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Abstract: Predefined classification schemes and fixed geographic scales are often used to simplify
and cost-effectively map the spatial complexity of nature. These simplifications can however limit
the usefulness of the mapping effort for users who need information across a different range of
thematic and spatial resolutions. We demonstrate how substrate and biological information from
point samples and photos, combined with continuous multibeam data, can be modeled to predictively
map percentage cover conforming with multiple existing classification schemes (i.e., HELCOM HUB;
Natura 2000), while also providing high-resolution (5 m) maps of individual substrate and biological
components across a 1344 km? offshore bank in the Baltic Sea. Data for substrate and epibenthic
organisms were obtained from high-resolution photo mosaics, sediment grab samples, legacy data
and expert annotations. Environmental variables included pixel and object based metrics at multiple
scales (0.5 m-2 km), which improved the accuracy of models. We found that using Boosted Regression
Trees (BRTs) to predict continuous models of substrate and biological components provided additional
detail for each component without losing accuracy in the classified maps, compared with a thematic
model. Results demonstrate the sensitivity of habitat maps to the effects of spatial and thematic
resolution and the importance of high-resolution maps to management applications.

Keywords: habitat mapping; HELCOM HUB; Natura 2000; Baltic Sea; spatial scale; seascape;
machine learning; boosted regression trees; percent cover; substrate; biota; multibeam; backscatter

1. Introduction

Classification schemes are common tools to support spatial decision-making. In marine spatial
planning and conservation, they help to inform and prioritize management actions including design of
monitoring programs, risk assessments, placement of marine protected areas, etc. [1,2]. Furthermore,
classification schemes can provide advances in transnational efforts towards common strategies for
nature conservation and protection (see Strong et al. [3] for a review and comparison of several
classification schemes). Building a classification scheme includes important decisions on spatial and
thematic resolutions and the way to represent structures [4]. As exemplified in this paper, it is critical
for mapmakers to understand and communicate the implications of these decisions in order to inform
management actions and evaluations.

At the European level, the European Union Nature Information System (EUNIS) [5], the Baltic
Marine Environment Protection Commission Underwater Biotope and Habitat Classification System [6]
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(HELCOM HUB, hereafter referred to as HUB) and Natura 2000 [7] are common classification schemes
used to report against the European Marine Strategy Framework Directive (MSFD) [8] and the Habitat
Directive [9]. The intended use of these schemes is to classify marine areas through several steps.
Classification is first done according to the environmental setting (e.g., vertical zone), then by the
geological features (soft/hard substratum), and finally by the biological components (e.g., communities,
dominant species).

Similarly, in Sweden, classification schemes that combine both geological and biological
information are required to support ongoing marine spatial planning initiatives (national and regional),
design of marine reserves and other ecosystem-based fisheries management actions. In particular,
the Geological Survey of Sweden (SGU) and the Swedish Agency for Marine and Water Management
(SwAM) cooperate to provide detailed HUB and Natura 2000 maps in priority areas in the Baltic Sea.
Ideally, these products should be backward compatible with SGU legacy maps, and include percent
coverage of substrate and benthic species used in the national marine spatial planning cumulative
impact assessment tool Symphony [10]. The methods presented in this paper are grounded in the need
to develop such multiuse products.

The HUB classification (Table 1), a relatively new classification scheme with few existing maps [11],
has been developed to be compatible with EUNIS and is specifically designed to create a common
understanding of the Baltic Sea habitats, biotopes and communities [6]. HUB is a hierarchical
classification scheme that consists of six levels with biotopes defined by applying split rules similar to a
dichotomous key. The first three levels describe habitats, whilst levels 4-6 describe biotopes. HUB codes
contain a maximum of six characters with each character referring to a specific level where a split rule
has been applied. Biological communities are characterized by HUB Level 5, which is most comparable
to EUNIS Level 4. The spatial scale for HUB biotopes is not strictly defined. The guidance given in the
technical report is that a biotope patch should be large enough to function as a biotope [6], implying
that the community is a distinct unit with some distinct functions. For instance, the EUSeaMap project
has used a practical application of a 5 X 5 m scale as a minimum patch size [12].

While the efforts at European level are a first attempt towards establishing a network of
transnational nature conservation and protection areas, providing a platform to better cope with
the challenges posed by climate change [13], there are a number of limitations of such broad scale
classifications. For example, as noted by Galparsoro et al., [1] the EUNIS classification needs to include
new habitat classes and develop the classifications of less well-represented areas (e.g., deep-sea areas).
Regardless of how refined such classification schemes become, they will remain a simplification of
nature, for example by neglecting transitional areas, reducing local complexities (and neglecting some
important feature at a local scale) and creating artefacts [14].

This paper focuses on the advantages of using high-resolution continuous models of substrate and
biota based on multibeam data, sediment samples and photos, to overcome some of the shortcomings
in existing classification schemes. A recent study in the Baltic have looked at predicting percent
coverage of substrate and biota using similar data [15], and found the method to be useful, but does
not use the prediction to also provide thematic habitat maps. We present a novel approach to prepare
and predict high resolution habitat maps comparing both a thematic model workflow with predefined
HUB and Natura 2000 classes, and a continuous model workflow that allows classified maps to be
created for multiple scales and definitions, as well as providing percent coverage maps of substrate
and biological components for more detailed analysis. In addition, we estimate the importance of
different predictor variables; for instance, the performance of the models using backscatter data versus
a variety of metrics (pixel and object based) from high-resolution terrain models. Such information is
quite relevant in Sweden where backscatter is not yet provided as a standard for multibeam surveys.
We also investigate if the substrate models can be improved by supplementing the training data with
legacy observations and expert annotations, and if the resulting substrate maps can help improve the
biological models. Finally, we look closer at some of the end-user implications of using thematic and
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continuous maps at different spatial scales. Throughout the paper, we refer to continuous models as the
result of the percent cover of each thematic class (for example percent cover of the substrate class sand).

Table 1. The Baltic Marine Environment Protection Commission Underwater Biotope and Habitat
Classification System [6] (HELCOM HUB, hereafter referred to as HUB) split rule summary. Examples
of HUB level 1-6 biotopes are found in the in the Supplementary Materials (Legend S1, Table S3).

Level Description
1 Baltic (Letter) Baltic
Photic

2 Vertical Zone (Letter) Aphotic

Coverage of a specified substrate type >90%
Coverage <90%, Mixed
Coverage of Macroscopic vegetation or sessile macroscopic epifauna >10%
4 Community Structure (Number) Coverage > 0% < 10%, Sparse
Coverage = 0%, No vegetation or macro fauna present
Coverage of a specified taxonomic group >10%

3 Substrate (Letter)

5 Characteristic Community (Letter) Coverage > 10% but not of a specified taxonomic group, Mixed community
Coverage = 0%, No macroscopic community
6 Dominating Taxa (Number) Biomass/bio volume of some specified taxa >50%

2. Materials and Methods

The analytical workflow follows a logical sequence of steps: (1) data acquisition and processing;
(2) processing of environmental predictors; (3) development of thematic and continuous models;
(4) combining models into classified maps; and (5) map accuracy assessments.

2.1. Acquisition and Processing

2.1.1. Study Area

The Baltic Sea offshore area Hoburgs Bank (Figure 1) was selected as a pilot project for high
resolution mapping in Sweden. The survey covered a 1344 km? area of the bank (10-60 m depth)
with the seafloor containing a complex mix of substrates: mainly sand, gravel, hard clay, rock and
boulder, shaped by glacial processes, waves and currents. Hoburgs Bank is part of a newly expanded
Natura 2000 marine protected area, motivated by the population of seabirds and recent findings on the
threatened Baltic Sea harbor porpoise [16]. The most apparent human-caused threat to the area is a
major shipping lane that crosses the bank’s northwestern part, and a second shipping lane that runs
southeast of the bank.

2.1.2. Hydrographic Survey

In autumn 2016 and spring/summer 2017, we conducted a full-coverage hydrographic survey of the
Hoburgs Bank study area using SGU’s vessel S5/V Ocean Surveyor that was equipped with a multibeam
EM?2040D (Kongsberg Maritime AS, Kongsberg) and a sub-bottom profiler (SBP) (Echoes 3500 T3,
iXBlue, Natick). Hydrographic data collection was generally conducted from late afternoon to early
morning, with sampling operations occurring during the daytime. We used a moving vessel profiler
to collect sound speed data, and daily CTD casts to update the absorption coefficient for multibeam
backscatter data in the acquisition software Seafloor Information System (Kongsberg Maritime AS,
Kongsberg). Bathymetric data from the EM2040D multibeam were processed in CARIS HIPS and SIPS
(v 10.3.1, Teledyne CARIS, Fredericton) using the Combined Uncertainty and Bathymetric Estimator
(CUBE) surface generation method [17]. Seafloor backscatter data were processed by implementing the
geocoder engine [18] in the Fledermaus Geocoder Toolbox (FMGT) (v7.7.6, QPS, Zeist). Both depth and
backscatter were initially exported at 2-m resolution for use in on-board sampling design. Final post
processing depth grids and backscatter mosaics were exported at 0.5-m resolution (Figure 2), together
with depth uncertainty, survey track lines, as well as all angular range analysis (ARA) backscatter
statistics available in FMGT. More details on the acquisition are available in SGU’s survey report [19].
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Figure 2. Hoburgs Bank study area: (a) multibeam depth grid, (b) multibeam backscatter mosaic and
samples sites (black dots 2016-2017 survey; colored dots legacy data from 2005).
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2.1.3. Sampling and Underwater Observations

Stratified random sampling was used to select the locations for sediment grab samples and
underwater observations (using a drop-camera) via the ArcGIS 10 Sampling Design Tool [20], based on
(1) depth intervals, (2) substrate types (using backscatter intervals) and (3) complexity intervals
(a combination of depth standard deviation and bathymetric position index). The classified depth,
substrate and complexity raster were combined into polygons, and slivers were removed. The sampling
design tool was used to randomly choose at least one of each thematically unique polygon found
within a ~ 3 X 12 km area (approximately what we could sample and survey during 24 h in optimal
conditions), with the samples placed randomly within each polygon. The process was repeated for
a total of 34 blocks that divided the survey area (see Supplementary materials Map S1). We visited
559 locations for the drop-camera, which also included sediment samples at 434 of the locations (some
boulder sites were excluded from sediment sampling). Distribution of the drop-camera samples
divided into HUB 3 classes and HUB 46 classes are available in Appendix A Tables A4 and A5.

Positioning was collected via a real-time kinematic (RTK) gps (Seapath 330 GNSS-RTK, Kongsberg
Maritime AS, Kongsberg) with corrections from SWEPOS base stations, and adjusted to the cable
breakpoint on the moonpool (grab-sampler) and A-frame winches (drop-camera), located in the middle
and rear of the vessel respectively, about 15-m apart. A dynamic positioning system retained the
vessel’s position over the site.

While the position uncertainty of the grab samples and drop-camera varied with depth and
currents, it was generally within +2 m when distinct features such as clay reefs spurs were visited.
Fine sediment (from silt to gravel) was sampled with a Van Veen grab (0.1 m?), whereas coarser
sediment and hard substrates were sampled with an Orange Peel Bucket (~0.5 m?). Onboard geologists
interpreted all samples (origin, composition), and submitted a representative subset (n = 117) of fine
sediment types (silt to gravel) from surface sediments (~0-5 cm) to sieve grain size analysis.

Table 2. Grain size ranges for the surface substrate compositions, and their sampling methods.

Size Range (mm) Hard/Soft Substrate Grab-Sampler Drop-Camera
Bedrock ! Point intercept
>600 Hard bottom Large boulders Point intercept
200-600 Boulders Point intercept
60-200 Large stones Point intercept
20-60 Pebbles & stones Point intercept
2-20 Gravel Point intercept
0.6-2 Coarse sand Sieve analysis
0.2-0.6 Soft bottom Medium sand Sieve analysis Point intercept >
0.006-0.2 Fine sand Sieve analysis
0.002-0.06 Silt Sieve analysis Point intercept 2
<0.002 Soft clay Sieve analysis Point intercept 2
<0.002 Hard bottom Hard clay Point intercept

1 not found in the study area.? clay, silt and sand fractions were classified according to the dominant grain size
(always sand in the study area).

For the underwater observations, we used a custom-built drop-camera system with a 360°rotating
and 90° tilting full frame Canon EOS 6D DSLR camera, ~75 cm above the seafloor. In order to capture
images in all directions, we applied an automated photo and light protocol through which we were
able to capture 100% sub-millimeter resolution coverage of ~15m? of the seafloor (see Figure 3 for
example) and additional images of the surrounding seascape. We also used a GoPro Hero 4 camera to
aid the photo interpretation with video, and two parallel red lasers placed 30 cm apart to provide a
scale reference.

We analyzed the images using a point intercept method in order to obtain 100 points per site
of substrate and biological coverage, as well as presence absence data. Presence of ripples, shells,
crawl tracks, and fish were also noted. We relied on sediment samples, video imagery, as well as
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high-resolution multibeam data to better annotate images when substrate components were covered
with benthic organisms. The point intercept annotations could not differentiate between finer grain-sizes
than the difference between gravel and sand; hence the sand class from the photomosaic also included
finer sediment fractions when present (Table 2). More detailed information on fine grain sizes were
obtained from the sieved surface sediment samples, which was a separate dataset (Table 3). While we
did not conduct a statistical uncertainty estimate of the image analysis process, a second expert
double-checked all interpreted sites in order to minimize human error.

Figure 3. Example of a typical mixed hard and soft seafloor habitat on Hoburgs Bank. (a) Full
drop-camera photomosaic covering 15m? seafloor. (b) Detail zoom showing a flatfish, mussels
and substrate.

2.1.4. Legacy Data and Expert Annotations

In order to further improve the training dataset for the substrate models we used lower
quality legacy data and expert annotations. Data collected during a survey in 2005 by SGU using
drop-camera, samples and video transects [21] were processed and re-annotated with substrate
information (449 sites). ArcGIS (ArcGIS Desktop v10.5.1, ArcGIS Pro v2.1.2) was used to display
and interpret the samples/photos and video transects together with high-resolution backscatter and
multibeam data in order to verify, and if needed modify, the location of some sites. For areas with a
small number of samples, under-represented habitats and obvious artifacts in early model outputs,
we also conducted additional expert annotations (550 sites) of substrate components based on the
high-resolution multibeam data and available ground truthing. Distributions of the legacy and expert
annotations divided into HUB 3 classes are available in Appendix A Table A4.

2.2. Environmental Setting

Multibeam bathymetry and backscatter were the backbone of the environmental variables that
we developed (hereafter referred to as predictors), and we used both pixel metrics applied across
the seascape at multiple spatial scales and OBIA to make the most of this information. We also
included in situ oceanographic data collected during the survey (salinity, temperature, and current
speed and direction near the seafloor), as well as interpreted SBP data (postglacial sand deposits).
In addition, we included geographical coordinates (northing/easting), which have been found to
account for autocorrelation in the model [22]. All predictors were resampled to the modeling resolution
of 5 m, which roughly corresponded with the scale of the underwater observations ~15 m? while also
providing a practical minimum mapping unit for the end users (See Supplementary materials Tables S1
and S2 for a complete list of the predictor variables).
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Bathymetric and backscatter information were recalculated to include multiple scale resolutions
relevant for the model building (0.5 m, 1 m, 2.5m, 5m, 20 m, 50 m, 100 m, 200 m, 500 m, 1 km and 2 km),
hereafter referred to as multiscale metrics. To represent scales smaller than 5 m, we first developed terrain
metrics or morphometrics [23] in ArcGIS (standard deviation, profile, planform, and standard curvature,
slope, slope of the slope (a measure of the magnitude of slope change), terrain-surface roughness
and surface area to planar area) from the high resolution grids (0.5 m, 1 m, 2.5 m) then aggregated
the information to 5 m using minimum, maximum, range and mean values. The same metrics were
also run using 5 m bathymetry and backscatter (with the addition of median value and bathymetric
position index, BPI). To represent scales larger than 5 m, we generated a set of smoothed depth grids at
5-m resolution using a Gaussian low-pass filter to remove details at different neighborhoods (i.e., 20 m
to 2 km), followed by calculations of selected terrain metrics (i.e., slope, slope of slope, BPI and slope
direction). In order to adjust for potential angle artifacts, uncertainty data retrieved from multibeam
bathymetry as well as the Euclidean distance to the survey routes were included as predictors.

In addition to the pixel based metrics, we used object based image analysis (OBIA) in ENVI
Feature Extraction Module (v 5.4, Harris Geospatial Solutions, Broomfield) to generate segments
with statistics from depth and backscatter data, a process similar to previous semi-automated coral
reef habitat mapping work [24,25]. Segments were developed from a composite image (principal
component compressed depth metrics in 5 bands and backscatter in one) at 2.5-m resolution. ENVI
segmentation thresholds were set to segmentation 11 and merge 91, using an edge detection algorithm.
The resulting segment statistics (shape, textural and spectral attributes, [26] were exported as raster
images and aggregated to the modeling resolution of 5 m.

We also applied another alternative way for treating habitat features as objects by calculating the
Euclidean distance to features (often consisting of moraine ridges) seen in fine scale BPI (inner radius
5 m, outer radius 25 m, BPI > 2), as well as distance to fine-medium sand patches (using a threshold
reclassified backscatter mosaic).

In order to reduce collinearity and the amount of predictors, we grouped similar predictors and
used principal component analysis (PCA) to extract the components that contributed to >5% of the
total variance within each group (see supplementary Script S1). Selected predictor variables, such as
depth, where excluded from the PCA process to better understand their importance in the models.
Furthermore, expert evaluation in the model fitting stage helped in reducing the total number of
predictors from 184 to 41.

2.3. Thematic and Continuous Models

One of the goals with the analysis was to compare thematic models (i.e., HUB 3-6, Natura 2000)
and thematic maps classified from continuous models (hereafter referred to as reclassified maps),
in this case we always used the same testing and training data, tuning grid and predictor variables.

For the general data preparation, we split the drop-camera data from 20162017 into 30% testing
data (n = 154) and 70% training data (n = 405), using stratified random sampling based on HUB level
1-6 classes (reclassified from percent cover of substrate and biota). The same testing data was used for
all models (substrate and biota), except models using sediment grab samples which used all data for
training due to the low number of sieve-analyzed samples (n = 117). See Table 3 for an overview of the
data and the targets they were used for. One of the strengths of our approach was the possibility to
integrate different data sources, such as results of grain size analysis from samples (which captured
fine grain size fractions not visible in photos) and the percent coverage from images, (which captured
the distribution of coarser grain sizes, and the total coverage of fine grain sizes).
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Table 3. List of sources of training and testing data according to purpose of application.
Tables A4 and A5 in Appendix A show the distribution of HUB classes within the data.

Data Source N Method Target
Drop camera samples (2016-2017) 1 559 Point intercept Percent coverage of benthic organisms.
Percent coverage of substrate fractions (i.e., sand,
Drop camera samples (2016-2017) ! 559 Point intercept gravel, pebbles, stones, boulders, large boulders
and hard clay)

Legacy data (drop camera, video transects
and sediment samples from 2005) 2
Expert annotation (depth, backscatter) 2 550 Estimated coverage Percent coverage of substrate fractions.
Percent coverage of fine substrate fractions
(i.e., soft clay, silt, fine - coarse sand)
Grab samples (2016-2017) 2 434 Expert Thematic substrate classes (i.e., silty gravelly sand)

449 Estimated coverage Percent coverage of substrate fractions.

Grab samples (2016-2017) 2 117 Sieve analysis

1 Testing (30%) and training (70%), split using stratified random sampling based on HUB level 1-6 classes. ? Training
data only.

For the thematic models, we first reclassified the testing and training data into thematic classes
for HUB and Natura 2000, before the models where run for each level (HUB level 3, HUB level 4-6,
and Natura 2000 reef/sandbanks). For the continuous models, we prepared the training data by
assigning 0.1% coverage to presence with <1% cover and 0.001% coverage to absence, followed by
logit transformation (all individual models). We also evaluated continuous compositional models.
The modeling framework of the latter approach explicitly takes into account that substrate components
must sum up to 100 % at each location [27].

Model algorithms were run with R v3.4.1 [28] (see supplementary Script S2-S5). For both thematic
and continuous models, we used boosted regression trees (BRTs) implemented by the gbm [29]
and caret package [30]. BRTs is a flexible nonparametric statistical machine learning algorithm
suitable for regression and classification problems that can handle nonlinear interactions between
predictors [31-33], and has been successfully applied in different contexts including coral reefs [23,34]
and marine protected area design [35,36]. High performance in BRTs is reached by assembling a large
number of simple trees [37], starting from a tree produced from a random subset of the data and
sequentially adding further trees to find the best model fit [31-33], as measured by loss in predictive
performance (e.g., deviance) [29]. The final prediction is calculated as a weighted average across
all trees [29]. We used the number of trees, interaction depth and shrinkage as parameters to tune
the models [33], and relied on root mean squared error (continuous models) and overall accuracy
(thematic models) to choose the best combination of parameters that reduce overfit as suggested by
Elith et al. [29]. In fact, we relied on the recommendation by Hastie et al. (2009) that setting the
shrinkage parameter in BRT “tends to eliminate the problem of overfitting, especially for larger data
sets”. Final parameters used to tune the models are available in the Supplementary materials (Script
S3-55). Although overfitting has been recognized as an issue in machine learning techniques that
reduce model’s generality [29,38], Zaki and Meira [39] stated that some overfit is actually helpful,
especially for those classes that might go underrepresented. Futhermore, we followed Schiele et al. [11]
and ran models separately to keep the number of classes at each run relatively low.

We applied BRTs (Gaussian distribution) to predict percent coverage of finer substrates (i.e., soft clay,
silt, fine to coarse sand from sieved samples, see Table 2 for size ranges), percent coverage of coarser
substrates (i.e., sand (which also included subfractions of silt and clay not visible in the imagery),
gravel, pebbles, stones, boulders, large boulders and bedrock, see Table 2 for size ranges) and percent
coverage of benthic organisms according to HUB level 5 and 6 groups (Table 4). We also applied BRTs
(multinomial distribution) to predict thematic maps of HUB 3-6 and Natura 2000 classes directly from
reclassified training data.

We assessed the outputs of the substrate models to spot obvious artifacts (e.g., due to survey
routes), followed by expert annotation, which helped to improve the training dataset. The latter
step was repeated until the draft maps were approved. The substrate maps where then used as
part of the predictor variables for the biological models, as well as the fine sediment fraction models
(i.e., in addition to the 41 predictor variables also used in the substrate models). Finally, we reran
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several models with different predictor variables removed to better understand how different groups of
the predictors affected map accuracy. BRTs, as an ensemble approach, use a high number of trees to turn
possibly weak predictors into a strong prediction (Kuhn et al. 2013). Being quite robust to collinearity,
BRTs handles many predictors as it ignores non-informative predictors when fitting trees [29].

Table 4. List of HUB level 5 and 6 groups in the study area, and the species included.

HUB Level 5 and 6 Species included in Group
Ceramium tenuicorne, Ceramium sp., Chorda filum, Dictyosiphon/Stict\yosiphon
Characterized by annual algae (complex), Ectocarpus/Pylaiella (complex), Filamentous Phaeophyceae, Haliosiphon
tomentosus

Battersia arctica, Coccotylus/Phyllophora (complex), Delesseria sanguinea,
Characterized by perennial algae Filamentous Rhodophyceae, Furcellaria lumbricalis, Polysiphonia/Rhodomela
(complex), Unidentified Rhodophyceae.

Dominated by perennial filamentous algae  Battersia arctica, Filamentous Rhodophyceae, Polysiphonia/Rhodomela (complex).

Characterized by epibenthic bivalves Mytilus spp.
Dominated by Mytilidae Mytilus spp.
Characterized by cnidarians Hydrozoa (Cordylophora caspia)
Characterized by moss animals Electra sp.

2.4. Combining Models into Classified Maps

To combine the models into classes, we adjusted all substrate and biological components to ensure
that the model outputs corresponded with the rules of the point intercept analysis. The substrate
components had to sum to 100% in each pixel, which was realized by dividing each component by the
total sum of all components. Similarly, the fine fraction components modeled from grab samples (soft
clay to coarse sand) where adjusted to fit the sand model, realized by multiplying the proportion of
each fine fraction component with the sand component. Biological components were adjusted in a
similar way; uncolonized substrate and biological cover had to sum to 100% or more, and no single
biological component when summed with uncolonized substrate could be >100%.

Next, we reclassified the outputs of the percent coverage models using conditional statements
according to HUB (e.g., as seen in Table 1) [6], Natura 2000, and the SGU substrate scheme [40] (R script
available, see supplementary S6-58). For cases with unclear definitions as percent coverage or terrain
metrics (i.e., Natura 2000 subtypes, SGU substrate scheme), we relied on text descriptions to define a
conditional statement. Since scale was not clearly defined for any of the classification schemes, we used
the full resolution of the models (5 m), but also created classified maps in other resolutions up to 250 m
pixels by aggregating the percent coverage models before the conditional statements were run.

2.5. Accuracy Assessment

We validated all maps using a stratified random (HUB 1-6) subset of data retrieved from the
high-resolution drop-camera (154 testing locations extracted from the original 559 sites). The substrate
models were also evaluated with training data using bootstrap prior to the spatial prediction.

Thematic models were assessed with confusion matrices of observed vs. predicted [41] for each
level of HUB and Natura 2000 maps. Furthermore, Kendall rank and correlation coefficients (tau) were
calculated [42].

Continuous models were assessed using R?, root mean square error (RMSE), mean absolute error
(MAE) and mean error (ME, observed—predicted), as well as regression of observed vs. predicted
values [41], which included 95% confidence band between observed and predicted coverage. In addition,
the predicted values were grouped into intervals (0-10%, 10-50%, 50-90%, 90-100%) and the observed
vs. predicted for each group was assessed using ME and standard deviation (SD). Finally, the same
groups, as well as absence/presence were evaluated as classes using the same confusion matrix as
the thematic models (overall accuracy and Tau). The continuous models of fine fractions were only
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evaluated using bootstrap prior to the spatial prediction due to the relatively low number of sieved
grab samples.

Spatial patterns for model uncertainty was estimated combining all model outputs (generated
using different predictor variables and training data in the development phase) for our different
substrate models (10 different models for each component, which included both individual and
compositional model runs) and all outputs for the biological models (5 different models for each
component using different predictor variables) and produced mean standard deviation maps for
substrate and biological models in ArcGIS.

3. Results

Below we describe the results from the study structured along two main themes: (1) technical
section with modeled maps and accuracy (Sections 3.1-3.4); and (2) End-user examples (Section 3.5),
including the effect of scale and predefined thresholds. In addition to the images shown in the result,
a geospatial pdf showing maps and survey data in more detail are provided in the Supplementary
materials (Map S1).

3.1. Thematic vs. Reclassified

When comparing thematic maps (i.e., thematic models) and the reclassified thematic maps
(i.e., from the continuous workflow) our results indicated that the accuracy was similar across all levels
of the classification schemes regardless of which BRT workflow we used (Table 5). This observation
was further strengthened by studying the spatial output of the maps together with high-resolution
backscatter and bathymetry data, taking visual aspects such as survey artifacts into account.

Table 5. Observed vs. predicted accuracy from 154 testing sites for thematic maps (thematic distribution
BRT models) and reclassified thematic maps (from continuous BRT models).

Overall Accuracy (%) Tau
Thematic Reclassified Thematic Reclassified

HUB 3 779 80.5 0.72 0.76
HUB 4 79.9 81.8 0.70 0.72
HUB 4-5 63.0 62.3 0.55 0.55
HUB 4-6 55.8 53.2 0.49 0.47
Natura 2000 87.7 87.7 0.75 0.75
Mean 729 73.1 0.64 0.65

Map accuracy was highest for the maps with fewer classes (i.e., Natura 2000) with decreasing
accuracy as the number of classes increased (Tables 5 and 6). The number of classes in the reclassified
map products was generally higher than the original classes identified in the training data, while the
thematic maps were restricted to the number of classes in the training data set. For the complete HUB
map level 1-6 the number of classes doubled in the reclassified map from 29 to 59 classes, however 8 of
these HUB 1-6 classes had fewer than 10 predicted pixels (Table 6), of which some could be the result
of pixel mismatch between the combined models. Very few pixels had obviously illogical combination
of classes (based on our observations and knowledge of the survey area), the only clear example was
2 pixels classified as sand dominated by Mytilus spp. (full list of classes and pixel count for HUB
1-6 available in Supplementary materials Table S3).
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Table 6. Number of unique classes found in the reclassified thematic maps versus the thematic maps
(same number of classes as in the training data). Number of classes with less than 10 predicted pixels
are put in brackets (full list of classes and pixel count for HUB 1-6 available in Supplementary Materials

Table S3).
HUB3 HUB4 HUB4-5 HUB4-6 HUB1-6 N2000 N2000 Subtypes
Thematic maps 5 3 7 9 29 2 -
Reclassified maps 5 3 8 12 59 (8) 2 12

3.2. Predictors and Training Data

We investigated how different types of predictors and training data contributed to the thematic
HUB 3 substrate models (Table 7). Models trained using the same predictors, but only the point
intercept dataset for training, showed a large decline in accuracy (testing data overall accuracy 77.9%
vs. 58.9%, while bootstrap of training data showed overall accuracy 77% vs. 73%, indicating overfitting
in the model with only survey data included). These results highlight that legacy data and expert
annotations were important to the model fit. Expert annotations took approximately 5 min per site,
legacy data approximately 10 min, while substrate and biota point intercept annotations of the drop
camera data (2016-2017) averaged around one hour (annotations of 100 points/site ranged from 5 min
to 2 h depending on site complexity).

The highest accuracy was observed for the model using all training data (including legacy and
expert annotations) and all types of predictor variables (including backscatter, multiscale metrics
0.5 m-2 km and OBIA). When testing how OBIA, multiscale metrics and backscatter affected model
accuracy (in addition to 5 m depth metrics which was always included), we observed that models that
included only a backscatter mosaic had relatively high accuracy (73.4%), showing that backscatter is
an important predictor and that relatively simple models with 5 m depth and backscatter metrics can
perform well. The accuracy improved further (+4.5%) when OBIA and multiscale (0.5 m—2 km) metrics
were also included, with OBIA having the highest percent contribution in the models (25.8%, Table S2).
Performance reduced in all models when backscatter was not included, even if more advanced depth
metrics were used. However, some of the loss in accuracy was regained by including multiscale
(0.5 m—2 km) depth metrics (OBIA was not tested due to the inclusion of backscatter in the segmenting
process). The percent contribution for all predictors used in the thematic models (HUB 3-6) is available
in Appendix A Table Al (summary) and Supplementary Materials Table S2.

Table 7. Comparison of HUB 3 classification model overall accuracy (OA), Cohen’s kappa and Tau,
when using different predictor variables and training data. The accuracy was calculated from the
testing data (30% of 20162017 drop camera samples), and additionally by bootstrapping the training
data in the model fitting stage (may show inflated accuracy numbers in case of overfitting). Predictor
variables (all groups contained northing/easting): (1) Depth metrics 0.5 m—2 km, OBIA metrics and
backscatter metrics. (2) Depth metrics 0.5 m-2 km, backscatter. (3) Depth metrics 5 m, backscatter
mosaic. (4) Depth metrics 0.5 m-2 km. (5) Depth metrics 0.5 m-5 m. (6) Depth metrics 5 m.

. . . Bootstra Validation

Predictors Training Data (Training Dr;ta) (Testing Data)

1) All Survey, legacy, expert OA 77%, kappa 0.68 OA 77,9%, Tau 0.72
2) Reduced Survey, legacy, expert OA 76%, kappa 0.66 OA 77.2%, Tau 0.71
3) Reduced Survey, legacy, expert OA 70%, kappa 0.58 OA 73.4%, Tau 0.67
4) Reduced Survey, legacy, expert OA 68%, kappa 0.55 OA 64.3%, Tau 0.55
5) Reduced Survey, legacy, expert OA 64% kappa 0.49 OA 61.0%, Tau 0.51
6) Reduced Survey, legacy, expert OA 63% kappa 0.47 OA 55.2%, Tau 0.44

1) All Survey OA 73% kappa 0.60 OA 58.9%, Tau 0.49
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Comparisons between biological models that included substrate models as predictors and those
that did not, indicated that the inclusion of substrate models developed using a larger training data set
(i.e., survey, legacy and expert annotations) could be used to increase the accuracy of biological models.
For example, accuracy of Mytilus spp. models improved with the addition of substrate models, and the
total mussel cover increased from 8% to 10.7% (Table 8). The total contribution of substrate predictors
in the model was 75% (Appendix A Table Al, Supplementary materials Table S2), further highlighting
the strong link between substrate and Mytilus spp. A visual comparison between the outputs showed
that the greatest change in mussel cover occurred in flat areas composed of hard substrates, and areas
with coarse soft substrates where it was difficult to differentiate between the two types of environments
in the depth and backscatter data. When testing the same models but also removing backscatter the
performance decreased further and the mean mussel cover changed to 4.4% (Table 8), showing the
importance of backscatter as a predictor variable for the biological models. For the thematic models of
biological HUB classes, the overall accuracy increased slightly for all levels when substrate models
where included as predictors (HUB 4 +0.7%, HUB 4-5 +1.3%, HUB 4-6 +1.9 %).

Table 8. Accuracy table and mean percent cover for Mytilus spp. models with different predictor
variables. Accuracy was measured (testing data, observed vs. predicted) with RZ, root mean square
error (RMSE), mean absolute error (MAE) and mean error (ME). In addition, the predicted values were
grouped into intervals (0-10%, 10-50%, 50-90%, 90-100%) and evaluated with overall accuracy (OA) as
classes and absence—presence. Predictors (1) all refer to both substrate model outputs (developed
using all available training data and predictor variables) and survey metrics (Supplementary materials
Table S2), (2) same as (1) but excluding substrate model outputs, (3) same as (2) excluding all backscatter
derived predictors.

OA OA Cover
. 2
Predictors R RMSE MAE ME Classes Abs-pres. (Mean)
1) All 0.62 15.53 9.10 2.30 75 % 89 % 10.7 %
2) No substrate 0.60 16.69 9.84 5.61 69 % 88 % 8.0 %
3) No backscatter 0.49 19.60 11.83 7.96 60 % 75 % 44 %

3.3. Continuous Percent Coverage Models

3.3.1. Substrate Components

Initially, two different ways to predict substrate components using BRTs were explored i.e.,
individual and compositional models. The two modeling approaches showed similar overall accuracy,
with some slight differences, e.g., small patches with a high cover of hard clay were under predicted
in the compositional model, which was not the case for the individual model. Therefore, we present
the simpler individual continuous modeling approach (hereafter referred to as continuous models).
Furthermore, most individual models improved slightly when adjusting the models to sum to 100%
(by dividing with the total sum). A comparison between individual and compositional substrate
models can be found in Appendix A, Table A2 where we also combined the two approaches with
some success.

The overall spatial patterns of the modeled substrate components (Figure 4) were as expected
based on knowledge from the survey. For example, the model of hard clay successfully mapped
clay features also seen in the multibeam data and the large boulder model captured pixels where
distinct boulders could be identified in the multibeam data. Survey artifacts (mainly due to sound
velocity errors in the outer multibeam swath, as well as nadir artifacts in the backscatter signal)
where suppressed in the models, but remained a challenge (seen as striping in SW/NE direction,
Figure 4ij), especially in flat areas of mixed substrates where backscatter was observed to be less useful
to differentiate between coarse sand-gravel and low relief hard bottom areas.
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Figure 4. Coverage maps (%) of substrate components on Hoburgs Bank. (a) sand (0.006-0.2 cm),
(b) gravel (0.2-2 cm), (c) pebbles (2-6 cm), (d) large stones (6-20 cm), (e) boulders (2060 cm), (f) large
boulders (>60 cm), (g) hard clay, (h) hard bottom, (i) hard bottom zoom 1 with hillshade, (j) hard
bottom zoom 2 with hillshade. Absence is based on modeled threshold (<0.01% cover).

Regression analysis of observed and predicted substrate cover showed varying degrees of fit
dependent on the substrate component with R? ranging from 0.32 (large stones) to 0.83 (sand) (Figure 5,
Table 9). MAE ranged from 1.8% (hard clay) to 10.1% (sand) across all substrate component models,
however the low MAE for hard clay was likely a result of a low occurrence of hard clay in the area.
On average there didn’t appear to be a substantial amount of bias in the models with ME ranging from
—2.3% (gravel) to 3.4% (pebbles). However, all models, to varying degrees, tended to underestimate
toward the lower end of the cover scale and overestimate towards the upper end. This was exemplified
by positive ME in the 0-10% class and a predominance of increasingly negative ME values in classes
>10% (Table 10). Furthermore, regression lines tended to be above the 1:1 line at the lower end of
the scale and below the 1:1 line at the upper end indicating the aforementioned effect (Figure 5).
Overall accuracy when predicted values were reclassified into classes 0-10%, >10-50%, >50-90% and
>90-100% (OA classes) or presence >0.001% (OA abs-pres.) were generally high ranging from 72.1%
(sand) to 91.6% (hard clay), and 77.9% (gravel) to 92.9% (hard substrates) respectively (Table 9).

For sand, which was the dominating substrate type on the bank, the highest accuracy was
found in the 0-10% interval (which in most cases equals 90-100% hard bottom) and the 90-100%
interval (i.e., 0-10% hard bottom), showing higher uncertainty in the mixed hard/soft bottom areas.
The individual hard bottom components, which rarely occurred in the 90-100% interval, had the
highest accuracy in the 0-10% interval, increasing uncertainty of predictions >10%.
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Figure 5. Relationship between observed coverage values (%) from testing data (n = 154) on the y-axis,
and corresponding predicted coverage values (%) from substrate component models on the x-axis.
(a) Sand (0.02-0.2 cm), (b) gravel (0.2-2 cm), (c) pebbles (2—-6 cm), (d) large stones (6-20 cm), (e) boulders
(20-60 cm), (f) large boulders (60 cm), (g) hard clay, (h) hard bottom. The solid black line corresponds to
the linear regression and 95% confidence band (grey shade) between observed and predicted coverage.
The dashed line corresponds to a theoretical 1:1 line where observed and predicted values are equal
(i.e., y = x, y-intercept = 0, slope = 1), black points along this line represent the specific predicted
coverage values. Point colors represent the magnitude of difference between an observed value and its
corresponding predicted value on the 1:1 line (black point).

Table 9. Accuracy of percent coverage substrate components (individual models adjusted to sum to
100%). Distribution of the ground-truth dataset divided into HUB 3 classes are available in Table A4.
Accuracy was measured (testing data, observed vs. predicted) with R?, root mean square error
(RMSE), mean absolute error (MAE) and mean error (ME), in addition, the predicted values were
grouped and evaluated with overall accuracy (OA) as classes (0-10%, 10-50%, 50-90%, 90-100%) and
absence - presence (<absence threshold, >absence threshold-100%).

) OA OA
R RMSE MAE ME Classes Abs-pres.
Sand 0.83 17.9 10.1 -14 72.1 84.4
Gravel 0.53 12.6 7.4 -23 74.0 779
Pebbles 0.34 15.7 9.3 34 753 81.2
Large stones 0.32 13.4 74 -0.2 77.9 80.5
Boulders 0.61 15.4 8.7 -0.4 747 85.1
Large boulders 0.36 115 47 -0.2 83.1 87.7
Hard clay 0.61 5.8 1.8 1.1 91.6 92.2
Hard bottom 0.79 18.2 9.4 0.3 753 929

Table 10. Accuracy of percent coverage substrate components (individual models adjusted to sum to
100%), divided into groups. Accuracy was measured (testing data, observed vs. predicted) with mean
error (ME) and standard deviation (SD).

0-10% 10-50% 50-90% 90-100%

n ME SD n ME SD n ME SD n ME SD

Sand 53 5.6 15.3 33 =21 20.8 20 -155 273 48 -2.7 7.2
Gravel 95 1.9 7.8 50 -9.1 14.2 9 -8.5 21.6 0 - -
Pebbles 100 4.2 10.0 52 2.3 22.2 2 -11.4 240 0 - -
Large stones 102 3.0 9.9 50 =57 164 2 -249 253 0 - -
Boulders 105 2.0 5.9 29 -6.3 24.6 20 —4.6 27.2 0 - -
Large 134 13 55 15 52 218 5 251 386 O - -

boulders

Hard clay 152 13 5.0 1 -32.1 - 1 7.5 - 0 - -

Hard bottom 86 4.8 133 21 3.6 22.4 24 -147  26.6 23 —4.4 8.9
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3.3.2. Substrate Fine Fractions

The maps of sieved fine fractions adjusted to the main sand model (which included finer
subfractions as well) are shown in Figure 6, with accuracy assessments using bootstrap of the sieved
training data shown in Table 11. In a visual assessment of the outputs, we noticed that silt and fine sand
accumulated in areas where post-glacial sand deposits were seen in the sediment echo sounder profiles.
This observation often also corresponded with sediments with no ripples and the occurrence of Macoma
balthica shell aggregations. The fine fraction models did not have very high accuracy overall and would
benefit from a larger training dataset to describe such substrate features. However, the accuracy of
the adjusted maps shown in Figure 6 is likely higher due to the adjustment to the main sand model
(Tables 9 and 10).

Cover
00w (@

0%
absent

Figure 6. Coverage maps (%) of fine substrate components on Hoburgs Bank modeled from sieved
grab samples, then adjusted to the main sand model. (a) Clay (<0.002 mm), (b) silt (0.002-0.06 mm),
(c) fine sand (0.06-0.2 mm), (d) medium sand (0.2-0.6 mm), (e) coarse sand (0.2-2 mm)). For clay and
silt the colors are stretched between 0-10% instead of 0-100%. Absence is based on modeled threshold
(<0.01% cover).

Table 11. Accuracy statistics (using bootstrap of training data, n = 25) for fine fraction proportions
predicted from sieved sediment samples. R?, root mean square error (RMSE), mean absolute error (MAE).

R? RMSE MAE

Clay 0.03 2.02 0.92
Clay-silt 0.27 0.71 0.54
Silt 0.32 0.66 0.53

Fine sand 0.76 1.07 0.85
Medium sand 0.79 0.76 0.59
Coarse sand 0.58 141 1.02

3.3.3. Biological Components

The individual outputs and corresponding accuracy assessment from the biological models
included in the HUB 5 level are shown in Figure 7. Similar to the substrate components some survey
artifacts carried over to the biological models (seen as striping in SW/NE direction along survey lines in
Figure 7g—-i, However most of the artifacts occurred in mixed sediment areas with low relief, while sand
areas and more distinct reef features showed very few visual artifacts.
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Figure 7. Percent coverage of HUB level-5 groups. (a) Annual algae, (b) perennial algae, (c) epibenthic
bivalves (Mytilus spp.), (d) cnidarians, (e) epibenthic moss animals (Bryozoans), (f) colonized substrate,
(g) Mytilus spp. with hillshade 5 m zoom level 1, (h) Mytilus spp. with hillshade 1 m zoom level 2,
(i) Mytilus spp. with hillshade 1 m zoom level 3. Absence is based on modeled threshold (<0.01% cover).

Regression analysis of observed and predicted HUB level-5 biological cover showed varying
degrees of fit dependent on the biological component with R? ranging from 0.01 (epibenthic moss
animals (Bryozoans)) to 0.84 (colonized substrate) (Figure 8, Table 12). MAE ranged from 0.2% (moss
animals) to 13% (perennial algae) across all HUB level-5 biological component models, however the
low MAE for moss animals was likely a result of extremely low cover of moss animals in the area.
On average, bias in the models was relatively low with the exception of uncolonized substrate where
ME was —6.7% (Table 12). Similar to substrate components, models for perennial algae, epibenthic
bivalves, and epibenthic cnidarians, to varying degrees, tended to underestimate toward the lower end
of the cover scale and overestimate toward the upper end (Table 13 and Figure 8b—d). The annual algae
model did not behave in the same manner tending to show an underestimation of annual algae cover,
however this was likely because 149 of 154 of the predicted cover values were <2% making it difficult
to assess. The epibenthic moss animal model was difficult to assess as all predicted values were <0.9%
and observed coverage was generally was low (<6%, Figure 8e). The uncolonized substrate model,
on the other hand, tended to overestimate the cover of uncolonized substrate. This was exemplified
by negative ME values across all classes (Table 13) as well as the regression line below the 1:1 line
(Figure 8f). Overall accuracy where predicted values were reclassified into classes 0-10%, >10-50%,
>50-90% and >90-100% (OA classes) were generally high ranging from 68.2% (perennial algae) to
100% (epibenthic moss animals) (Table 8). However, high values for epibenthic moss animals and
annual algae were not surprising as few to no observed values were >10% (Table 8). Overall accuracy
where predicted values were reclassified to presence (OA abs-pres.) was high, ranging from 79.9%
(Cnidarians) to 97.4% (Table 8).

Both substrate and biological component generally showed higher uncertainty in the mixed and
often patchy hard/soft bottom areas (Figure 5, Figure 8 and Table 10, Table 13). This was further
confirmed by the maps of standard deviation between all model outputs (Figure 9).
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Figure 8. Relationship between observed coverage values (%) from testing data (n = 154) on the
y-axis, and corresponding predicted coverage values (%) from biological component models on the
x-axis. (a) Annual algae, (b) perennial algae, (c) epibenthic bivalves (Mytilus spp.), (d) cnidarians,
(e) epibenthic moss animals (Bryozoans), (f) colonized substrate. The solid black line corresponds to the
linear regression and 95% confidence band (grey shade) between observed and predicted coverage.
The dashed line corresponds to a theoretical 1:1 line where observed and predicted values are equal
(i.e., y = x, y-intercept = 0, slope = 1), black points along this line represent the specific predicted
coverage values. Point colors represent the magnitude of difference between an observed value and its
corresponding predicted value on the 1:1 line (black point).

Table 12. Accuracy of percent coverage biological components (HUB level-5 groups). Accuracy was
measured (testing data, observed vs. predicted) with RZ, root mean square error (RMSE), mean absolute
error (MAE) and mean error (ME), in addition, the predicted values were grouped and evaluated with
overall accuracy (OA) as classes (0-10%, 10-50%, 50-90%, 90-100%) and absence - presence (<absence
threshold, >absence threshold 100%).

2 OA OA

R RMSE MAE ME Classes Abs-pres.
Annual algae 0.37 7.1 15 15 94.8 91.6
Perennial algae 0.52 20.4 13.0 1.8 68.2 91.6
Muytilus spp. 0.62 155 9.1 2.3 75.3 89.0
Cnidarians 0.12 9.7 4.7 2.4 77.3 79.9
Moss animals 0.01 0.8 0.2 -0.2 100 90.3
Colonized substrate 0.84 17.9 8.0 -6.7 80.5 97 .4

Table 13. Accuracy of percent coverage biological components (HUB level-5 groups) divided into map
percent cover intervals. Distribution of the ground-truth dataset divided into HUB 46 classes are
available in Table A5. Accuracy was measured (testing data, observed vs. predicted) with mean error
(ME) and standard deviation (SD).

0-10% 10-50% 50-90% 90-100%
n ME SD n ME SD n ME SD n ME SD
Annual algae 153 14 6.9 1 15.7 - 0 - - 0 - -
Perennial algae 84 4.3 10.9 39 5.0 29.5 31 -8.8 23.0 0 - -
Muytilus spp. 80 2.6 8.4 56 25 20.7 18 0.6 20.5 0 - -
Cnidarian 139 34 8.5 15 =71 124 0 - - 0 - -
Moss animals 154 0.2 0.8 0 - - 0 - - 0 - -
Colonized 27 08 1.8 22 98 142 23 137 276 82 59 153
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Figure 9. Locations of testing (PI stands for point intercept data from the 2016-2017 survey) and

training data used for the modeling, as well as mean standard deviation for all continuous models
tested for (a) substrate components (10 models of each component) and (b) biological components
(5 models for each component). The maps are only intended to capture spatial patterns and cannot be
used to compare the values between (a) and (b).

3.4. Thematic Maps

The reclassified thematic maps according to HUB, Natura 2000, and SGU substrate maps at 5-m
resolution are shown in Figures 10-12. The accuracy of the HUB and Natura 2000 maps had overall
accuracy ranging from 53.2% (HUB level 4-6) to 87.7% (Natura 2000). More details are available
in Table 5, as well as in the user-producer matrix of HUB 3 (Appendix A Table A3). No accuracy
assessment was available for the SGU substrate maps and Natura 2000 subtypes, since the testing
data did not include these classes due to the included terrain metrics (Natura 2000 reef subtypes) and
sediment samples (i.e., fine sand class in SGUs substrate maps).
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Figure 10. (a) HUB level 3, (b) HUB 4-6 (12 classes found), (c) HUB 1-6 (59 classes found,
see Supplementary materials Legend S1, Table S3 and Map S1 for enlarged legend, map and more
details). HELCOM HUB is a hierarchical classification scheme that consists of six levels with biotopes
defined by applying split rules similar to a dichotomous key. The first 3 levels describe habitats (region,
vertical zone, substrate) whilst levels 4-6 describe biotopes (community structure, characterizing
community, dominating taxa).

I fat reef, geogenic
(a) P B flat reef, mussels > 10%, geogenic (b)
3 [ rock boulder reef, geogenic
B reef ¥ B rock _boulder reef, mussels >10%, geogenic
[] sandbank : I ridge ree/, geogenic
5 : I ridge reef, mussels >10%, geogenic
I cloy reef, geogenic
I clay reef, mussels >10%, geogenic
) sandbank, rippels
[ sandbank, mussels <10%, ripples
I sandbank, no ripples
M sandbank, mussels <10%, no ripplesdl

Figure 11. (a) Natura 2000 reefs and sandbanks, (b) Natura 2000 subtypes according to the Geological
Survey of Sweden (SGU) implementation, (¢) zoom of (b). The Natura 2000 subtypes were developed
through a combination of continuous substrate and biological predictions, terrain metrics (i.e., fine-scale
bpi) and thematic models (i.e., ripples or no ripples).

The Natura 2000 subtype map captured eight reef classes and four sandbank classes, revealing
features and seascape patterns not seen in the main Natura 2000 map (two classes, sandbanks and reefs),
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including an extensive pattern of ridges (Figure 11). Similarly, the reclassified SGU surface substrate
map captured 6 classes and showed considerably more detail than the legacy surface substrate map,
especially for the areas mapped with 1:500 000 scale (Figure 12).

WK1 Cobbles, boulders and bedrock

K2 Pebbles, cobbles and boulder ( a )
BEK3 Sand, coarse sand, gravel, shellgravel and pebbles

WK Sand o
[IKS Fine sand

MMK6 Firm mud

Figure 12. Before and after comparison between existing thematic map products of surface substrate
and the new continuous models overlaid. (a) SGU legacy surface substrate maps (combination of 1:500
000 and 1:100 000 map), (b) same as (a) with the reclassified substrate models map overlaid, (c) percent
hard bottom map developed by SGU from the legacy thematic maps (same as a) for the marine spatial
planning cumulative impact assessment tool Symphony [10], (d) same as (c) with the new percent hard
bottom model overlaid.

3.5. End-User Applications

In the following sections we investigate some of the end user applications of reclassified
continuous maps.

3.5.1. Impact of Scale

The spatial resolution used when reclassifying continuous maps affected the percent coverage
of the resulting thematic classes. When the HUB level 3 classification was applied to a growing-size
window, small distinct features declined in cover and were replaced by more general classes (Figure 13,
Table 14).

- rock and boulder B2
B rad clay
B coarse sediment {38
D sand
B mixed

Figure 13. Comparison of HUB 3 substrate maps created using different scales; as the analysis window
grows smaller features quickly give way to more general classes such as mixed sediments. (a) 5-m
resolution, (b) 50-m resolution, (c) 250-m resolution.
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Table 14. Percent coverage changes for HUB level 3 classes as the analysis window changes from 5 m

to 250 pixels. Significant changes of cover for the rarer classes occur already at the 10-m pixels.

5m 10 m 25m 50 m 250 m
Sand 36.4%, 469 km?  35.2%, 472 km? 35%, 465 km? 33.9%, 456 km?  31.3%, 420 km?
Coarse 16.2%, 217 km?  14.3%, 192 km? 13%, 179 km? 12,4%, 167 km?  10,0%, 133 km?
Mixed 46.4%, 623 km?  50,0%, 672 km? 51.8%, 696 km? 53.5%, 719 km?  58.7%, 789 km?
Rock and boulder 0.74%,10 km?  0.56%, 7.5 km? 0.32% 4.3 km? 0.10%, 1.4 km?  0.01%, 0.12 km?
Hard clay 0.06%, 0.81 km?  0.02%, 0.22km?  0.003%, 0.04 km? 0 0

In the Natura 2000 maps (reef/sandbanks), the reef class increased in cover as the window-size
increased (Figure 14), moving towards 100% cover of reef when using mean cover for the whole bank.
Predicted mean cover of hard bottom (19.3%) was below the threshold for reef (>50%) but Mytilus in the
study area was above the threshold (>10% mussel cover), which then classified it as reef. Conversely,
if the mean cover for Mytilus would have been < 10%, the mean cover of the study area would have
been classified as sandbank, reversing the pattern of the growing analysis window.

(a)

M reef
[ sandbank

25 km

Figure 14. Comparison of Natura 2000 maps created using different scales from 5 m to 25 km analysis
window. The definition for “reef” is >50% hard bottom (the mean hard bottom cover on the bank was
19.3%) or >10% epibenthic bivalves (the mean Mytilus cover on the bank was 10.7%). The choice of
scale changes the cover of each class. (a) 5-m resolution (reef 44% coverage), (b) 500-m resolution (reef
51% coverage), (c) 5 km resolution (reef 55% coverage), (d) 25 km resolution (reef 67% coverage). At the
scale of the whole bank it would be 100% cover of reef.

High-resolution habitat maps generally allow the user to choose across many different options,
therefore, aggregating the information to the appropriate-management scale. Applying a management
scale of 250 m pixels to the HUB 3 classification made the classes rock and boulder and hard clay
disappear (0.01% and 0%). However, if instead all 250 m pixels containing these classes at the 5 m scale
were mapped, rock and boulder covered 32% and hard clay 17.8% (Figure 15).

3.5.2. Effect of Predefined Thresholds in HUB

The areas classified as characterized by epibenthic bivalves or dominated by Mytilidae (i.e., 210%
and >50% mussel cover respectively) in the reclassified HUB map were 161 km? (12%) and 11.6 km?
(0.9% of the area) respectively. The area using the same thresholds but calculated directly from the
percent coverage map of Mytilus was 479 km? (36%) and 19.8 km? (1.5%) (Figure 16). Due to overlap
with other benthic organisms with higher cover (primarily perennial algae), the HUB map was not
accurate when analyzing percent cover of individual organisms.
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Figure 15. (a) HUB 3 substrate map at the 250 m scale, (b) 250 m pixels that contain HUB 3 rock and
boulder class (blue) at the 5-m scale, (c) 250 m pixels that contain HUB 3 hard clay class (black) at the

5-m scale.

. 2 PR}

# Fivy g8
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Figure 16. Comparison of Mytilus spp. maps from HUB classes versus the continuous prediction (a)
Muytilus classes from HUB level 4-6 map (characterized by = 10-50%, dominated by = >50% cover),
(b) Mytilus classes extracted from percent coverage prediction (absent, 0-10%, 10-50% and >50%).
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4. Discussion

High-resolution continuous and thematic models can help to overcome some of the limitations of
classification schemes. We found that the accuracy (overall accuracy and Tau of observed vs. predicted)
of classified HUB and Natura 2000 maps were similar regardless of whether we used classification
models directly, or reclassified models of continuous percent coverage. However, we also found that
producing continuous maps and then applying classifications had a greater value due to the added
possibilities, such as simple application of thresholds (conditions) or spatial analysis directly from
continuous variables (e.g., through raster calculation).

In the first part of the discussion below, we discuss how the use of continuous maps affects the
possibilities for end users. In the second part, we focus on technical aspects of this study and the
accuracy of the maps we produced.

4.1. User Applications

Given that benthic habitat maps are often supported by similar types of information (e.g., substrate
and benthic organisms), it is possible to map different classification schemes that share the same
continuous components (but perhaps not the same combination of thresholds), without having to
rerun any models. For the case where maps include components that are not suitable for continuous
models, the classification can still use a combination of percent coverage predictions and terrain metrics
(e.g., BPI, slope) to map geomorphological features such as ridges and walls (in this study exemplified
by the ridge class in the SGU implementation of Natura 2000 subtypes, mapped from a combination
of percent hard bottom cover prediction and BPI thresholds), or use additional thematic models for
some specific features (in this study exemplified by the sand ripple class in the SGU implementation of
Natura 2000 subtypes).

Moreover, the thematic maps that are based on continuous models are not limited to one spatial
scale but can easily be adjusted to any window larger than the minimum mapping unit. Therefore,
we provided all HUB and Natura 2000 maps at multiple scales to accommodate different definitions
and applications. The scale and the minimum mapping unit can dramatically change the occurrence of
different thematic classes [43,44], especially in patchy environments like our study area as shown in
Figure 13 and Table 14. Though some guidelines of scale often do exist [3], clear directions for how to
address the problem of thematic changes at different scales are missing from many schemes, including
EUNIS, HUB and Natura 2000. The importance of such schemes makes this a priority to address.
When the mapmakers and end-users are free to decide on the scales relevant for a specific habitat
and biotopes of interest it could come with unwanted effects. Assuming, for example, that different
legislation is tied to the Natura 2000 reef and sandbank classes on Hoburgs Bank, it would then be
important to also specify the scale, since the bank can be classified as a sandbank, a reef, or both
depending on the size of the analysis window. Similarly, the scale also needs to be considered
when looking to monitor habitat (and ecological status) change. A focus on conservation features
(e.g., reefs) can often overlook the ecological importance of connected patches types such as sand or
seagrasses in the seascape, which can also be critical resources for mobile species [45]. Furthermore,
when transnational classification schemes are used in multiple mapping projects, the lack of a clear
definition on scale can hamper the overarching goal of creating a unified map. Transnational maps can
be seen as a common governance effort across countries borders as discussed by Pecl et al., [13] for
instance when considering habitat maps as tools to manage effects of climate change to ecosystems.

In this study we show that an important advantage of continuous high-resolution maps is that they
provide more options when moving information across different scales, for example from mapping to
the management scale. In Figure 15, we recalculated the HUB level-3 substrate map at 250-m resolution,
which is the resolution used by SwWAM to assess current and future cumulative impact on the marine
environment, and to evaluate the effect of the proposed national marine spatial plan [10]. At this
scale, the less common classes hard clay and rock and boulder disappeared into the more commonly
occurring HUB classes sand, coarse sediments and mixed. In fact, the coverage of the hard clay and



Geosciences 2019, 9, 237 24 of 30

rock and boulder classes started to decline already at the 10 m scale. If small but distinct features
associated with hard clay and rock and boulder classes have important ecosystem functions, despite
their coverage, it could be key to include this information at the management scale. For example,
SGU (observation by Gustav Kagesten during field season 2018 in the north middle-seabank) and
Beisigel et al. [46] found that such features are used as spawning locations by herring and as shelter
by cod. On the contrary, if only commonly occurring classes are of interest perhaps a coarser scale is
appropriate as well. When high-resolution maps are available there are alternative ways to include
such specific features at the management scale, for example by mapping management units that contain
a presence of the features of interest. The HUB rock and boulder class in our study area covered nearly
a third of the bank, when testing this approach for 250 m pixels (Figure 15). This could be essential
information in a marine spatial plan, for example assuming that the mere presence of large boulders in
a planning unit provides grounds for protection from bottom trawling.

Maps of continuous variables can have a broad variety of applications where classified maps may
not be as suitable. An obvious example in the study area is to estimate mussel biomass and related
ecosystem services [47] using the continuous prediction, thereby providing the percent mussel coverage
with greater certainty than thematic maps, which rely on intervals of mussel coverage. However, if for
instance a bird conservation action is being planned based on the total area suitable for birds feeding
on blue mussels, and assuming that birds seek areas with at least 50% mussel cover according to their
feeding strategy, one may wrongly think that the HUB classification can help in the conservation plan.
Though classes at level 4 to 6 capture locations characterized by an organism (if it has more than 10%
coverage) or locations dominated by an organism (if it has more than 50% coverage), a location would
only be considered dominated by an organism if no other organism had a greater coverage in that cell
(since holdfast and canopy count as overlay in our point intercept data the total cover can exceed 100%).
In our study area, we observed that perennial algae often covered Mytilus, and this caused the HUB
classification to be labeled as dominated by perennial algae instead of mussels (which often still had a
coverage of >50%, though not captured in the HUB map). In this last case, the locations will incorrectly
be considered as unsuitable for the bird conservation action. According to our assumptions, the total
area of suitable bird habitat almost doubles when basing the calculation on the continuous mussel
prediction instead of the HUB map (Figure 16). If a different coverage of mussels is set (e.g., 10-50%),
the suitable habitat increased threefold when using the mussel percent cover map instead of the HUB
map. Finally, if the suitable feeding location threshold is a number larger than 50% of mussel cover,
the HUB map will not provide any suitable area with confidence.

Differences in the representation of the relative abundance of habitat types in the seascape can
have important implications for management activities including identifying and quantifying spatial
change, valuing natural capital and protecting resource designations such as essential fish habitat.
Furthermore, when habitat maps are used as spatial predictors in species distribution models or to
quantify spatial patterns the issue of spatial and thematic resolution must be considered specifically as
a key variable and carefully evaluated [34,48,49].

4.2. Technical Applications

Our use of legacy data and expert annotations proved, as in previous studies [50], to have a high
value in the models. For example, their use increased the HUB 3 thematic substrate model accuracy
(overall accuracy observed vs. predicted) from 59% to 78% (Table 7). The additional training data
concerning substrate components also indirectly improved the biological models, using substrate
model outputs as predictor variables. The accuracy of the Mytilus spp. model (R?, RMSE, MAE and
ME of observed vs. predicted) and HUB level 4-6 maps improved when the substrate predictions were
included as predictor variables (Table 7), even when high resolution bathymetry and backscatter were
available, which to some degree can act as surrogate for substrate grain size [51]. We also noticed
fewer survey artifacts in the biological models when substrate models were included as predictor
variables. The full combination of substrate and biological models into HUB biotopes level 1-6
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(see Supplementary materials Legend S1 or Table S3 for all 59 resulting HUB classes), are likely to have
high uncertainties at the pixel level for the end user (generally, the more thematic classes combined
the lower the accuracy for each combination as shown in Table 5), but also generated very few pixels
containing obviously rogue classes (such as an illogical combination of soft bottom dominated by a
hard bottom species). We suspect that this was due to the use of substrate outputs in the biological
models, and from using the same set of predictors. Our results showed the possibilities of including
ground truthing data from several quality levels (i.e., high resolution survey, legacy data and expert
annotations), that data from sediment samples and images can be combined using continuous models,
and the benefits of integrated geological and biological surveys and models.

The high resolution of our survey enabled us to capture features such as sand ripples and
individual boulders, using a combination of backscatter statistics, multiscale bathymetry and OBIA
metrics (which had the highest overall contribution in the models, Table A1, Table S2). While models
using the full range of predictor variables performed best and is the approach we recommend for
future studies prioritising high accuracy, we concluded that a simpler combination of bathymetry
metrics and a backscatter mosaic at resolution of 5 m would have been sufficient to create our models
(accuracy for HUB level 3 decreased from 78% to 73%). The combination of 5 m bathymetry metrics
and the backscatter mosaic outperformed any further combination of multiscale metrics that did
not include backscatter, indicating the importance of backscatter as a predictor to capture sediment
characteristics. This is not surprising given that backscatter has long been recognized as a key predictor
variable [52,53]. When backscatter was not included, we observed that the multiscale metrics were
increasingly important (OBIA metrics was not tested in this case, but it is likely it would be useful as
well considering that it was important in the models that included backscatter), highlighting that some
accuracy can be gained using high-resolution (<1 m) bathymetry metrics and rescaling techniques.

Though we provided several different statistical measures describing the accuracy of our
predictions, covering the gap between reality and the accuracy assessment of our predicted maps
remains a challenge [14]. Combining continuous models into thematic maps, as well as using substrate
models to train biological models made techniques such as cross-validation impractical. Hence,
we used the same testing data for all models, which to some degree lowers the confidence in the
accuracy statistics produced. Figure 9 confirms that error is higher in patchy areas and lower in
homogeneous areas for both substrate and biological models. The manual point intercept annotations
of high-resolution drop-camera imagery were a source of unknown error, and also a major part of the
post processing effort. Due to the inclusion of lower quality expert annotations and legacy data in
the training data set, we were able to lower the per site annotation effort for the substrate models,
with a positive spillover effect to some of the biological models. Even so, we recognize that the time
and cost needed to implement continuous percent coverage annotations may be a limiting factor for
mappers, compared to thematic annotations. We believe that further development and application of
computer vision technologies that have potential to support expert annotations of ground truth data
and estimates of uncertainty [54-57] will be an important field to lower the costs and further improve
the approach presented in this study.

Our maps of Hoburgs Bank are intended to be living rather than static products that can be
enhanced as soon as, for instance, more or better training data becomes available. However, even with
future improvements (e.g., related to data quality, reduction of human error, and more sophisticated
models and techniques), we will always live with some degree of uncertainty due to natural variability
that our modeling will not be able to incorporate [14,58].

5. Conclusions

Maps with continuously varying data on substrate and benthic organisms added more valuable
information than more simplified patch-mosaic thematic maps. Continuous maps provide more
flexibility in application and can be scale-adjusted and resampled more easily to address a wider
range of research questions and management applications. Our findings provide a clear example of
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how high-resolution continuous maps can be successfully generated by combining multibeam depth,
backscatter, drop-camera and sediment samples, and that additional classified maps can be generated
from this workflow without the loss of accuracy compared with thematic models. While we recognize
the value and convenience of thematic maps, relying solely on such classification schemes can result in
the neglect of habitats or features with great environmental value. It is therefore essential to understand
the limitations of any classified maps for marine spatial planning and decision-making particularly
with regard to scale and schema dependence and the associated errors that may be propagated through
the mapping process.
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Appendix A
Table Al. Percent contribution of predictors (grouped by theme, see Supplementary Materials, Table 52

for more detailed breakdown) in thematic BRTs with and without substrate (sub) models included in
the predictor variables.

HUB4-6 HUB4-6 Mytilus Mytilus Average Average

Predictor Group %H:izfr no sub with sub no sub with sub no sub% with sub

: % contr. % contr. % contr. % contr. contr. % contr.
BS mosaic metrics 0.5 m-1 m 31 4.3 3.0 3.3 1.2 BI5) 21
BS mosaic metrics 5 m 10.0 4.6 2.0 3.8 0.7 6.1 1.3
BS ARA 2.8 49 14 3.1 0.6 3.6 1.0
BS mosaic multiscale 20 m-2 km 4.0 4.1 2.6 32 11 3.8 19
Pg.s sediment thickness 1.4 14 14 14 14 14 14
Depth 5 m 4.4 3.8 3.7 21 0.8 34 2.3
Terrain metrics 0.5 m-1 m 8.5 94 5.6 10.1 2.7 9.3 41
Terrain metrics 5 m 54 7.7 5.3 6.7 24 6.6 39
Terrain metrics multiscale 20 m-2 km 16.3 20.6 15.5 14.7 7.3 17.2 114
Distance to reefs and sand 9.6 74 32 49 14 7.3 2.3
OBIA based on terrerl;n metrics and BS 2.5 259 19.7 73 400 30 285 51
Oceanography 24 2.5 2.2 13 0.6 2.1 14
Uncertainty (depth, backscatter) 2.0 3.1 2.3 2.0 13 2.4 1.8
Northing/easting 43 3.5 3.1 17 0.9 3.1 2.0

Substrate models - - 40.2 - 75.2 - 57.7
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Table A2. Substrate component accuracy assessment using the validation data set (n = 154) for four
model types, individual models (ind), individual models adjusted to 100% sum (i.adj), compositional
models (comp), and combined compositional and individual models (hard clay component) adjusted to
sum to 100% (comb). All models were run using Gaussian distribution boosted regression tree models
with the same training data and predictor variables.

R? RMSE MAE Bias
ind iadj comp comb ind iadj comp comb Ind iadj comp comb ind iadj comp comb
Sand 080 0.83 081 0.81 20.4 17.9 19.2 19.3 11.8 10.1 10.0 10.0 5.7 -14 0.9 0.9
Gravel 046 053 049 049 12.6 12.6 12.6 12.7 6.9 7.4 7.1 7.1 2.8 23 0.4 0.3
Pebbles 0.23 034 028 028 177 157 18.2 18.2 10.1 9.3 10.6 10.5 6.0 3.4 -06 -0.6
L stones 0.25 032 032 033 135 13.4 16.4 16.2 7.3 74 9.4 9.4 4.1 -02 -36 -35
Boulders 044  0.61 0.55  0.56 18.8 154 16.8 16.7 9.8 8.7 8.7 8.5 5.6 -0.4 0.4 0.6
L boulders 044 036 062 0.64 9.7 11.5 7.8 7.6 4.0 4.7 32 3.1 11 -0.2 15 1.6
Hard clay 0.66  0.61 023 036 5.7 5.8 9.2 8.8 1.8 1.8 2.3 2.0 15 1.1 1.1 0.7
Mean 044 051 0.51 0.52 15.4 132 15.2 15.1 8.3 7.1 8.2 8.1 42 0 -02 -01
SD 020 019 021 0.19 53 39 4.5 4.6 3.6 1.8 33 34 2.1 1.8 17 17

Table A3. Observed vs. predicted confusion matrix for reclassified HUB 3 map using the validation
data set (n = 154).

Coarse Hard Mixed Rock & Sand Sum User
Substrate Clay Boulder (n) Accuracy %
Coarse substrate 12 0 10 0 0 22 54.55
Hard clay 0 0 0 0 0 0 0
Mixed 3 1 42 3 0 49 85.71
Rock & boulder 0 0 3 16 0 19 84.21
Sand 3 0 7 0 54 64 84.38
Sum (n) 18 1 62 19 54 154 0
Producer accuracy % 66.67 0 67.74 84.21 100 0 80.52

Table A4. Distribution of the ground-truth dataset divided into HUB 3 classes.

HUB 3 UV obs. ! Legacy > Expert 3 Total
Rock and boulder 67 34 16 117
Hard clay 5 0 83 88
Coarse sediment 72 89 138 299
Sand 195 159 252 606
Mixed 220 167 61 448

Total 559 449 550 1558

! Drop camera samples (2016-2017), testing (30%) and training (70%); > Drop camera, video transects, sediment
samples (2005), training only; 3 Expert annotation (based on depth and backscatter), training only.

Table A5. Distribution of the ground-truth dataset divided into HUB 4-6 classes.

HUB Level 4-6 UV obs. !

Characterised by perennial algae 73
Dominated by perennial filamentous algae 94
Characterised by epibenthic bivalves 42
Dominated by Mytilus spp. 59
Characterised by cnidarians 25

Characterised by annual algae 2
Mixed epibenthic community 16
Sparse epibenthic community 79
No epibenthic community 169
Total 559

! Drop camera samples (2016-2017), testing (30%) and training (70%).
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