seismic moment is the
Pareto distribution. The Pareto distribution has a natural threshold. In practice, people do not take more
consideration on “micro” (magnitude from 1–1.9) or “minor” (magnitude from 2–2.9) earthquakes.
Compared with exponential distribution, Pareto distribution is a heavy tailed distribution. Heavy tailed
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distributions tend to have many outliers with very high values. The heavier the tail, the larger
the probability that you will get one or more disproportionate values in a sample. In earthquake
data, most recorded earthquakes have a magnitude around 3–5, but sometime there will have some
significant earthquakes with large magnitude. Hu [5] used Pareto regression to model earthquake
magnitudes, since the Pareto distribution is a heavy tailed distribution with a threshold. Earthquake
magnitude data also has a threshold, since people consider earthquake only over a certain magnitude.
Based on the generalized linear model setting, we can build Pareto regression model as

f (z) = exp(µ(s))zexp(µ(s))
m z−1−exp(µ(s)) z ≥ zm, (1)

where s ∈ D ⊂ R2 is a spatial location, µ(s) = β0 + β1X1(s) + ... + βpXp(s), Xi(s) is i-th covariate on
location s and zm is the minimum value of the response variable. Under this model, the log shape
parameter is modeled with a fixed effects term.

The model in Equation (1) does not include spatial random effects. Consequently, it is implicitly
assumed that α(s) and α(w) are independent for s 6= w. But for many spatial data, it is not realistic to
assume that α(s) and α(w) are independent. We can add the latent Gaussian process in the log-linear
model so that the generalized linear model becomes a generalized linear mixed model (GLMM).
Specifically, we assumed

log{α(s)} = β′X(s) + w(s) s ∈ D, (2)

W ∼ N{0, σ2
wH(φ)}, (3)

where W is an n-dimensional vector of (w(s1), . . . , w(sn))′, H(φ) is a n× n spatial correlation matrix,
and {s1, . . . , sn} ∈ D are the observed spatial locations. The natural strategy to consider spatial
correlation is to use in light of Tobler’s first law that “near things are more related than distant
things” [18]. Spatial random effects allow one to leverage information from nearby locations. Latent
Gaussian process models have become a standard method for modeling spatial random effects [19].
Based on Gaussian process structure, the nearby observations will have higher correlation.

For the latent Gaussian process GLMM, we can build the following hierarchical model:

Data Model : Z(si)|W , β, σ2, φ
ind∼ Pareto(Zm, eµ(si)); i = 1, . . . , n

Process Model : W |φ, σ2
w ∼ MVN{0, σ2

w H(φ)}
Parameter Model 1 : β j ∼ N(0, σ2

j ); j = 1, ..., p

Parameter Model 2 : σ2
j ∼ IG(a1, b1); j = 1, ..., p

Parameter Model 3 : σ2
w ∼ IG(a2, b2)

Parameter Model 4 : φ ∼ IG(a3, b3), (4)

where “IG” is a shorthand for inverse gamma, “MVN” is a shorthand for multivariate normal, and “N”
is a shorthand for a univariate normal distribution. For the Pareto regression model, the normal prior is
not conjugate. A proper conjugate prior for the Pareto regression will facilitate the development of an
efficient computational algorithm. Chen and Ibrahim [16] proposed a novel class of conjugate priors for
the family of generalized linear model. But they did not show the connection between their conjugate
prior and gaussian prior. Bradley et al. [20] proposed the multivariate log-gamma distribution
as a conjugate prior for Poisson spatial regression model and established a connection between
a multivariate log-gamma distribution and a multivariate normal distribution. The multivariate
log-gamma distribution is an attractive alternative prior for the Pareto regression model due to
its conjugacy.

We now present the multivariate log-gamma distribution from Bradley et al. [20]. We define
the n-dimensional random vector γ = (γ1, ..., γn)′, which consists of n mutually independent
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log-gamma random variables with shape and scale parameters organized into the n-dimensional
vectors α ≡ (α1, ..., αn)′, and κ ≡ (κ1, ..., κn)′, respectively. Then define the n-dimensional random
vector q as follows:

q = µ + Vγ, (5)

where V ∈ Rn ×Rn and µ ∈ Rn. Bradley et al. [20] called q the multivariate log-gamma random
vector. The random vector q has the following probability density function:

f (q|c, V , α, κ) =
1

det(V)

(
m

∏
i=1

1
Γ(αi)κ

αi
i

)
exp[α′V−1(q− µ)− κ(−1)′ exp{V−1(q− µ)}]; q ∈ Rn, (6)

where “det” represents the determinant function. We use “MLG (µ, V , α, κ)” as a shorthand for the
probability density function in Equation (6).

According to Bradley et al. [20], the latent Gaussian process is a special case of
the latent multivariate log-gamma process. If β has a multivariate log-gamma distribution
MLG(0, α1/2V , α1, 1/α1). When α → ∞, β will converge in distribution to the multivariate normal
distribution vector with mean 0 and covariance matrix VV ′. α = 10,000 is sufficiently large for this
approximation. MLG model is a more saturated model than Gaussian process model. For the Pareto
regression model, the MLG process is more computationally efficient than the Gaussian process.
In following hierarchical model, we refer to β and W as following an MLG distribution with q, 0p and
0n being the first parameter of MLG corresponding to µ, and Σ1/2

W and Σ1/2
β are the second parameter

of MLG like V .
In order to establish conjugacy, we build a spatial GLM with latent multivariate log gamma

process as follows:

Data Model : Z(si)|W , β, σ2, φ
ind∼ Pareto(Zm, eµ(si)); i = 1, . . . , n

Process Model : W |φ, σw ∼ MLG(0n, Σ1/2
W , αW1n, κW1n)

Parameter Model 1 : β ∼ MLG(0p, Σ1/2
β , αβ1p, κβ1p)

Parameter Model 2 : σ2 ∼ IG(a1, b1);

Parameter Model 3 : σ2
w ∼ IG(a2, b2)

Parameter Model 4 : φ ∼ IG(a3, b3), (7)

where Zm defined baseline, µ(si) = X(si)β + W , ΣW = σ2
w H(φ), Σβ = σ2diag(p), αW > 0,

αβ > 0, κW > 0, and κβ > 0.

2.2. Bayesian Model Assessment Criteria

In this section, we consider two Bayesian model assessment criteria, DIC and LPML. In addition,
we introduce the procedure to calculate DIC and LMPL for the Pareto regression model with spatial
random effects. Let β(M) denote the vector of regression coefficient under the full model M. Also let
β(m) and β(−m) denote the corresponding vectors of regression parameters included and excluded in
the subset model m. Then, β(M) = β = ((β(m))′, (β(−m))′)′ holds for all m, and β(−M) = ∅.

2.2.1. DIC

The deviance information criterion is defined as

DIC = Dev(θ̄) + 2pD, (8)
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where Dev(θ̄) is the deviance function, pD = Dev(θ) − Dev(θ̄) is the effective number of model
parameters, and θ̄ is the posterior mean of parameters θ, and ¯Dev(θ) is the posterior mean of Dev(θ).
To carry out variable selection, we specify the deviance function as

Dev(β(m)) = −2
n

∑
i=1

log( f (β(m))|Di), (9)

where Di = (Yi, Xi, Ŵi), f (.) is the likelihood function in Equation (7), Ŵi is the posterior mean of the
spatial random effects on location si, β(m) is the vector of regression coefficient under the m-th model.
In this way, the DIC criterion is given by

DICm = Dev(β̄(m)) + 2p(m)
D , (10)

where

2p(m)
D = ¯Dev(β(m))−Dev(β̄(m)), (11)

where β̄(m) = E[β(m)|D], and ¯Dev(βm) = E[Dev(β(m))].

2.2.2. LPML

In order to calculate the LPML, we need to calculate CPO first [14]. Then LPML can be obtained as

LPML =
n

∑
i=1

log(CPOi), (12)

where CPOi is the CPO for the i-th subject.
Let D(−i) denote the observation data with the i-th observation deleted. The CPO for the i-th

subject is defined as

CPOi = f (Yi|Xi, D(−i)) =
∫

f (Yi|Xi, β)π(β|D(−i))dβ, (13)

where π(β|D(−i)) is the posterior distribution based on the data D(−i).
From Chapter 10 of Chen et al. [21], CPO in (13) can be rewritten as

CPOi =
1∫ 1

f (yi |β,W ,Xi)
π(β|D)dβ

. (14)

A popular Monte Carlo estimate of CPO using Gibbs samples form the posterior distribution is
given as D instead of D(−i). Letting {βb, b = 1, · · · , B} denote a Gibss sample of β from π(β|D) and
using (14), a Monte Carlo estimate of CPO−1

i is given by

ĈPO
−1
i =

1
B

B

∑
b=1

1
f (Yi|βb, Xi, Ŵi)

. (15)

So the LPML defined as

LPMLm =
n

∑
i=1

log(ĈPOi). (16)

In the context of variable selection, we select a subset model, which has the largest LPML value
and/or the smallest DIC value. In practice, if we have two different results based on two criteria,
we will choose both models which were selected by two criteria as the best models. In addition, we can
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do more diagnostics for the two candidate models. DIC compromises the goodness of fit and the
complexity of the model. The CPO is based on leave-one-out-cross-validation. The LPML, the sum of
the log CPO’s, is an estimator for the log marginal likelihood.

2.3. Analytic Connections between Bayesian Variable Selection Criteria with Conditional AIC for the Normal
Linear Regression with Spatial Random Effects

The Akaike information criterion (AIC) has been applied to choose candidate models in the
mixed-effects model by integrating out the random effects. A conditional AIC was proposed to be
used for the linear mixed-effects model [22] under the assumption that the variance-covariance matrix
of random effects is known. Under the this assumption, we establish analytic connections of DIC and
LPML we proposed in Section 2.3 with cAIC. We have the following linear regression model with
spatial random effects:

yi = Xiβ + wi + εi, (17)

where β is a p× 1 vector of fixed effects, wi is spatial random effects for individual i. The cAIC is
defined as:

cAIC = −2log(β̂|X, y, ŵ) + 2k, (18)

where X is with full rank k. Having the MLE of β, we can have

cAIC = −nlog(
1

2πσ2 ) +
1
σ2 SSE + 2k, (19)

where SSE = (y− ŷ)′(y− ŷ), ŷ = (ŷ1, ..., ŷn)′, ŷi = Xi β̂ + ŵi.
From [14], we can have DIC and LPML for the linear regression model with spatial random effects

as follows

DIC(a0) = −nlog(
1

2πσ2 ) +
1
σ2 SSE∗ +

2(1 + a0)

1 + 2a0
2k, (20)

and

LPML(a0) = −nlog(
1

2πσ2 ) +
1
σ2 SSE∗ +

(1 + a0)

1 + 2a0
k + R, (21)

where SSE∗ is calculated by posterior mean, a0 = 0 with conjugate prior for likelihood model,

R = − 2(1+a0)
2

1+2a0
R∗, R∗ is the remainder of Taylor expansion. So in the conjugate prior condition,

our proposed Bayesian variable selection criterion is similar with cAIC for the linear regression model
with spatial random effects.

3. MCMC Scheme

The algorithm requires sampling the all parameters in turn from their respective full conditional
distributions. We assume that β, W are independent a priori. We further assume β ∼
MLG(0p, Σ1/2

β , αβ1p, κβ1p) and W ∼ MLG(0n, Σ1/2
W , αW1n, κW1n). Thus, sampling from p(β|·) ∝

exp
{

α′β Hββ− κ′β exp(Hββ)
}

and p(W|·) ∝ exp
{

α′W HWW − κ′W exp(HWW)
}

is straightforward.

For ΣW = σ2
wH(φ) and Σβ = σ2diag(p), we assume that σ2 ∼ IG(a1, b1), σ2

w ∼ IG(a2, b2)

and φ ∼ IG(a3, b3), that is, p(σ2|a1, b1) ∝ MLG(0, Σ1/2
β , αβ1p, κβ1p) × IG(a1, b1), p(σ2

w|a2, b2) ∝

MLG(0, Σ1/2
W , αw1n, κw1n) × IG(a2, b2), and p(φ|a3, b3) ∝ MLG(0n, Σ1/2

W , αw1n, κw1n) × IG(a3, b3).
The sampling scheme for these three parameters is not straightforward. We use a Metropolis–Hasting
algorithm to sampling from three parameters. The other difficulty is how to compute the
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log-determinant of a matrix. Because we are using a log-likelihood function, the formula for the
log-likelihood involves the expression log(det(Σβ)) or log(det(ΣW)). To compute the logarithm
of a determinant, we encourage not try to compute the determinant itself. Instead, computing the
log-determinant directly. For a matrix with a large determinant, the computation of the log-determinant
will usually be achieved, however, the computation of the determinant might cause a numerical error.
The method is given by

log(det(Σβ)) = 2 ∗∑(log(diag(Lβ))),

log(det(ΣW)) = 2 ∗∑(log(diag(LW))), (22)

where the Lβ is the Cholesky root of matrix Σβ, LW is the Cholesky root of matrix ΣW , and “diag”
denotes a column vector whose elements are the elements on the diagonal of matrix. The derivative
details for the full conditional distributions given in Appendix A.

Note that αβ, κβ, αW , κW , a1, b1, a2, b2, a3, and b3 are prespecified hyperparameters. In this article,
we use αβ = 10,000, κβ = 0.0001, αW = 1, κW = 1, a1 = 1, b1 = 1, a2 = 1, b2 = 1, a3 = 1 and b3 = 1.
For more flexibility, we can also assume αβ, κβ, αW and κW each following a Gamma distribution with
suitable hyperparameters.

4. Simulation Study

The spatial domain for the two simulation studies are chosen to be D ∈ [0, 50] × [0, 50].
The locations si is selected uniformly over D ∀i = 1 . . . 50. We present the two different simulation
settings and generate 100 replicate data sets for each scenario. We assume β = (β1, β2, β3) so that we
have seven candidate models. We generate W from a multivariate normal distribution with mean zero
and covariance ΣW = H(φ). We set φ = 1 and fix σ2 = 1 in both Simulations 1 and 2. We generate
the elements of X(si) independently from the uniform distribution U(0,1). We define the baseline
threshold (scale parameter) equal to three in both simulations.

4.1. Simulation for the Connection between Multivariate Log Gamma and Multivariate Normal Distribution

In this section, we examine the connection between the multivariate log-gamma distribution
and the multivariate normal distribution. First, we draw the quantile-quantile (QQ)-plot in Figure 1
to show the normality of q generated from MLG(0, α1/2V , α1, 1/α1), when α = 10,000. In addition,
we use the Kolmogorov–Smirnov test to examine the connection for one dimensional data. We use
a multivariate two-sample test [23] for multivariate dimensional data. We generated one data set
of size 100 from the multivariate log-gamma distribution and another data set of size 100 from the
multivariate normal distribution and then calculated the p-value from the multivariate two-sample
test for comparing these two data sets. Then, we repeated this process 1000 times. We found that 992
out of these 1000 p-values were larger than the significance level of 0.05. That is, in 992 of 1000 times,
we did not reject the null hypothesis that the two samples were drawn from the same distribution.

4.2. Simulation for Estimation Performance

In this simulation study, our goal was to examine the estimation performance of the hierarchical
model. We set β = (1, 1, 1). We estimated the parameters in this simulation and report the bias (bias =

1
m ∑m

j=1(β
(j)
i − β∗i )), the standard error (SE) (SE =

[
1
m ∑m

j=1(β
(j)
i − β̄i)

2
]1/2

, where β̄i =
1
m ∑m

j=1 β
(j)
i ),

and the mean square error (MSE) (MSE = 1
m ∑m

j=1(β
(j)
i − β∗i )

2) in Table 1, where β∗i is the true value
of βi.
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Table 1. Estimation performance.

Parameter True Value Bias SE MSE Coverage Probability

β1 1 −0.0272 0.2903 0.085 0.94
β2 1 −0.0024 0.2939 0.0863 0.94
β3 1 −0.0102 0.3369 0.1135 0.94

We try to predict the parameters close to true mean value of our target random variable and
the variance is how scattered for our predictions. From Table 1, using the MLG prior for β, we got a
reasonable estimation result because it achieves low bias and low variance simultaneously. Besides,
we calculated the coverage probability for each variable, it indicates the 94% coverage probability for
each parameter.
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Figure 1. QQ-plot.

4.3. Simulation for Model Selection

In this simulation study, our goal was to study the accuracy of our model selection criteria.
We have two different simulations in this section. Simulation 1: we set true β = (3, 0, 0) and calculated
the difference between the true model and other candidate models for both criteria. In Figure 2,
a difference beyond zero means that the true model had smaller DIC than the candidate model and
the difference below zero means that the true model had higher LPML than the candidate model in
Figure 2. The true model had the smallest DIC and the largest LPML in 99 of 100 simulated data
sets. Simulation 2: we set true β = (1, 0, 0) and the results are shown in Figure 3. In each simulation,
we have seven candidate models and one of them is true model and denote the true model as model 5.
In Figures 2 and 3, the y-axis is the difference between “candidate model i” with true model. The true
model had the smallest DIC in 81 of 100 simulated data sets and the largest LPML in 80 out of
100 simulated data sets. For each replicate dataset, we fit our model with 5000 Markov chain Monte
Carlo iterations and treated the first 2000 iterations as burn-in. From Figures 2 and 3, in both simulation
studies, we find that DIC and LPML yielded relatively consistent model selection results.
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Figure 2. Deviance information criterion (DIC) and logarithm pseudo marginal likelihood (LPML)
difference between candidate models and true model (model 5) of Simulation 1 ((left) DIC,
(right) LPML).
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Figure 3. DIC and LPML difference between candidate models and true model (model 5) of Simulation 2
((left) DIC, (right) LPML).

4.4. Simulation for Model Comparison

In this simulation study, our goal is to evaluate the accuracy of our model selection criteria for
different spatial random effects model. In this section, we generate the spatial random effects from
MLG, W ∼ MLG(0n, Σ1/2

W , αW1n, κW1n), where αW = κW = 1. Other settings are same with previous
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simulations. We generated 100 data sets in these settings. Then, we compared the model fitness based
on two following priors:

Prior 1 : W |φ, σw ∼ MLG(0n, Σ1/2
W , αW1n, κW1n),

Prior 2 : W |φ, σw ∼ N(0n, ΣW). (23)

For each replicate dataset, we fit our model with 5000 Markov chain Monte Carlo iterations and
treat first 2000 iterations as burn-in. Then, we calculated the difference of DICs and the difference of
LPMLs between these two priors. In Figure 4, the values below zero in the left plot imply that prior 1
has smaller DIC than prior 2. Also, the values above zero in the right plot in Figure 4 indicate that
prior 1 has higher LPML than prior 2. The results shown in Figure 4 that we have a better result when
we use the MLG prior than the Gaussian prior.
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Figure 4. DIC and LPML difference ((left) DIC, (right) LPML).

5. A Real Data Example

5.1. Data Description

We analyzed seven days of US earthquake data collected in 2018, which includes n = 228
earthquakes that have magnitudes over Zm = 2.44 (https://earthquake.usgs.gov/). We present
the earthquake data in Figure 5. We find the data most lie in seismic belts. In Figures 6 and 7,
we present the histogram of this data and the scatter plot of this data set. In this analysis we have three
variables (depth, gap, rms). The depth is where the earthquake begins to rupture. The gap is the largest
azimuthal gap between azimuthally adjacent stations (in degrees). RMS is the root-mean-square (RMS)
travel time residual, in sec, using all weights.

https://earthquake.usgs.gov/
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Figure 7. Scatter plot of earthquakes magnitudes, depth, gap and root-mean-square (RMS).

5.2. Analysis

We consider the model in Equation (7) and specify αβ = 105 and κβ = 10−5. These choices lead to
an MLG that approximates a multivariate normal distribution. This choice of hyper-parameters will
give an approximately normal prior on β. Inverse gamma priors are chosen for variance parameters σ2

w
and σ2, which is a usual choice of the variance parameters in Bayesian analysis. The full conditionals
in the Appendix A are used to run a Gibbs sampler. We have seven candidate models in total,
and β = (β1, β2, β3) =(depth, gap, rms). The number of iterations of the Gibbs sampler is 15,000,
and the number of burn-in iterations is 10,000. The trace plots of posterior samples are provided in
the Appendix B to show the convergence of MCMC chain. We also compare to a model when W
approximates to Normal. The “DICN” and “LPMLN” denote the DIC and LPML for a model when W
approximates to normal respectively. Furthermore, we calculated the log probability density (LPD) for
candidate models. Based on the results in Table 2, the three criteria selected the same model with β1

and MLG spatial random effects. Our proposed criteria had consistent results with the LPD.
From Table 2, we know that the model with β = (β1, 0, 0) has the smallest DIC and largest

LPML. We also report the posterior estimates under the best model in Table 3 according to both DIC
and LPML.
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Table 2. Deviance information criterion (DIC) logarithm pseudo marginal likelihood (LPML), and log
probability density (LPD) of candidate models.

Model DIC LPML LPD DICN LPMLN LPDN

β1, β2, β3 3058.71 −1535.68 −1528.58 3325.47 −1669.44 −1661.86
β1, β2 2936.72 −1472.54 −1469.38 3130.42 −1569.94 −1564.33
β1, β3 3037.96 −1522.69 −1516.97 3258.84 −1633.79 −1628.54
β2, β3 3056.02 −1533.71 −1526.38 3322.33 −1666.84 −1660.28

β1 2890.80 −1446.60 −1445.789 2958.61 −1480.68 −1478.42
β2 2908.10 −1457.28 −1452.35 3073.28 −1540.16 −1535.76
β3 3034.67 −1519.84 −1518.62 3896.29 −1951.31 −1947.27

Table 3. Posterior estimation under the best model.

Posterior Mean Standard Error 95% Credible Interval

β1 −0.00568 0.0009616 (−0.00763, −0.00389)
φ 24.8693 4.5693 (17.5827, 35.1427)
σ2 2.1620 2.4563 (0.2642, 9.1086)
σ2

w 4.9304 1.7632 (2.1670, 8.8958)

From these posterior estimates, the model we select just contains depth as the important covariates
and 95% credible interval does not contain zero. We see that as the depth increases, the expected
value of earthquakes magnitudes increases. The other two covariates, gap and RMS, have no
significant effects on earthquake magnitudes. In other words, from these seven-day earthquake
data, deep earthquakes will have bigger magnitudes than shallow earthquakes. From the posterior
estimates of φ and σ2

w, we can find that there exists spatial correlation of earthquake magnitudes
between different locations. In addition, using MLG as spatial random effects increases the goodness
of fit of regression model in this data. This result is consistent with the earthquake literature [2].

6. Discussion

In this paper, we propose a Bayesian variable selection criterion for a Bayesian spatial-temporal
model for analyzing earthquake magnitudes. Our main methodological contributions are to use the
multivariate log-gamma model for both the regression coefficients and spatial random effects and
to do variable selection for regression covariates with spatial random effects. Both DIC and LPML
have a good selection power to choose the true model. But Bayesian model assessment criteria such as
DIC and LPML do not perform well in the high-dimensional case, because the number of candidate
models is very large when the number of covariates increases a lot. Developing a high-dimensional
variable selection procedure is one of the important future works. The other future work is to fit other
earthquake magnitudes models such as the gamma model or the Weibull model. In addition, we need
to propose some Bayesian model assessment criterion to select the true data model for earthquake
magnitudes. For the nature hazards problem, we need to incorporate the temporal dependent structure
of earthquakes. Recently, the ETAS model [24] (combining the Gutenberg–Richter law and the Omori
law) has been widely studied. Modelling earthquake dynamics is an important approach for preventing
economic loss caused by an earthquake. Incorporating self-exciting effects in our generalized linear
model with spatial random effects is another important future work. Furthermore, we only consider
earthquake information as the covariates in our model. It will increase the predictive accuracy for
us to combine more geographical information such as fault line information or crustal movement in
the future.

Author Contributions: Data curation, G.H.; Formal analysis, H.-C.Y.; Investigation, H.-C.Y.; Methodology, G.H.;
Project administration, G.H.; Software, H.-C.Y.; Supervision, M.-H.C.; Visualization, H.-C.Y.; Writing—original
draft, G.H.; Writing—review & editing, M.-H.C.
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Appendix A. Full Conditionals Distributions for Pareto Data with Latent Multivariate
Log-Gamma Process Models

From the hierarchical model in Equation (7), the full conditional distribution for β satisfies:

f (β|·) ∝ f (β)∏ f (Z|·)

∝ exp

[
∑

i
(X(si)

′β + W(si))−∑
i
(log(Z(si)− log(Zm)) exp(X(si)

′β + W(si))

]
× exp

{
αβ1′pΣ−1/2

β β− κβ1′p exp(Σ−1/2
β β)

}
.

(A1)

Rearranging terms we have

f (β|·) ∝ exp
{

α′βHββ− κ′β exp(Hββ)
}

, (A2)

which implies that f (β|·) is equal to cMLG(Hβ, αβ, κβ), which is a shorthand for the conditional MLG
distribution used in [20].

Similarly, the full conditional distribution for W satisfies:

f (W |·) ∝ f (W)∏ f (Z|·)

∝ exp

[
∑

i
(X(si)

′β + W(si))−∑
i
(log(Z(si)− log(Zm)) exp(X(si)

′β + W(si))

]
× exp

{
αW1′nΣ−1/2

W W − κW1′n exp(Σ−1/2
W W)

}
.

(A3)

Rearranging terms we have

f (W |·) ∝ exp
{

α′W HWW − κ′W exp(HWW)
}

, (A4)

which implies that f (W |·) is equal to cMLG(HW , αW , κW). Thus we obtain the following
full-conditional distributions to be used within a Gibbs sampler:

β ∼ cMLG(Hβ, αβ, κβ)

W ∼ cMLG(HW , αW , κW)

σ2 ∝ MLG(0, Σ1/2
β , αβ1p, κβ1p)× IG(a1, b1)

σ2
w ∝ MLG(0, Σ1/2

W , αw1n, κw1n)× IG(a2, b2)

φ ∝ MLG(0n, Σ1/2
W , αw1n, κw1n)× IG(a3, b3),

(A5)

where “cMLG” is the conditional multivariate log gamma distribution from [20]. A motivating feature
of this conjugate structure is that it is relatively straightforward to simulate from a cMLG. For σ2, σ2

w
and φ, we consider using a Metropolis–Hasting algorithm or slice sampling procedure [25].

The parameters of the conditional multivariate log gamma distribution are organized into in
Table A1.
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Table A1. Parameters of the full conditional distribution.

Parameter Form

Hβ

[
X

Σ−1/2
β

]
αβ

[
1n×1

αβ1p×1

]

κ
(−1)
β

(log(Z(s))− log(Zm))′1neW ′

1
κβ

1′p


HW

[
In

Σ−1/2
W

]
αW

[
1n×1

αW1n×1

]
κ
(−1)
W

[
(log(Z(s))− log(Zm))′1n(eXβ)′

1
κW

1′n

]

Appendix B. Trace Plot in Real Data Analysis
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Figure A1. (upper left) Trace plot for β; (upper right) Trace plot for φ; (lower left) Trace plot for σ2;
(lower right) Trace plot for σ2

w.
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