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Abstract: The evolution of the near-surface phytoplankton bloom towards a Deep Chlorophyll
Maximum (DCM) in mid-latitudes and subpolar regions of the global ocean is a well-known biological
feature. However, our knowledge about the exact mechanism that determines the end of the bloom
and its irreversible evolution towards a DCM is still limited. In this work, combining satellite and
in-situ oceanographic data together with reanalysis data, we investigate why and when this transition
between the near-surface phytoplankton bloom and the development of a DCM occurs. For this
aim, we investigate the links between changes in air-sea heat exchanges, the near-surface signature
of phytoplankton bloom, and the water column vertical structure by calculating the mixed layer
depth (MLD) and depth of the DCM on hydrographic and chlorophyll profiles. We find that the
occurrence of the last convective mixing event (heat loss by the ocean surface) at the end of the spring
which is able to reach the base of the MLD and inject new nutrients into the mixed layer marks the
end of the near-surface bloom and its transition towards a DCM. Identified in this way, the spring
bloom duration and the start of the transition towards a DCM can be systematically and objectively
determined, providing sensitive indexes of climate and ecosystem variability.

Keywords: Deep Chlorophyll Maximum (DCM); spring bloom; air-sea fluxes; MLD; hydrography;
mid-latitudes; North-Atlantic; SATS

1. Introduction

In mid-latitude, subpolar, and polar regions, phytoplankton growth and biomass exhibit a marked
seasonal cycle. The “critical depth” theory proposes that after winter mixing restores the nutrient
content in the mixed layer, blooms commence when the ocean surface mixed-layer restratifies [1].
More accurately, the onset of the spring bloom can be identified when air-sea heat fluxes become
positive (heat gain by the ocean surface), allowing incipient stratification to be established at the ocean
surface along with phytoplankton growth [2,3], although this classical approach has been challenged
by Behrenfeld [4]. Quickly (days–weeks), phytoplankton depletes nutrients in the well-illuminated
mixed layer, becoming less abundant in the near-surface layer and accumulating at depth [5]. This
process leads to the formation of persistent layers of elevated chlorophyll a concentrations, coinciding
with the nutricline, which are nearly ubiquitous in stratified surface waters. These deep layers of
elevated Chl are known as the Deep Chlorophyll Maximum (DCM) and the typical water column
vertical structure of these regions have been characterized as the “Typical Tropical Structure” (TTS) by
Herbland & Voituriez [6]. However, the TTS pattern is not exclusive to the tropics, however rather is
observable in all waters that remain stable long enough for the development of a DCM. Accordingly,
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as proposed by Cullen [7], the term Typical Stable Water Structure (TSWS) seems more appropriate
than TTS.

Both the importance of biomass accumulation associated with near-surface phytoplankton blooms
and DCM have been largely recognized as ecological hot spots, determinant in the population dynamics
of higher trophic levels and in global biogeochemical cycles [8,9]. Changes in bloom phenology have
been reported as having potential catastrophic implications for higher trophic levels ([9] and references
therein). Accordingly, they have been extensively studied, particularly with regard to changes in
the onset of the spring bloom. However, the mechanisms that at some point make the bloom evolve
irremediably towards a DCM have remained barely studied. Commonly, as noticed from what was
put forth earlier, it is considered that quickly (days–weeks), phytoplankton depletes nutrients in
the well-illuminated mixed layer concentrating at depth. Thus, our knowledge about the timing
surrounding when the near surface bloom ends definitively and evolving irreversibly towards a DCM
is only approximate.

In this work, combining satellite and in-situ oceanographic data together with reanalysis data,
we investigate why and when the near-surface phytoplankton bloom evolves irremediably towards a
DCM. The results of this investigation may allow the systematic and objective determination of spring
bloom duration and the start of the transition towards a DCM, providing sensitive indexes of climate
and ecosystem variability.

2. Materials and Methods

2.1. Study Area and Data Sources

The study focuses on the determination of the causes and timing of the transition between the end
of the near-surface phytoplankton bloom and the development of a DCM that occurs in mid-latitudes
and subpolar regions of the global ocean. For this aim, we will make use of the data of the long-term
oceanographic time series at ocean observatory Santander Atlantic-Time-Series (SATS). These data
are particularly suitable for this study because: (1) SATS is located at mid-latitudes (Figure 1); and (2)
SATS data include the measurements of an oceanic-meteorological buoy (AGL buoy) equipped with
oceanographic and biogeochemical sensors and its associated oceanographic station. The AGL buoy
was deployed in 2007 by the Spanish Institute of Oceanography (IEO) at 2800 m depth in the Southern
Bay of Biscay (43.8◦ N, 3.8◦ W) and, since then, it provides hourly data of the main atmospheric,
oceanographic, and biogeochemical parameters as air pressure and temperature; relative humidity,
wind direction, and speed (at a 2 m height); sea surface temperature (SST) and salinity (SSS); and
dissolved oxygen and chlorophyll (at 3 m depth). Its mooring position was chosen to coincide with the
ship-based monthly hydrographic and biogeochemical sampling of the Santander standard section
running since 1991 by the IEO. The oceanographic station associated with the AGL buoy has been
sampled since 1994. In each monthly sampling, hydrographic and biogeochemical parameters, such as
temperature, salinity, chlorophyll, and oxygen, are measured by a CTD and water samples are taken for
salinity, oxygen, and chlorophyll determinations. Thus, SATS data provides high-frequency repeated
observations of interlinked meteorological, oceanographic, and biogeochemical variables that enable
obtaining a comprehensive description of ocean processes from the seafloor to the atmosphere at a site
that is representative of the mid-latitudes of the Eastern North Atlantic [10–14].
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Figure 1. Upper: Map of the North Atlantic Ocean showing the location of the mid-latitudes of the
Eastern North Atlantic (ml-ENA, red box in the map). Lower: Zoom to ml-ENA where Santander
Atlantic-Time-Series (SATS) oceanographic station is located (red dot in the map). The location of the
remaining stations of the Santander standard section are also shown (orange dots).

2.2. Changes in Air-Sea Exchanges, Near-Surface Chlorophyll, Depth of DCM, and Mixed-Layer Depth

As previously mentioned, the onset of the spring bloom can be accurately identified based on the
moment at which the net heat flux from the ocean to the atmosphere becomes positive (ocean heat gain)
and incipient stratification is established at the ocean surface [2,3]. The resulting water column stability
allows at that moment bursts in phytoplankton biomass and its bloom. Similarly, the presence of a
DCM is linked to waters that remain stable long enough for its development. Such stability requires the
absence of mixing deep enough to reach the base of the mixed layer depth (MLD) and to provoke the
erosion of the seasonal pycnocline. In view of that, we investigated the link between changes in air–sea
heat exchanges, the heat storage in the water column, the water column vertical structure (MLD), and
the transition between the near-surface phytoplankton bloom and the development of a DCM.

To assess changes in air–sea heat exchanges, we calculated the net heat flux from the ocean to
the atmosphere (Q0), which is given by the sum of four components: QE, the latent heat flux; QH, the
sensible heat flux; Qlw, the net longwave radiation flux; and Qsw, the net shortwave radiation flux
(solar radiation) (Figure 2). Qlw and Qsw (radiative heat fluxes) can be obtained from the NCEP/NCAR
reanalysis data set [15] as daily values with a spatial resolution of 1.9◦ × 1.9◦. QE and QH (turbulent heat
fluxes) can be computed from atmospheric and oceanic AGL buoy measurements using the so-called
bulk formulae (see [16] for further information). In this case, we used the Fairall algorithm [17], which
is one of the most popular algorithms based on the bulk formulae, to compute turbulent heat fluxes
from AGL buoy data.
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Figure 2. Air-sea heat fluxes registered by the oceanic-meteorological buoy (AGL) buoy since its
deployment in June 2007. (a) Short (solar, Qsw) and long-wave (Qlw) radiative heat flux components
(black and blue lines, respectively) obtained from NCEP/NCAR Reanalysis. (b) Latent (QE) and Sensible
(QH) turbulent heat flux components (black and blue lines, respectively) estimated from AGL buoy
data. Qlw, QH, and QE are expressed as heat loss by the ocean surface (heat loss implies negative
values and are represented as −Qlw, −QE, and −QH for clarity). (c) Net heat flux (Q0) as a result of
the sum of radiative and turbulent heat flux components. Red lines in (a–c) show the climatological
seasonal cycles of Qsw, QE, and Q0 through Fourier decomposition.

The suitability of the use of alternative reanalysis data from e.g., ECMWF (https://www.ecmwf.int/)
and OAFLUX project (http://oaflux.whoi.edu/) [18] have also been considered. Regarding the use
of ECMWF reanalysis data, previous analyses have shown us limited sensitivity of the upper ocean
response both e.g., in terms of SST or MLD variability to variation of atmospheric forcing reanalysis used
for its investigation (NCEP/NCAR versus ECMWF) [12,14]. Thus, we do not repeat these sensitivity
analyses here and refer the reader to these manuscripts [12,14]. On the other hand, OAFLUX project
provides global time series of daily ocean latent and sensible heat fluxes at 1◦ × 1◦ spatial resolution
combined with existing radiative heat flux products from ISCCP on OAFLUX grids. Radiative heat
fluxes time-series provided by OAFLUX project ends in December 2009. Thus, their use for comparison
with AGL buoy data starting in June 2007 is discarded, since they provide a short time-series for
comparison. OAFLUX turbulent heat fluxes continue to present and have been compared with those
provided by NCEP/NCAR reanalysis and estimated from AGL buoy data (Figure 3). As expected, it
is observed how NCEP/NCAR reanalysis overestimates heat fluxes for large heat loss events (heat
loss by the ocean surface is shown as positive values) [15]. However, in general, the cluster dispersion
from OAFLUX data with respect to AGL buoy estimations is larger than from NCEP/NCAR reanalysis.
Moreover, for the time period of the year of interest—between April and May—in this study, the mean
values of QE(QH) vary between 50.16 ± 40.87 (5.74 ± 11.49) W·m−2 estimated from AGL buoy data;
52.52 ± 46.56 (8.79 ± 14.39) W·m−2 obtained from NCEP/NCAR reanalysis; and 48.03 ± 31.41 (10.60 ±
14.23) W·m−2 from the OAFLUX project. Since large heat loss events overestimated by NCEP/NCAR
Reanalysis are not the focus of this work, NCEP/NCAR Reanalysis data set shows better agreement
with the AGL buoy heat flux estimations for the time-period of interest in this study. Thus, they are the
only reanalysis data used hereinafter in this paper.

https://www.ecmwf.int/
http://oaflux.whoi.edu/
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Figure 3. Comparison of latent (QE) and Sensible (QH) turbulent heat flux components estimated from
AGL buoy data and obtained from NCEP/NCAR (orange dots) and OAFLUX (blue dots) reanalysis
data sets.

As mentioned, the transition from a near-surface phytoplankton bloom and development of a
DCM requires the absence of mixing deep enough to reach the base of the mixed layer depth (MLD).
To reach the MLD, heat loss events must be sufficiently negative to remove the accumulated heat
above the MLD at that moment. Thus, to evaluate when these heat loss events take place, we calculate
the time-series of heat storage (Qstrg) in the water column from hydrographic profiles from SATS
oceanographic station as: Qstrg = ρ·Cp·h· δTa/δt, where ρ is the seawater density; Cp, the heat capacity
of seawater; h, the depth determining the vertical extension of the mixed layer (MLD); and δTa/δt, the

temporal evolution of the integrated temperature in the water column (Ta = 1
h

∫ 0
−h T(z)dz) (for further

details, see [19,20]).
To identify the near-surface signal of the phytoplankton bloom, weekly and daily satellite-derived

chlorophyll a concentration data provided by the GlobColour project (http://www.globcolour.info/)
were used in combination with in-situ hourly chlorophyll concentration measurements provided by
the AGL buoy. To evaluate the transition from the near-surface phytoplankton bloom towards a DCM
and its relationship with the water column vertical structure, we employed fluorescence (chlorophyll)
and density profiles from the SATS oceanographic station. For each chlorophyll profile, we estimate
the depth of its chlorophyll maximum as the depth where the corresponding 5 m low-pass filter profile
shows the maximum chlorophyll value as depicted in Figure 4. Chlorophyll is considered a proxy
of phytoplankton biomass and so the depth of the chlorophyll maximum is the depth featuring the
highest phytoplankton biomass. For each density profile, the MLD was obtained by applying the
Gonzalez-Pola et al. [21] algorithm. Alternative estimates are not included in this work as robust
performance of this algorithm and its comparison with other MLD determination methods have already
been discussed in Somavilla et al. [14].

http://www.globcolour.info/
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Figure 4. Fluorescence profiles obtained at SATS oceanographic station from January to December. 

All profiles taken from January 1998 (beginning of the use of CTD equipped with fluorescence sensor) 

Figure 4. Fluorescence profiles obtained at SATS oceanographic station from January to December. All
profiles taken from January 1998 (beginning of the use of CTD equipped with fluorescence sensor) to
December 2018 are included and plotted in the corresponding month (grey thin profiles). Randomly,
for each month, one profile is highlighted (black profile), also showing its corresponding 5 m low-pass
filter profile (thick grey) and the depth at which fluorescence shows its maximum value on this filtered
profile (green line). For these randomly selected fluorescence profiles, their corresponding density
profiles are also shown (red line) as well as the estimated MLD (purple horizontal line). The x-axis only
shows the fluorescence scale (density profiles were re-scaled to be shown on this scale since the interest
is the upper ocean vertical structure, which is observable just from density profiles topology). Note
that the x-axis is not the same for the different subplots. The pink shadow area in each subplot shows
the depth range integrated by satellite measurements (1/5 of the euphotic zone calculated as the depth
at which 1% of the PAR at the surface penetrates [22]).

3. Results and Discussion

3.1. Near-Surface Phytoplankton Growth Signature and Changes in Air-Sea Exchanges

The near-surface chlorophyll concentration and Q0 time-series (Figure 5) clearly show the reported
link between the onset of the spring and Q0 seasonal cycle. Bursts in phytoplankton biomass illustrated
by the increase of near-surface chlorophyll concentration (Figure 5a) start every year when Q0 passes
initially from negative to positive values (Figure 5b; beginning of the grey shadow areas). At that
moment, Q0 passes from being a heat loss to a heat gain by the ocean surface (Q0 changes from negative
to positive values and the accumulated net heat flux reaches its minimum and starts to increase),
indicating the beginning of spring warming and early stratification, thereby allowing phytoplankton
growth [2,3]. Indeed, it is the marked Q0 seasonal cycle oscillating within zero and so, between net
heat gains and losses by the ocean surface, that tends to stabilize or destabilize the water column
which drives not only the onset of the spring bloom, however, in general, the marked seasonal
cycle in near-surface chlorophyll concentration. Thus, in order to facilitate the comprehension of the
atmospheric control of the deep chlorophyll maximum development, it is convenient to remark on the
drivers of Q0 and mixing seasonal cycles.
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Figure 5. (a) Surface chlorophyll concentration derived from AGL buoy hourly fluorescence
measurements at 3 m depth (green line) and from weekly satellite-derived Chlorophyll a concentration
from GlobColour project (blue cross line). (b) Net heat flux (Q0) (black line) from the ocean to the
atmosphere (negative values imply a heat loss by the ocean). Gaps in Q0 time-series estimated from
AGL buoy data are filled with that obtained from NCEP/NCAR reanalysis (grey line). Blue dots show
the accumulated heat storage above the mixed layer depth (MLD) (Qstrg) estimated from hydrographic
profiles from SATS oceanographic station. It is shown as −Qstrg to facilitate the identification of net heat
loss events sufficiently negative to remove Qstrg above the MLD (Q0 < −Qstrg). The red curve shows
the accumulated net heat flux. The grey shadow areas mark the time period each year between: (1) the
initial moment in which the net heat flux becomes “effectively” positive (Q0 (black line) passes from
negative to positive values and the accumulated Q0 starts to increase) and (2) the definitive cessation of
convective mixing when the last net heat loss event sufficiently negative to reach the base of the MLD
occurs (sufficiently negative to remove Qstrg above the MLD). In 2018, a first small peak in near-surface
Chl coinciding with a short-live Q0 > 0 event is highlighted in light grey. The largest peak occurs when
Q0 becomes “effectively” positive.

Typically, at mid and high latitudes, solar radiation (net short-wave radiation flux, Qsw) is the
only component of the net heat flux between the ocean and atmosphere that represents a heat gain
by the ocean (Figure 2a). The rest of the components extract heat from the ocean most of the time,
experiencing small variations throughout the year (Figure 2a,b). On the other hand, Qsw features a
high amplitude seasonal cycle (195 W·m−2) that modulates the marked Q0 annual cycle oscillating
within zero. QE also shows a marked seasonal cycle although smaller in amplitude (52 W·m−2). Hence,
during winter months, solar radiation is at its minimum and Qsw and Qlw, having opposite signs,
tend to compensate one another (Figure 2a). Thus, their contribution to Q0 is very small, however
owing to the contribution of turbulent heat fluxes, QE and QH, Q0 is negative and surface waters lose
heat. Destabilizing buoyancy forcing from cooling (Q0 < 0) making the ocean surface colder induces
convective mixing of surface water with deeper water and controls the autumn–winter mixed layer
deepening [12,23,24].

During spring and summer, Qsw can be much higher than the sum of the remaining heat-loss
terms (Figure 2). When Q0 is positive, surface waters gain heat. Such heating—causing the ocean
surface to become warmer—represents a stabilizing buoyancy, forcing stratification of the surface and
isolating it from deeper waters [25]. However, between the end of the winter and late spring, Q0 is not
yet permanently positive and alternates with negative values (destabilizing) that can cause mixing
to reach relatively deep values. After this period of alternation of convective mixing events (Q0 < 0),
stabilizing buoyancy forcing (Q0 > 0) hinders upper ocean mixing and during the summer months, the
vertical extension of the mixed layer is controlled by wind stress-induced mixing [12,14,23,24]. Such
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pure mechanical mixing is not as effective as convection to deepen the surface layer and MLD remains
more or less stable during late spring and summer while Q0 > 0 (Figure 5a,b). It is not until Q0 is
negative again (dark blue dashed line in Figure 5a) and so convective mixing is possible such that the
mixed layer begins to thicken again in autumn and winter (Figure 5a,b).

With all that in mind, considering that the presence of a DCM is linked to waters that remain
stable long enough for its development, the transition from the near-surface phytoplankton bloom
towards a DCM could be established at the moment the last convective mixing episode that is able
to reach the base of the MLD takes place in spring. To reach the MLD, Q0 must be strong enough to
remove the accumulated heat above the MLD at that moment shown by Qstrg in Figure 5b. Driven
by negative Q0 values in late spring, these last convective mixing events are highlighted in Figure 5b
by the end of the grey shadow areas. They coincide every year with a last peak of the near-surface
chlorophyll concentration and a drastic reduction afterwards. We interpret this as indicative of the end
of the near-surface phytoplankton bloom and its transition towards a DCM.

Figure 5 shows data only from November 2015. A new chlorophyll sensor equipped with a
bio-wiper that only exposes the instrument’s optical surface to the water during the time of the
measurement (Wet Labs ECO Fluorometer FLS) was installed in the AGL buoy at that moment,
showing very good performance. Previously, the sensors installed were largely affected by biofouling
and the resulting chlorophyll time-series was useless. In order to provide higher confidence to the
findings at the AGL buoy position, Figure 6 shows chlorophyll and Q0 time-series at other locations in
the mid-latitudes of the Eastern North Atlantic. It is also observed how at the different locations and
for the different years the onset of the spring bloom coincides with the moment at which Q0 passes
from negative to positive values. In case later convective mixing events (Q0 < 0) occur after the onset of
the spring bloom, they resulted in additional peaks of the near near-surface chlorophyll concentration
(or prolong the bloom duration). In the extreme case that there is no convective mixing event after the
onset of the spring bloom (e.g., year 2016 at 46.67◦ N, 5.62◦ W; 44.76◦ N, 9.38◦ W; and 42.86◦ N, 11.25◦

W (Figure 6b–d)), the average bloom duration is ~40 days. The higher the number of alternation of
stabilizing/destabilizing buoyancy events (positive/negative Q0) after the onset of the spring bloom, the
longer the duration of the bloom (e.g., the bloom duration in 2015 at the different locations shown in
Figure 6 is approximately 85 days). For the years represented in Figure 5, the dates when the transition
towards the DCM occurs vary between 29th April and 17th May. Considering them together with the
dates establishing the onset of the bloom (varying between 15th February and 31st March), they imply
that the duration of the bloom varies between 46 and 81 days. Thus, in general, the maximum duration
of the bloom can even double the minimum. It brings to light how rough the common approximation
is to consider that quickly phytoplankton depletes the nutrients in the well-illuminated mixed layer,
becoming less abundant in the near-surface layer and concentrating at depth. On one hand, this
implies that any estimate derived from a time integration of the bloom intensity could be affected by
large biases. On the other hand, it questions the proposed mechanism primarily controlling the bloom
duration. Just a “quick” nutrient consumption by the typical phytoplankton assemblage present at the
beginning of the spring in the area cannot explain the almost doubling of bloom duration. In other
words, the doubling of the bloom duration can only be explained by consecutive convective mixing
episodes that are able to entrain additional nutrients into the mixed layer. It is the occurrence of the last
convective mixing event driven by negative Q0 that determines the last nutrient entrainment into the
mixed layer, thereby sustaining an increase of the near-surface chlorophyll concentration (Figure 5a).
From then onwards, the near-surface chlorophyll decreases irreversibly, not increasing again until the
following winter, indicating the end of the near-surface bloom and the transition towards a DCM.
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Figure 6. Surface chlorophyll concentration from daily (green line) and weekly (blue cross line)
satellite-derived Chlorophyll a concentration from GlobColour project and net heat flux (Q0) (black
line) from the ocean to the atmosphere (negative values imply a heat loss by the ocean) at different
locations in the mid-latitudes of the Eastern North Atlantic. (a) at the grid centered at 44.76◦ N, 15◦

W from NCEP/NCAR reanalysis data. Chlorophyll time-series are obtained as the average daily and
weekly time-series within this grid 44.76◦N ± 1.9 /2◦ N and 15◦ W ± 1.9/2◦ E (NCEP/NCAR spatial
resolution is 1.9◦ × 1.9◦). (b–d) idem at the grids at 46.67◦ N, 5.62◦ W; 44.76◦ N, 9.38◦ W; and 42.86◦ N,
11.25◦ W. Chlorophyll concentration scale is shown in the left y-axis in mgr·m−3 and Q0 in the right
y-axis in W·m−2.

3.2. DCM Development: Change in Chlorophyll and Hydrographic Vertical Structure

Hydrological and chlorophyll vertical structure data confirm the previous conclusions surrounding
the transition from the near-surface phytoplankton bloom towards a DCM. Climatologically, the onset
of the spring bloom coincides with the moment at which Q0 climatological seasonal cycle passes from
negative to positive values (13th March; vertical red line in Figure 7a). In the water column, after
the MLD reaches its maximum depth, a new, very shallow MLD begins to develop and the depth
of chlorophyll (fluorescence) maximum during this time of the year is at its minimum (Figure 7b),
exhibiting the highest annual values (the chlorophyll concentration at the depth of its maximum is
the highest; Figure 4c,d). As typical at that time of the year, Q0 is not permanently positive and
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oscillates between positive/negative values (stabilizing/destabilizing) and MLD alternates between
very shallow and deep values (the stratification is still incipient and convective mixing can easily
progress to the depths of the previous winter MLD) (Figure 7b; see additionally Figure 3 in [14]). Each
deep mixing event entrains new nutrients into the mixed layer. Associated with stabilizing buoyancy
moments (Q0 > 0), in the new, very shallow MLD loaded with nutrients, phytoplankton burst occurs
and the maximum chlorophyll concentration (proxy of phytoplankton biomass) is located above the
MLD (Figure 4c,d and Figure 7b). Thus, phytoplankton growth responds to stabilizing/destabilizing
buoyancy events (positive/negative Q0), resulting in near-surface chlorophyll peaks observable from
a satellite (Figures 5a and 6) because they occur very close to the surface (Chl maximum is present
from January to April within the layer that satellite ocean color observations integrates; Figure 4a–d).
Overall, one can conclude that the initial cessation of convective mixing marks the onset of the spring
bloom and its definitive shutdown determines its end. In between these two moments, when the
alternation of convective mixing events (Q0 < 0) entraining new nutrients in the mixed layer and
stabilizing buoyancy moments (Q0 > 0) allowing stratification to be established at the ocean surface
enables phytoplankton growth in the near-surface layer, the spring bloom occurs.
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Figure 7. (a) Net heat flux (Q0) from the ocean to the atmosphere. All mean daily values registered
since 2007 by the AGL buoy are shown (black dots). The climatological seasonal cycle obtained from
these values is shown by the red line. The blue line shows the Q0 −2STD climatological cycle. (b)
Depths of the Deep Chlorophyll Maximum (DCM) (green dots) and MLD (black dots) estimated on
chlorophyll and density profiles registered at SATS oceanographic station. The vertical red line in (a)
and (b) marks the date in which Q0 climatological seasonal cycle becomes positive. Idem for the light
blue line and the Q0 −2STD climatological seasonal cycle. The dark blue line in (a) marks the date at
which Q0 climatological seasonal becomes negative in late summer.

While convective mixing events driven by negative Q0 are able to reach the base of the MLD
and inject new nutrients into the mixed layer, phytoplankton grows in this layer and the depth of
the chlorophyll maximum is located above the MLD (Figures 7b and 4b,c). Once no more convective
mixing events take place until the following autumn–winter, no more new nutrients are entrained into
the mixed layer. Then, phytoplankton growth occurs where there are still available nutrients: at the
nutricline in the transition between the seasonal and permanent pycnocline (Figure 4f–i). Consequently,
the depth where phytoplankton grows, and so the chlorophyll maximum deepens and passes from
being located above the MLD—in an actively mixed layer—to being located below it in a comparatively
stable parcel of the water column founding it permanently associated to the Typical Stable Water
Structure (TSWS) [7] (Figures 7b and 4f–i). It is from that moment that the near surface phytoplankton
bloom evolves irremediably towards a DCM.
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Climatologically, the last negative Q0 event of the year able to reach the base of the MLD marks
this transition. Based on the Q0 −2STD climatological seasonal cycle (light blue line in Figure 5a), the
definitive cessation of convective mixing late in spring is estimated to occur on the 11th of May (vertical
light blue line in Figure 5a). It could be argued that it is a somehow arbitrary definition. However,
consistently, this coincides with the moment at which the climatological seasonal cycle of Qstrg above
the MLD in the water column becomes positive (4th of May; results not shown). As the last convective
mixing episode must be strong enough to remove the accumulated heat above the MLD from the
beginning of the spring, Qstrg above the MLD should be zero at that moment, increasing and becoming
positive from then onwards.

3.3. Applicability of Our Results to other Ocean Regions and Further Remarks

Preliminary analyses using Bermuda Atlantic Time-series Study (BATS) oceanographic time-series
data (see Figures A1 and A2 in the Appendix A) seem to indicate that our conclusion is representative
of other oceanic regions. In general, our approach is expected to be applicable to all those regions of
the global ocean where air–sea heat exchange controls the seasonality of mixing and water column
vertical structure (MLD and stratification). This is the case for all those regions of the open ocean
of which their variation of the hydrographic (density) structure depends strongly on temperature,
since the temporal evolution of the upper ocean temperature is dominated by its seasonal cycle, which
is mostly driven by air–sea heat exchange (80%) [20]. In particular, it will be applicable to all those
regions where there is a marked seasonal cycle in the net heat fluxes from the ocean to the atmosphere
that determines a marked seasonal cycle of mixing in the upper layers where phytoplankton grows.
These regions coincide with those denominated as temperate regions in biological studies. Ultimately,
in these temperate regions, the seasonal cycle of the net heat flux from the ocean to the atmosphere
and of the upper layer temperature are clearly related to varying solar heating (Qsw). Alternatively, in
tropical areas, in the absence of similar variations in solar inputs, the upper layer temperature and
consequently the heat exchange with the atmosphere can vary seasonally due to subsurface cooling
via mixing in tropical instability waves [26,27]. In this case, subsequent variations in the chlorophyll
content of the water column and its vertical distribution (e.g., near-surface chlorophyll vs. DCM) will
be determined by these mixing processes induced by tropical instability waves.

Apart from that, limitations to the applicability of our approach are expected especially if the
study area moves from the ocean open to coastal zones. In ocean regions where upper ocean salinity
dominates the density structure, and therefore the water column vertical structure, it is expected that
air–sea heat exchange does not determine the onset of the spring bloom or its end and transition
towards a DCM. In contrast to temperature, advection accounts for more than 70% of the budget terms
for upper ocean salinity balance [20]. Thus, in regions where fresh water fluxes are significant, as
in areas close to the coast, and affected by river discharges or melting glaciers, other processes may
control the onset and duration of phytoplankton bloom. In the Labrador Sea, for example, offshore
advection of Greenland meltwater flux, eddy activity, and their effects in haline stratification seems
to be responsible for the early bloom in the northern Labrador Sea [28,29]. On the other hand, in the
central basin of the Labrador Sea, the initiation of the surface spring bloom coincides closely with the
timing of the first cooling-to-heating shift in air–sea heat fluxes [28,29] as in the study site used in this
manuscript. SATS location, although apparently close to the coast, is not affected by the arrival of low
salinity waters derived from river runoff until summer months when both the phytoplankton bloom
and its transition towards a DCM have already occurred [20]. On this distinction between open ocean
and coastal regimes, it must also be highlighted that, focused in the open ocean, our explanation of
the end of the spring bloom and its transition towards a DCM is considered in a one-dimensional
framework as in many other works [7]. At the transition between the continental shelf and the open
ocean, other studies have pointed to allochthonous origins of DCMs through subduction of water
masses along isopycnal surfaces ([30] and references therein).
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Finally, we would like to emphasize that our findings regarding the drivers of the end of the
spring phytoplankton bloom and its irreversible evolution towards a DCM do not contradict previous
findings about the mechanisms that allow the development and maintenance of DCMs in relatively low
mixed environments (e.g., subsurface production maxima caused by colimitation of photosynthesis by
light and nutrients; photoacclimation processes; vertical migration, etc.) [7,31,32]. The occurrence of
a DCM requires waters that remain stable long enough for its development (where phytoplankton
grows), however different mechanisms can operate in the resulting Typical Stable Water Structure
(TSWS) for its appearance and maintenance (how phytoplankton grows). Thus, our results just explain
the relation between the definitive cessation of convective mixing and the end of the near-surface
phytoplankton bloom -where phytoplankton grows in an actively mixed layer- and its transition
towards a DCM -where phytoplankton grows in a comparatively stable parcel of the water column-.

4. Conclusions

The seasonal cycle of the net heat fluxes from the ocean to the atmosphere drives the seasonal
cycle of mixing in the upper layers of the oceans where phytoplankton grows. It explains the finding
that the onset of the spring bloom can be identified with the initial cessation of convective mixing when
air–sea heat fluxes become positive (heat gain by the ocean surface), allowing incipient stratification to
be established at the ocean surface along with phytoplankton growth [2,3]. Similarly, the definitive
cessation of convective mixing (occurrence of the last heat loss event able to reach the base of the MLD)
at the end of the spring that determines the last nutrient entrainment into the mixed layer marks the
end of the near-surface bloom and its transition towards a DCM. From then onwards, phytoplankton
grows below the MLD in a stable parcel of the water column evolving irreversibly towards a DCM.

Identified in this way, the spring bloom duration and the start of the transition towards a DCM
can be systematically and objectively determined. At the study area, climatologically, this transition
occurs on the 11th of May. Taking into account that climatologically the onset of the spring bloom
occurs on the 13th of March, on average the spring bloom lasts 59 days. However, these dates can
significantly vary from year to year (~± 20 days), making the maximum duration of the bloom able
to double the minimum. Due to the importance of biomass accumulation associated with both the
near-surface phytoplankton blooms and DCM for population dynamics of higher trophic levels and
global biogeochemical cycles, precise knowledge about the timing when the near-surface bloom ends
definitively and evolves irreversibly towards a DCM will provide sensitive indexes of climate and
ecosystem variability.

Further investigation is needed to provide support that the definitive cessation of convective
mixing and the end of the near-surface phytoplankton bloom and the transition towards a DCM is the
likely mechanism operating in other oceanic regions, however preliminary analyses seem to indicate
that our conclusion may be representative of mid-latitudes and subpolar regions of the global ocean.
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Figure A1. (a) Surface chlorophyll concentration from weekly (blue cross line) satellite-derived
Chlorophyll a concentration from GlobColour project and (b) net heat flux (Q0) (black line) from the
ocean to the atmosphere (negative values imply a heat loss by the ocean) at the location of Bermuda
Atlantic Time-series Study (BATS, http://bats.bios.edu/) oceanographic time-series (32.2◦ N, 64.5◦ W)
in the North Atlantic subtropical gyre. Chlorophyll time-series are obtained as the average weekly
time-series within the closest grid to BATS location ± 1.9/2◦ N and ± 1.9/2◦ E (NCEP/NCAR spatial
resolution is 1.9◦ × 1.9◦). Blue dots in (b) show the accumulated heat storage above the MLD (Qstrg)
estimated from hydrographic profiles from BATS oceanographic station. It is shown as −Qstrg to
facilitate the identification of net heat loss events sufficiently negative to remove Qstrg above the MLD
(Q0 < −Qstrg). Vertical grey lines show the definitive cessation of convective mixing when the last
net heat loss event sufficiently negative to reach the base of the MLD occurs (sufficiently negative to
remove Qstrg above the MLD) in the different years. In 2005, it is shown by a red vertical line because
the definitive cessation of convective mixing does not coincide with a drastic reduction of surface
chlorophyll concentration. For the rest of the years, the same relation observed at mid-latitudes of the
Eastern North Atlantic is found here. The dates of last convective mixing event vary between the 17th
of April and the 8th of May.
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Depths of the DCM (green dots) and MLD (black dots) estimated on chlorophyll and density profiles 

registered at BATS oceanographic station. The vertical red line in (a) and (b) marks the date in which 

Q0 climatological seasonal cycle becomes positive (3rd of April). Idem for the light blue line and the 

Q0 -2STD climatological seasonal cycle (13th of May). In this case, this climatological date seems 

somehow deviated towards the highest possible values of this date (note than in Figure A1, the dates 

of last convective mixing event vary between the 17th of April and the 8th of May, however only data 

from 1999 to 2015 are shown (beginning of satellite-derived chlorophyll time-series)). The moment at 

which the climatological seasonal cycle of Qstrg above the MLD in the water column becomes positive 

is the 29th of April. The dark blue line in (a) marks the date at which Q0 climatological seasonal 

becomes negative in late summer. 
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registered at BATS oceanographic station. The vertical red line in (a) and (b) marks the date in which
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-2STD climatological seasonal cycle (13th of May). In this case, this climatological date seems somehow
deviated towards the highest possible values of this date (note than in Figure A1, the dates of last
convective mixing event vary between the 17th of April and the 8th of May, however only data from
1999 to 2015 are shown (beginning of satellite-derived chlorophyll time-series)). The moment at which
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