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Abstract: The U.S. Geological Survey (USGS) and the National Oceanic Atmospheric Administration
(NOAA) have collected approximately 5400 km2 of geophysical and hydrographic data on the Atlantic
continental shelf between Delaware and Virginia over the past decade and a half. Although originally
acquired for different objectives, the comprehensive coverage and variety of data (bathymetry,
backscatter, imagery and physical samples) presents an opportunity to merge collections and create
high-resolution, broad-scale geologic maps of the seafloor. This compilation of data repurposes
hydrographic data, expands the area of geologic investigation, highlights the versatility of mapping
data, and creates new geologic products that would not have been independently possible. The data
are classified using a variety of machine learning algorithms, including unsupervised and supervised
methods. Four unique classes were targeted for classification, and source data include bathymetry,
backscatter, slope, curvature, and shaded-relief. A random forest classifier used on all five source
data layers was found to be the most accurate method for these data. Geomorphologic and sediment
texture maps are derived from the classified acoustic data using over 200 ground truth samples.
The geologic data products can be used to identify sediment sources, inform resource management,
link seafloor environments to sediment texture, improve our understanding of the seafloor structure
and sediment pathways, and demonstrate how ocean mapping resources can be useful beyond their
original intent to maximize the footprint and scientific impact of a study.

Keywords: hydrographic data; geophysical data; machine learning; geologic maps; seafloor geology;
MBES data; backscatter

1. Introduction

The U.S. Geological Survey (USGS) began as a collaborative project with the University of
Delaware, the National Park Service, the Mid-Atlantic Coastal Resilience Institute, and the National
Oceanographic and Atmospheric Administration (NOAA) in 2014 to define the geologic framework
of the Delmarva Peninsula coastal system. This mapping effort builds on recent and ongoing
hydrographic, geologic, and ecological studies in the area and represents an opportunity to construct
a geospatial framework around existing datasets, and acquire new data to fill knowledge gaps.
Characterizations and classifications are a key component of all geologic seafloor studies, and machine
learning is a powerful tool for creating classifications through the assimilation and interpretation of
large hydrographic and geophysical datasets. Geologic studies of the seafloor support coastal and
ocean science and management by providing valuable baseline information to monitor seafloor change,
identify benthic habitats and sediment resources, understand sediment transport pathways, and bolster
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risk assessments and geohazard investigations, such as vulnerability to storms, sea-level rise, shoreline
erosion, earthquakes, and tsunamis [1,2].

NOAA carried out 31 hydrographic surveys between 2006 and 2013 at 40-m line spacing
using multibeam echosounders and sidescan sonars, over more than 5000 square kilometers of the
mid-Atlantic inner-continental shelf adjacent to the Delmarva Peninsula, in water depths of 2.5 to
37.5 m, for the purposes of updating nautical charts (Figures 1 and 2; Table 1) [3–33]. In 2014 and
2015, the U.S. Geological Survey collected swath bathymetry, sidescan sonar, chirp and multi-channel
boomer seismic-reflection profiles, bottom photographs, and sediment samples at 200-m line spacing
over some of the same area, for the primary purpose of acquiring seismic data [34,35]. Coincident
swath bathymetric and backscatter data provided the opportunity for change-detection comparisons
with the hydrographic surveys [36,37], while bottom photographs and samples, collected with a GoPro
modified, SEABed Observation and Sampling System (SEABOSS), provided validation [38]. These
two regional mapping efforts by the USGS and NOAA provided a wealth of seafloor data and an
opportunity to combine datasets and use the hydrographic data beyond its original intent while at the
same time increasing the resolution and extent of the USGS framework study. This data collaboration
optimizes resources, expands coverage, and is an example of the “map once, use many times” mantra
that exemplifies interagency and interdisciplinary cooperation.

Machine learning has been applied to bathymetric and backscatter datasets to classify the seafloor
and benthic communities [39–45] for over two decades. Previous studies have tested the ability
and performance of different and increasingly sophisticated machine learning algorithms on these
types of data [41,42,44,46]. Supervised, object-based techniques (i.e., random forest) typically produce
classifications with better accuracy than unsupervised (e.g., iso cluster) or simpler supervised methods
(i.e., maximum likelihood classification (MLC)) [41]. Here we tested the ability of simple and more
complex classification methods to discriminate classes of the seafloor using bathymetric and backscatter
datasets and derivatives from 33 surveys on the continental shelf offshore of the Delmarva Peninsula.
Since the hydrographic data were not acquired with geologic products as an objective and, as such,
contained numerous artifacts associated with acquisition that typically pose a challenge to machine
learning, the first goal of this study was to determine if the repurposed hydrographic data could be
used to conduct an automated seafloor classification, given the artifacts and acquisition differences
among surveys. With a modest goal established, unsupervised and supervised methods were tested
for feasibility on a subset of the data, then applied to the entire 33-survey dataset following a successful
feasibility test. This study utilizes repurposed hydrographic data, applies machine learning algorithms
for efficient and objective classification, and produces geologic seafloor data products for a large area
of the mid-Atlantic shelf.
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Figure 1. Map showing location of the Delmarva Peninsula and a hillslope shaded relief map [3–36] 
of the seafloor area to be interpreted in this study. Basemap from Esri, DeLorme, The General 
Bathymetric Chart of the Oceans (GEBCO), National Oceanographic and Atmospheric 
Administration (NOAA), National Geographic, HERE technologies, and GeoNames. 

Figure 1. Map showing location of the Delmarva Peninsula and a hillslope shaded relief map [3–36] of
the seafloor area to be interpreted in this study. Basemap from Esri, DeLorme, The General Bathymetric
Chart of the Oceans (GEBCO), National Oceanographic and Atmospheric Administration (NOAA),
National Geographic, HERE technologies, and GeoNames.
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Figure 2. Map showing the location of NOAA surveys collected in 2006–2013 and U.S. Geological 
Survey (USGS) surveys collected in 2014–2015 along with sample and bottom photo locations. 
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Table 1. National Oceanic and Atmospheric Administration and National Ocean Service Hydrographic
surveys and USGS geophysical surveys used in this study [3–35].

Survey Number Year Collected Multibeam
System

Sidescan Sonar
System Survey Area (km2)

H11554 2006 Reson 8101 Klein 3000 155
H11555 2006 Reson 8101 Klein 3000 240
H11647 2007 Reson 8101 Klein 3000 121
H11648 2007 Reson 8101 Klein 3000 223
H11649 2007 Reson 8101 Klein 3000 200
H11650 2007 Reson 8101 Klein 3000 180
H11872 2008 Reson 8101 Klein 3000 263
H11873 2008 Reson 8101 Klein 3000 290
H11874 2008 Reson 8101 Klein 3000 248
H11992 2008 Reson 8101 Klein 3000 142
H12001 2009 Reson 7125 Klein 3000 77
H12002 2010 Reson 7125 Klein 3000 203
H12003 2010 Reson 7125 Klein 3000 220
H12091 2010 Reson 7125 Klein 3000 164
H12092 2010 Reson 7125 Klein 3000 225
H12093 2010 Reson 7125 Klein 3000 182
H12094 2010 Reson 7125 Klein 3000 196
H12160 2011 Reson 7125 Klein 3000 127
H12161 2011 Reson 7125 Klein 3000 119
H12336 2011 Reson 7125 Klein 3000 103
H12337 2011 Reson 7125 Klein 3000 118
H12338 2011 Reson 7125 Klein 3000 163
H12339 2011 Reson 7125 Klein 3000 154
H12394 2012 Reson 7125 Klein 3000 115
H12395 2012 Reson 7125 Klein 3000 121
H12396 2012 Reson 7125 Klein 3000 116
H12397 2012 Reson 7125 Klein 3000 60
H12559 2013 Reson 7125 Klein 3000 126
H12560 2013 Reson 7125 Klein 3000 123
H12561 2013 Reson 7125 Klein 3000 144
H12668 2013 Reson 7125 Klein 3000 152

2014-002-FA 2014 SwathPlus Klein 3000 535
2015-002-FA 2015 SwathPlus Edgetech 4200 808

2. Geologic Setting

The Delmarva Peninsula is situated along the mid-Atlantic coast between Delaware and the
Chesapeake Bay (Figure 1). The Peninsula is a megaspit that formed in the Mio-Pliocene from material
delivered by rivers and braided streams [47–49]. The continental shelf offshore of the Delmarva
Peninsula is just over 100 km wide. Shelf slopes, tidal range, wave height, littoral transport, barrier
island morphology, and historical erosion rates differ between the northern half of the Delmarva coast,
from Cape Henlopen to the southern tip of Assateague Island (mostly stable over the long-term, except
near Ocean City Inlet), and the southern half, from Chincoteague Bight to Fisherman’s Island (mostly
erosional) [49,50]. These differences along the coast create two distinct coastal compartments, such
that the northern half of the Delmarva Peninsula is considered wave dominated, while the southern
section of the Delmarva Peninsula is considered a mixed energy coast [51,52].

The surficial sediments of the inner-continental shelf from Cape Henlopen to the mouth of Chesapeake
Bay have been described as arkosic to subarkosic sands [53–56]. Sand ridges interspersed by zones of
flat seafloor characterize much of the northern half of the Delmarva inner-continental shelf [37,57,58]
(Figure 1). The sand ridges are mobile and locally bury a transgressive surface [37,53,59–62], which results
in local differences in grain size [53]. Fewer sand ridges are found on the inner shelf off Chincoteague
Bight and the Virginia barrier islands (Figure 1). Here the less-undulating seafloor is composed of a
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discontinuous sheet of medium to fine sand and gravelly sand, with a muddy sand area located within
Chincoteague Bight [38,63,64].

3. Methods

3.1. Data Sources

Thirty-three hydrographic and geophysical datasets were collected between 2006 and 2015 on
the inner-continental shelf offshore of the Delmarva Peninsula (Table 1; Figure 2). These data can be
broken into two groups. The first group of data consists of NOAA hydrographic surveys collected
by Leidos (formerly Science Applications International Corporation (SAIC)) between 2006 and 2013
with 40-m line spacing, using a RESON 8101 (240 kHz) or a RESON 7125 (200 or 400 kHz) multibeam
echosounder (MBES) and a Klein 3000K sidescan sonar system, for the purposes of updating nautical
charts [3–33]. These data were acquired to IHO S-44 5th edition Order 1a specifications, and as such
are accurate within 0.5 m vertically and 2 m horizontally. Small gaps, typically less than five% of
the swath width in water depths less than 12 m in the NOAA bathymetric data, were filled using an
inverse distance weighed (IDW) interpolant, then the data were resampled to 25 m per pixel (mpp).
Backscatter intensity derived from the GSF (generic sensor format) MBES data was processed with the
Fledermaus Geocoder Toolbox. Backscatter intensity derived from sidescan sonar data was processed
with Chesapeake Technology’s SonarWiz. All backscatter imagery (MBES and sidescan sonar) was
filtered to reduce speckling and noise and resampled to 25 mpp. The MBES data contained only
beam-average backscatter intensity. Beam-average data can produce high-quality backscatter imagery,
however, the full-time series has a more dynamic range in a final backscatter mosaic when compared
with beam-average data. For this reason and reasons related to acquisition artifacts, the Klein sidescan
sonar data were usually preferred in this study over the beam-averaged MBES backscatter data,
especially in areas where the Reson 8101 was used.

The second group of data consists of two USGS geophysical surveys conducted in 2014 and
2015 [34,35]. SwathPlus interferometric (234 kHz) bathymetric data were processed with BathySwath
and Caris. Bathymetric data were interpolated (with IDW) to fill gaps, typically less than 30% of the
swath width, then resampled to 25 mpp. The higher resolution NOAA MBES data were given priority
over the more widely spaced interferometric bathymetric data when creating the merged bathymetry
grid, which has an assumed accuracy of 1 m vertically and 4 m horizontally. Sidescan sonar data
were acquired in 2014 with a Klein 3000 and in 2015 with an Edgetech 4200. Sidescan sonar data were
processed using SonarWiz. Filtered backscatter mosaics were resampled to 25 mpp.

A suite of 227 sediment samples were collected during the USGS surveys and were analyzed for
grain-size statistics and carbonate content by the USGS Woods Hole sediment analysis lab following
methods outlined by McMullen et al. [65]. This study uses the Barnhardt classification [66] (Figure 3)
to characterize sediment texture, which is based on four end-member sediment units [67]: rock (R;
grain size greater than 64 mm (mm) or less than −6 phi), gravel (G; grain size 2 to 64 mm or −1 to
−6 phi), sand (S; grain size 0.062 to 2 mm or 4 to −1 phi), and mud (M; grain size less than 0.062 mm or
greater than 4 phi). The classification is further divided into 12 composite units, which are two-part
combinations of the four end-member units. This classification is defined such that the primary texture,
representing more than 50% of an area’s texture, is given an uppercase letter, and the secondary texture,
representing less than 50% of an area’s texture, is given a lowercase letter. If one of the basic sediment
units represents more than 90% of the texture, only its uppercase letter is used (Figure 3).



Geosciences 2019, 9, 231 7 of 24

Geosciences 2019, 8, x FOR PEER REVIEW  7 of 24 

 

 
Figure 3. Barnhardt and others (1998) [66] bottom-type classification based on four end-member 
sediment units: rock (R), gravel (G), sand (S), and mud (M). Twelve additional two-part units 
represent combinations of the four basic units. In the two-part (composite) units, the primary texture 
(greater than 50% of the area) is given an uppercase letter and the secondary texture (less than 50% of 
the area) is given a lowercase letter. Figure is modified from [66]. 

3.2. Image Analysis Approach and Testing 

The primary objectives of the initial analysis were: (1) determine if these data were of sufficient 
quality to conduct a seafloor classification, and (2) identify a simple representation of seafloor 
variability based on bathymetric and backscatter data. To achieve these goals, a relatively high quality 
single dataset was chosen from among the 33 surveys to use as a subset for sensitivity and accuracy 
testing. Four distinct classes were identified using backscatter and seafloor slope. Sediment samples 
provided the ground truth and texture characterization for the classes (Figure 4). Unsupervised (iso 
cluster) and simple supervised (maximum likelihood) classifications were conducted on the test area 
to see if machine learning algorithms could capture the user identified classes from backscatter and 
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dataset. 

The relative hardness or softness of the seafloor, which is closely related to sediment texture and 
cohesion, is distinguished using changes in backscatter intensity as an indicator of differences in 
particle size and composition [68]. Differences in the geomorphologic structure of the seafloor is 
readily identified using seafloor slope, calculated using a three by three cell window in ArcGIS 10.5.1. 
Sand ridges have relatively steep slopes (here, greater than ~1.75 degrees) and flat areas of seafloor 
have low slopes. The four target classes, based on observations of the acoustic data and grain-size 
statistics from sediment samples were: 1) high backscatter areas with low seafloor slopes (HBLS), 
which are primarily composed of sand with shell and gravel; 2) high backscatter areas with steep 
slopes (HBSS) associated with the stoss side of sand ridges, also composed of sand with shell and 
gravel; 3) low backscatter areas with low slopes (LBLS), composed primarily of sand with some mud; 
and 4) low backscatter areas with steep slopes (LBSS), comprising the tops and lee sides of sand ridges 
and composed of nearly 100% sand (Figure 4; Table 2). 

Table 2. Table showing mean grain-size statistics for each class. *Sediment samples in column two 
are reported as a ratio of sample agreement with mean texture. For example, for the low backscatter 
areas with low slopes (LBLS) class, 99 out of 120 samples were classified as ‘S’ based on [66], leaving 
21 samples that were not ‘S’ texture. **Shell content is shown as a percent of the total sample. 

Class *Samples Mean ɸ % Gravel % Sand % Mud **% Shell Texture Geomorphology 
LBLS 99/120 2.83 1.28 91.89 6.82 3.03 S Flat  
HBLS 14/19 0.51 22.89 74.64 2.55 28.36 Sg Flat  
LBSS 62/67 1.82 1.99 97.00 1.00 2.65 S Ridged  
HBSS 14/22 0.59 13.96 84.40 1.63 18.23 Sg Ridged  

Figure 3. Barnhardt and others (1998) [66] bottom-type classification based on four end-member
sediment units: rock (R), gravel (G), sand (S), and mud (M). Twelve additional two-part units represent
combinations of the four basic units. In the two-part (composite) units, the primary texture (greater
than 50% of the area) is given an uppercase letter and the secondary texture (less than 50% of the area)
is given a lowercase letter. Figure is modified from [66].

3.2. Image Analysis Approach and Testing

The primary objectives of the initial analysis were: (1) determine if these data were of sufficient
quality to conduct a seafloor classification, and (2) identify a simple representation of seafloor variability
based on bathymetric and backscatter data. To achieve these goals, a relatively high quality single
dataset was chosen from among the 33 surveys to use as a subset for sensitivity and accuracy testing.
Four distinct classes were identified using backscatter and seafloor slope. Sediment samples provided
the ground truth and texture characterization for the classes (Figure 4). Unsupervised (iso cluster)
and simple supervised (maximum likelihood) classifications were conducted on the test area to see
if machine learning algorithms could capture the user identified classes from backscatter and slope.
The accuracy of each test classification was assessed using total accuracy and Cohen’s kappa coefficient
(see Section 3.3). Based on initial tests, classification was then expanded to the entire dataset.

The relative hardness or softness of the seafloor, which is closely related to sediment texture
and cohesion, is distinguished using changes in backscatter intensity as an indicator of differences
in particle size and composition [68]. Differences in the geomorphologic structure of the seafloor is
readily identified using seafloor slope, calculated using a three by three cell window in ArcGIS 10.5.1.
Sand ridges have relatively steep slopes (here, greater than ~1.75 degrees) and flat areas of seafloor
have low slopes. The four target classes, based on observations of the acoustic data and grain-size
statistics from sediment samples were: (1) high backscatter areas with low seafloor slopes (HBLS),
which are primarily composed of sand with shell and gravel; (2) high backscatter areas with steep
slopes (HBSS) associated with the stoss side of sand ridges, also composed of sand with shell and
gravel; (3) low backscatter areas with low slopes (LBLS), composed primarily of sand with some mud;
and (4) low backscatter areas with steep slopes (LBSS), comprising the tops and lee sides of sand ridges
and composed of nearly 100% sand (Figure 4; Table 2).

Table 2. Table showing mean grain-size statistics for each class. *Sediment samples in column two
are reported as a ratio of sample agreement with mean texture. For example, for the low backscatter
areas with low slopes (LBLS) class, 99 out of 120 samples were classified as ‘S’ based on [66], leaving
21 samples that were not ‘S’ texture. **Shell content is shown as a percent of the total sample.

Class *Samples Mean Φ % Gravel % Sand % Mud **% Shell Texture Geomorphology

LBLS 99/120 2.83 1.28 91.89 6.82 3.03 S Flat
HBLS 14/19 0.51 22.89 74.64 2.55 28.36 Sg Flat
LBSS 62/67 1.82 1.99 97.00 1.00 2.65 S Ridged
HBSS 14/22 0.59 13.96 84.40 1.63 18.23 Sg Ridged
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Figure 4. Ternary diagram depicts the sediment samples within each class. Ellipses are drawn around
the majority of samples within each class to highlight the representative sediment signature associated
with each. The four pie charts represent the average sediment composition in each class: LBLS, high
backscatter areas with low seafloor slopes (HBLS), low backscatter areas with steep slopes (LBSS), and
high backscatter areas with steep slopes (HBSS). The map and photos on the right-hand side show the
sediment sample and photo locations with representative seafloor photos, one for each class.

Two classifications were evaluated on the test dataset using the image classification toolbox in
Esri’s ArcGIS. The iso cluster (ISO) classification was chosen as the simplest and first method. In ISO
analysis, the user needs no prior knowledge of the seafloor or the input data, and the number of classes
is often unknown. As it is applied in ArcGIS, the ISO algorithm uses a modified iterative optimization
clustering procedure known as migrating means to separate cells into a user-specified number of
classes. For our purposes, we wanted to see if ISO could identify our target classes based on statistical
relationships between slope and backscatter for each pixel, without supplying any user knowledge
except for the number of classes. ISO distinguished three of the four target classes in backscatter
and slope data: high backscatter intensity, low backscatter intensity, and steep slopes, but could not
further discriminate a meaningful fourth class for sloping areas with high backscatter. For example,
sand ridges often have areas of high backscatter associated with their stoss side, while the lee side is
consistently low backscatter.

The second method evaluated was a supervised maximum likelihood classification. In MLC,
representative pixels are identified for each class by a user with prior knowledge of the classes to
be identified. This step creates a training dataset that is then used to determine the class of all other
pixels based on the variance and covariance of the class signatures. The training dataset contained
20 polygons drawn around representative pixels for each class, ranging in size from 20 to greater than
1000 pixels. Pixels in the classified raster are assigned to the class that they have the highest probability
of being a member. The target classes were the same as described above: LBLS, HBLS, LBSS, and HBSS.

3.3. Accuracy Evaluation

Following initial image analysis on the test dataset using unsupervised ISO, and supervised
MLC, two hundred randomly-located, reference points (RPs) were created within the test dataset
area. The RPs were user-assigned to one of the four classes defined for seafloor types (LBLS, HBLS,
LBSS, and HBSS). User-defined RPs were compared to the classified pixels for each test method, again
using ArcGIS. A confusion matrix was created from the RPs and the classified points were used to
test the validity of the classification method in the test area. Total accuracy, or the percentage of
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correctly classified pixels, was calculated, as well as the Cohen’s kappa coefficient, which indicates the
agreement between classified pixels and RPs and adjusts for inflated accuracy due to chance.

3.4. Applying Classification to the Entire Dataset

Based on initial feasibility and accuracy findings (see the results section for test area accuracies
or Table 3), it was determined that these data could support machine learning classification, using
only two inputs, backscatter and slope. In initial testing, we found that the iso cluster performed well
at distinguishing high and low backscatter, but was inadequate at differentiating slope differences
associated with high and low backscatter. With that knowledge, moving forward with classification
of the entire study area, and in order to address relative backscatter value differences introduced by
combining survey data with different instrumentation and acquisition parameters, we utilized the
ISO’s ability to quickly, consistently, and objectively differentiate high and low backscatter, prior to
supervised classification. To achieve this, an 8-bit backscatter image of each of the 33 survey areas
was passed through ISO analysis to produce a two-class outcome: high and low backscatter. This
additional step to pre-classify backscatter reduced uncertainty associated with user-defined high and
low backscatter decisions, minimized the effects of artifacts on the classification, and normalized the
backscatter range values among surveys and instruments.

Table 3. Table showing accuracy and kappa coefficient results for each classification method that was
conducted on the test area and the whole study area.

Location Method % Accuracy Kappa

Test Area
ISO 78.1 0.682

MLC 2 inputs 92.7 0.892

Whole Area
MLC 2 inputs 73.0 0.603
MLC 5 inputs 76.0 0.645

RF 5 inputs 77.5 0.667

Following ISO classification of the backscatter data for all surveys, pre-classified backscatter
for all 33 surveys was combined with slope, and an MLC was done using two inputs. Additional
data layers were introduced, including curvature (the second derivative of bathymetry, which
determines if a surface is concave or convex), shaded-relief (which helps captures the slipface and
apex of sand ridges with a common orientation), and bathymetry. These secondary inputs would
help determine if introducing more data complexity, dimensionality, redundancy, and relationships
improved classification results. Another MLC was conducted on the five data inputs (ISO classified
backscatter (high and low), slope, bathymetry in meters below the North American Datum of 1988,
shaded-relief, and curvature), using 112 polygons as the training dataset. Finally, a random forest
(RF) classification in ArcPro was conducted for all 33 surveys and five inputs. RF classification is
a supervised method that is an ensemble classification based on several individual decision trees.
Decision trees have been shown to achieve good results for MBES-type data classifications [41].
In ArcGIS forest-based classifications are an adaptation of Breiman’s random forest algorithm, in which
decision trees are created using the training data, then trees generate predictions, and the final outcome
is decided based on a voting scheme. The same training data set from MLC, consisting of 112 polygons,
was used for RF with the same four target classes of LBLS, HBLS, LBSS, and HBSS.

The workflow from data source to classification output is summarized in Figure 5. All analysis,
including merging, interpolating, filtering, and resampling the data in preparation for machine learning
classification was conducted in ArcGIS. Following image analysis of the entire dataset using the three
different methodologies, another 200 randomly-located, reference points (RPs) were created within the
classified area. Once again, confusion matrices were created from the RPs and the classified points
were used to test the validity of the classified seafloor.
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Figure 5. (A–E). A workflow at the top depicts the steps used to prepare the data sources for machine
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4. Results

4.1. Mapped Accuracy

The best accuracy results in the test area were achieved with the supervised maximum likelihood
classification (Table 3). The ISO classification performed with the lowest total accuracy due to
its inability to distinguish all four target classes (Table 3), however ISO performed at 100% when
distinguishing between high and low backscatter areas.

Accuracy and kappa values were lower for classifications evaluated over the whole study area
(all 33 surveys) than on the test area (Table 3). The MLC performed on two inputs (MLC 2 inputs) had
the lowest accuracy and kappa coefficient, while the MLC performed on five input data layers (MLC
5 inputs) achieved slightly better results, and the random forest (RF 5 inputs) achieved the best results
for the entire study area.
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4.2. Classified Maps

The classified maps for the test area are displayed in Figure 6A,B. The ISO analysis only
distinguished three of the four classes (Figure 6A). MLC captures the four target classes, but contains
more striping introduced by artifacts in the backscatter data layer (Figure 6B).
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Figure 6. (A) ISO classification on the test area, using slope and backscatter intensity. (B) MLC on the
test area using slope and backscatter intensity.

The classified maps over the entire study for the 33 individual hydrographic and geophysical
surveys are shown in Figure 7A–C. At a glance, results appear fairly similar, however, the best accuracy
and kappa coefficient were achieved for the whole study area using random forest with five input data
grids (Table 3). The initial ISO analysis of backscatter prior to the supervised classifications over the
whole study area was advantageous in that it reduced stripiness by normalizing relative backscatter
values among surveys and instruments. The classified area was 5394 km2. LBLS and LBSS classes
comprise the largest percentages of the classified seafloor by area at 39% and 38%, respectively. High
backscatter areas make up 23% of the seafloor by area with HBLS accounting for 15%, and HBSS
accounting for 8%.

We generated the geomorphic structure and sediment-texture maps by integrating the results
of the random forest analysis with seafloor sample data. Sand ridges are a prominent geomorphic
feature in the study area (Figure 1) that are defined primarily by relief. A meaningful geomorphologic
structure map can be derived from the four classes by ignoring the backscatter differences and focusing
on the steeper slope classes. Figure 8 shows the areas of the seafloor that are classified as HBSS or LBSS,
and thus can be considered ridges. Approximately 46% of the classified seafloor can be considered
sand ridge, while the remaining 54% is relatively flat.
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Grain-size statistics of sediment samples were averaged by class (Table 2). LBLS and LBSS classes
have high sand content (>90%) and low carbonate concentrations, whereas sediments in the high
backscatter classes (HBSS and HBLS) have a higher gravel-sized component (~18%) and higher shell
content (18–28%; Table 2 and Figure 4), but are still primarily sand. Grain size data also indicate slightly
higher mud content within the low slope classes (3% to 7%, versus 1% to 2% in steeper sloping areas).
Applying the Barnhardt classification to the mean grain-size statistics for each class produces two
unique sediment texture categories within the classified area: sand (S) and sand with gravel (Sg). Both
low-backscatter classes (LBLS and LBSS) have mean sand contents over 90%, so they are classified as
sand. The two high-backscatter classes (HBLS and HBSS) have sand contents between 75% and 84%
and gravel contents between 14% and 25%, which makes them Sg (or sand with gravel; Figure 9). The S
class represents roughly 77% of the seafloor by area, suggesting that three-quarters of the mapped
seafloor may be greater than 90% sand. The Sg class represents 23% of the seafloor, suggesting that
the seafloor is still primarily sand in these areas, but also contains more than 10% gravel and/or more
abundant shells.

Displaying individual samples over the sediment texture map (Figure 10) shows where mean
grain-size statistics in each class differ from the sediment texture classification assigned based on RF
classification. Four mud-rich samples (greater than 50% mud) were collected from areas that were
not acoustically different from adjacent areas of sandier sediment texture. Nine samples considered
gravel-rich (greater than 50% gravel) or shell-rich (greater than 50% shell) were also collected, and fell
mostly within the HBLS or HBSS classes. For areas classified as S in the sediment texture map, 86%
of the samples were at least 90% sand, and therefore in agreement with the S classification. The 14%
that differed were samples classified as Sm (7%), Sg (5%), or the previously mentioned mud-rich
samples (<2%). For areas classified as Sg in the sediment texture map, 55% of the samples were also Sg,
while 36% were S, 7% were shell or gravel-rich (Gs), and 2% was Sm. Sampling positional accuracy is
assumed to be +/–50 m, and could be erroneously classified if sampled near a class boundary.



Geosciences 2019, 9, 231 13 of 24

Geosciences 2019, 8, x FOR PEER REVIEW  13 of 24 

 

 
Figure 8. Geomorphologic classes derived from the four classes by combining the low slope (LBLS 
and HBLS) and steep slope units (LBSS and HBSS). 

Grain-size statistics of sediment samples were averaged by class (Table 2). LBLS and LBSS 
classes have high sand content (>90%) and low carbonate concentrations, whereas sediments in the 
high backscatter classes (HBSS and HBLS) have a higher gravel-sized component (~18%) and higher 
shell content (18–28%; Table 2 and Figure 4), but are still primarily sand. Grain size data also indicate 
slightly higher mud content within the low slope classes (3% to 7%, versus 1% to 2% in steeper sloping 
areas). Applying the Barnhardt classification to the mean grain-size statistics for each class produces 

Figure 8. Geomorphologic classes derived from the four classes by combining the low slope (LBLS and
HBLS) and steep slope units (LBSS and HBSS).



Geosciences 2019, 9, 231 14 of 24

Geosciences 2019, 8, x FOR PEER REVIEW  14 of 24 

 

two unique sediment texture categories within the classified area: sand (S) and sand with gravel (Sg). 
Both low-backscatter classes (LBLS and LBSS) have mean sand contents over 90%, so they are 
classified as sand. The two high-backscatter classes (HBLS and HBSS) have sand contents between 
75% and 84% and gravel contents between 14% and 25%, which makes them Sg (or sand with gravel; 
Figure 9). The S class represents roughly 77% of the seafloor by area, suggesting that three-quarters 
of the mapped seafloor may be greater than 90% sand. The Sg class represents 23% of the seafloor, 
suggesting that the seafloor is still primarily sand in these areas, but also contains more than 10% 
gravel and/or more abundant shells. 

 
Figure 9. Sediment samples (small circles) overlay a classified sediment texture map derived from the 
RF classification by combining HBLS and HBSS to create a sand with gravel (Sg) texture class, and 
combining LBLS and LBSS to create a sand (S) texture class. The small circles are coded by the 
sample’s Barnhardt texture. Large circles around some samples illustrate where sediment texture is 
more than 50% shell, gravel, or mud, which differs significantly from the mean sediment texture 
assigned to the classes. 

Figure 9. Sediment samples (small circles) overlay a classified sediment texture map derived from the
RF classification by combining HBLS and HBSS to create a sand with gravel (Sg) texture class, and
combining LBLS and LBSS to create a sand (S) texture class. The small circles are coded by the sample’s
Barnhardt texture. Large circles around some samples illustrate where sediment texture is more than
50% shell, gravel, or mud, which differs significantly from the mean sediment texture assigned to
the classes.
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occur where finer grained material is cropping out at the seafloor. These features often are not 
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Figure 10. Map of the USGS backscatter imagery acquired in 2014. Inset (A) and (B) show detailed
maps of sample locations (pink dot) collected within a sub-circular feature (A) and a linear feature
(B) in the backscatter data at 2 mpp resolution. Linear and sub-circular pits or features observed on
the seafloor in geophysical data often have a finer sediment texture than the surrounding seafloor
and occur where finer grained material is cropping out at the seafloor. These features often are not
representative of sediment texture adjacent to the feature.

5. Discussion

Hydrographic and geophysical datasets collected with different instrumentation over a 10-year
period pose challenges for seafloor classification. Ideally, the hydrographic data would have been
time-series MBES data and would have lacked artifacts and range differences that came with combining
sidescan sonar and beam-averaged MBES backscatter across surveys. Due to these challenges in
the backscatter data, we adopted ISO classification to standardize and normalize the high and low
backscatter values among surveys. Previous studies informed our selection of methods [41,43,63–65]
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and initial tests helped address challenges associated with the backscatter data repurposing and
conglomeration. ISO has been shown as a useful first step when evaluating the spatial variability of
seafloor facies [43,69], but typically requires samples or subsequent reclassification to achieve desired
results. Here we found that ISO lacked the ability to distinguish all four classes of interest; however, it
performed with perfect accuracy on the test area dataset when distinguishing only between high and
low backscatter. This particular strength of ISO analysis, and the fact that it is very simple to execute
and requires no prior user knowledge of the data, made it a simple and valuable first step in preparing
the entire 33-survey data collection for supervised classification. By performing a simple ISO analysis
on individual surveys, we were able to normalize relative changes in backscatter among surveys
with different instruments and acquisition parameters, and thus overcome some of the challenges
associated with repurposing these types of data for automated classification. This initial ISO step also
minimized striping and minor artifacts within some surveys (Figure 4), and consistently distinguished
high and low backscatter in agreement with a user’s discrimination. The two surveys with the most
abundant artifacts that interfered with high and low backscatter determination were H12160 and
H12161. A reasonably accurate, general sediment texture map of the study area could be generated
using only ISO, which would capture the differences in high and low backscatter and corresponds to
the difference in S and Sg within this study area.

Because the first goal of this study was to determine the feasibility of conducting a machine
learning classification using repurposed data, we adhered to relatively simple initial testing and
methods, from the classification techniques used (ISO and MLC), to data sources (only two initial
inputs), and the four target classes. Results revealed that these data were usable for auto-classification,
as long as the expectations of classified outcomes were not too complex. Two data layers could provide
enough seafloor variability to define four classes, but accuracy was improved by adding additional
data inputs and increasing the complexity of the classification algorithm, which is consistent with
findings from previous studies using MBES datasets [41,70,71].

Sediment samples with grain-size statistics used for validation were averaged within each class.
Averaging sediment statistics has the effect of removing anomalous samples or patches of seafloor that
may exist within or in addition to the defined four classes. Some anomalous samples or seafloor areas
could not be distinguished in the geophysical and hydrographic data as it is processed and analyzed in
this study. For example, samples that are far muddier than the average sediments within the LBLS
class exist, but they are not captured by this classification (Figures 9 and 10), and cannot be resolved at
the 25 mpp resolution of the source data.

Sub-circular and linear seafloor features, such as those observed in Figure 10 are shown at
2 mpp. Such features are often depressions associated with outcropping units of finer grained material
here [38,55] and in other study areas [72]. These relatively small features (typically less than 100 m)
are not representative of the surrounding seafloor and not identifiable at the 25 mpp scale. The scale
at which this study is conducted cannot resolve the linear and sub-circular features identified in the
backscatter at higher resolution (2 mpp). The sediment samples associated with these features are not
representative of the larger LBLS class, and averaging out their impact on a class is therefore acceptable
for this regional-scale classification.

Other samples that differ from the average sediment statistics for each class are shown in Figure 9.
Most mud-rich samples are explained by their occurrence in small-scale sub-circular and linear features,
except for the mud-rich samples in Chincoteague Bight. These muddier than average samples reflect
the sediment texture across a fairly large area of muddy sand that is associated with dewatered
backbarrier muds or an ebb plume of suspended sediment [51]. However, this change in seafloor
texture is not recognizable in the acoustic data [38] and, therefore, would not be identifiable by a
classification relying on acoustic data. Gravel and shell-rich samples exist in a few locations throughout
the survey and are often associated with bioherms as indicated in the bottom photographs [34,35], or
occasional coarser-grained (than average HBLS) flat areas of high backscatter.
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It would be misleading to provide these generalized and regional-scale textural and geomorphologic
classifications without outlining the limitations and assumptions that resulted in the classification
outcomes presented here. A good way to illustrate application scale and areas where generalized
geologic maps may not capture all the seafloor variability for evaluation by managers and other data
users is to display the sediment sample locations along with the classification, thereby identifying the
areas where differences in classified texture and actual sediment texture may exist, and where further
discrimination or more detailed analysis may be required. Previous regional geologic studies of the
Delmarva inner-continental shelf have defined the seafloor as relatively homogenous, consisting of
primarily sand [52,55], and this study conducted using simple classes with mean grain-size statistics
would seem to confirm this description, such that the majority of textural variability along this
inner-continental shelf can be explained by relatively small changes in sand concentration, identified
using only two sediment texture classes (Figure 9). However, a more heterogeneous sediment
environment, especially one in a periglacial environment, where all sediment types are possible
and often adjacent, would require more complex substrate classes and input data types, such as the
secondary features defined by [41].

Pendleton et al. [38], created sediment texture and geomorphology maps of the area covered by
USGS surveys with user-defined polygons [34,35,38]. The sediment texture classification used the same
sediment samples as the current study and was classified according to the Barnhardt classification
(Figure 11). In general, the sediment texture and geomorphology maps produced here are in good
agreement with the manual classification study (Figure 11). Manual classification offers the flexibility
of identifying features at multiple resolutions, so capturing the muddy pits and linear features that
are not visible at 25 mpp is possible, but user digitization is time consuming and not as objective as
machine learning techniques.

Producing regional geologic information maps from repurposed hydrographic data is cost effective
for programs, resourceful, efficient, collaborative, inter-disciplinary, and can maximize the scientific
impact and footprint of a geologic investigation. The methodology used here required generalization of
more complex sediment texture and geomorphology, but the benefits of creating these interpretations
outweighs the limitations. A more robust interpretation of seafloor geology would include surficial
geologic units derived from shallow sub-bottom interpretations and could be integrated with the
sediment texture and geomorphology maps produced here. Those maps and interpretations will be
part of the next phase of the regional geologic framework study along the Delmarva Peninsula that
aims to link coastal and shelf processes with vulnerability. The recommendations from this study
are that any mapping effort, regardless of scope or budget, can benefit from a “map once, use many
times” attitude, and repurposing and machine learning classification can create new geologic products
quickly and inexpensively that can support science objectives as well as student opportunities.
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Figure 11. Sediment texture (A,B) and geomorphic (C,D) maps generated from machine-learning (this
study, A,C) and from manual digitization ([38], B,D). Differences observed in the sediment texture
maps (C,D) are attributable to the scales of the studies and subjectivity and flexibility that inherently
exists in manual classifications.
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6. Conclusions

This study evaluated the feasibility of using repurposed hydrographic data to produce classified
geologic maps of the seafloor, and confirms that it is possible but requires modest expectations and
sensitivity testing. This classification of the sea floor at 25-m resolution over a nearly 5400 km2 area
of the Delmarva inner-shelf would not have been possible without the repurposing of hydrographic
survey data in conjunction with new geophysical data and samples. The classification produced
here can be further divided into sediment texture and geomorphologic maps. The use of automated
classification techniques makes interpretation of such a large and diverse dataset feasible. However,
there are limitations to these types of interpretations. Acquisition artifacts, especially in the MBES
backscatter mosaics, often creates striping in the imagery that can be erroneously interpreted as high
backscatter. Filtering, smoothing, and resampling the data prior to classification can help reduce the
artifacts, but some large artifacts can persist in the interpretations. The seafloor along the Delmarva
inner-continental shelf is more complex than four acoustic classes, two sediment texture classes, and
two geomorphologies, but the available data, resolution, and the methodology used here do not
support further discrimination. As such, they are meant as a first step to geologic characterization of
the continental shelf.

Based on accuracy tests of the classification evaluated here, the random forest classifier produced
the best results when compared at reference points. ISO was useful for distinguishing high and low
backscatter areas, but was not capable of identifying all four target acoustic classes. ISO can be a
useful starting place for these types of studies. Relatively simple and regional-scale classifications
can be used to advise finer-scale or more targeted follow-up studies. Additionally, large volumes
of hydrographic data that have been collected on the continental shelf for charting purposes can
be repurposed to support geologic seafloor investigations without the added expense of new data
acquisition. The benefits of classified seafloor datasets are numerous and include providing baseline
science for ocean and coastal resource management, facilitating and enabling related research, and
raising public awareness and engagement in ocean and coastal science, and management [1].

Finally, this classification contributes to the growing body of research that is providing schemes
and methods for the classification of seafloor data sets. An important takeaway from this study is that
it is essential to know the limitations of the source data, know whether the discriminations you want to
make in the data are possible given data inputs, and choose methods and classes according to what can
be supported by the data quality. Patience, testing, and method assimilation can improve outcomes.
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