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Abstract: The paper addresses the fields of combined close-range photogrammetry and terrestrial
laser scanning in the light of ship modelling. The authors pointed out precision and measurement
accuracy due to their possible complex application for ship hulls inventories. Due to prescribed
vitality of every ship structure, it is crucial to prepare documentation to support the vessel processes.
The presented methods are directed, combined photogrammetric techniques in ship hull inventory
due to submarines. The class of photogrammetry techniques based on high quality photos are
supposed to be relevant techniques of the inventories’ purpose. An innovative approach combines
these methods with Terrestrial Laser Scanning. The process stages of data acquisition, post-processing,
and result analysis are presented and discussed due to market requirements. Advantages and
disadvantages of the applied methods are presented.

Keywords: terrestrial laser scanning; LiDAR; photogrammetry; surveying engineering;
geomatics engineering

1. Introduction

The present-day market requirements address application development in the cases of inventories
and reverse engineering. Attention is paid to autonomous, fast, and accurate measurements covering a
broad goal domain, e.g., the human body studies [1,2], coastal monitoring [3–5], or civil engineering [6–8].
The measurements involving a single technique only may lead to unacceptable results in terms of
complex services in variable conditions (e.g., various weather conditions). Moreover, limitation to a
single method may yield lower accuracy or neglect an entire spatial information in the course of data
acquisition. Let us revise the case of a building inventory with the use of a laser scanner. The building
side walls will be reproduced in contrast to a roof [9]. In order to solve this problem, it is reasonable to
use another measurement method to collect spatial information on the object (e.g., with the additional
use of aerial photos from the aircraft or UAV (Unmanned Aerial Vehicle)) [10,11]. Generally speaking,
as stated in Reference [12], no single modelling technique meets all requirements of high geometric
accuracy, portability, full automation, photo-realism, and low cost as well as flexibility and efficiency.

The article addresses the ship hull as-build modelling and reverse engineering of a submarine by
means of photogrammetry and terrestrial laser scanning. A hull manufacturing precision regarding
the 3D model and the real manufactured object may be assessed by random measurement of a ship
hull element. It is worth mentioning that, due to the final results, a single technique does not deliver a
full range of data to cover the modelled object. In the presented case, each 3D measurement technique
was affected by its typical problems. However, each case was a distinct one. Hence, we proposed to
aggregate the methods of close range photogrammetry and terrestrial laser scanning to obtain spatial
information about the submarine with high precision and accuracy, which reduces the disadvantages
of both approaches.
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The ICP (Iterative Closest Points) algorithm was employed to connect scan positions originating
from an active sensor in the form of a laser scanner. It is one of the most popular algorithms used to
connect two sets of data, which iteratively matches the transformation by means of the matching points
and minimization of the error. The algorithm has been widely presented in the literature. The initial
variant of the algorithm was presented in Reference [13]. However, the methods have been relevantly
shown and compared in Reference [14]. Based on this reference, the ICP algorithm may be insufficient
in either the cases of large distance, rotation, or coverage between datasets. The simplest solution is
to initially establish the sets indicating the corresponding points in both sets, and to apply the ICP
algorithm. In some cases, despite a correct reference, the algorithm is unable to find adequate coverage.
Such a situation makes the solutions in the articles suitable for use [15,16].

In order to recover a complete and accurate 3D model from the images, the state-of-the-art
commercial software (Bentley Context Capture) was employed. The photogrammetry process of
the presented case includes geodetic control point measurements, image data acquisition, and data
processing. In the course of data processing, the phase camera was calibrated by means of the Bentley’s
Company intrinsic camera parameters. Next, automatic tie points were detected, an additional manual
user defined the tie points, and the bundle adjustment was carried out. Those operations led to
conducting additional camera autocalibration and the computation of the camera exterior orientation
parameters. Lastly, coordinates of the image-based 3D object point coordinates were stated (dense
point cloud). Subsequently, mesh and texture generation was carried out.

The marine industry successfully applies photogrammetric and laser scanning techniques for
as-build modelling and quality check. An interesting combination of laser scanning and close range
photogrammetry is proposed in Reference [17]. The research is based on laboratory models, which do
not incorporate real objects and only real hulls. In this case, the photogrammetric technique is applied
for control points measurements, not performing a 3D point cloud hull modelling.

The photogrammetric technique is applied in the research [18]. In this case, the authors implemented
a single measurement technique and the laboratory model cased showed the same results. This approach
distinguishes the signalized targets to measure. The results showed noticeable differences between the
predicted and the real data. The main differences provided a need to use more retro reflective targets with
more illumination in the survey location instead of using a camera flash. The study is a step forward in the
ship and boat survey using the close-range photogrammetry method. In this research [18], combined laser
scanning and multi-image photogrammetry measurements have been employed to document a wooden
ancient shipwreck. During the survey, the 3D data have been integrated and compared after the excavation
of the ship wreck. Additionally, a documentation including a virtual three-dimensional model was created
from the point clouds, and a texture was applied herein. In this approach, two distinct point clouds have
been integrated to provide the model of the ancient shipwreck.

An innovative work is presented in Reference [19]. The authors combine above and under water
photogrammetry for ship hull modelling. The paper provides an innovative procedure for the alignment
of two photogrammetric models, deriving from two separate and independent photogrammetric surveys
above and below the water level. It also shows a possibility to model and control ship hulls without docking.
Similar studies involving an underwater photogrammetry experiment were shown on the example of the
Costa Concordia wreck, where the worldwide shock catastrophe includes fatalities [20].

The research [21] suggested photogrammetry as a suitable method for coordinate measurement of
decks in recreational ships. The research involves the photogrammetry modelling process, noting that,
in the cases of wide corridors for the ships, with few obstacles, the direct method is relevant, when
compared to the photogrammetric method. The maritime and shipyard industries clearly demand the
new 3D modelling technique for the construction process control of ships, control during operation,
and model deformation in the rebuilding process. The research [21] shows that, in selected cases,
the photogrammetry technique is sufficient for ship modelling, which sometimes needs additional,
supportive measurements.
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A number of researchers [22] uses photogrammetric techniques to support reengineering of ship
hulls and ship parts. This research discusses market demand for measurement and modelling of a
variety of objects encountered in shipbuilding and repair businesses. This addresses partial or complete
ship hulls to planar (2D) structural parts. The research was focused on evaluation of laser scanning
and photogrammetry. To summarize, laser scanning is a powerful tool due to its high resolution, while
photogrammetry is bound to recognize specific parts and features of the object, and photogrammetry
was chosen as a preferred measurement method. The research clearly shows that both techniques
are complementary 3D measurement techniques for ship hull modelling. Thus, in order to provide
comprehensive results, these are intended to act simultaneously. The measurement methods [23] used
in ship hull inventory are covered in Reference [24], but there are still problems to integrate the data
from various sensors in the light of proper use and interpretation. Such procedures are aimed at the
entire spatial information of the measured object.

2. Materials and Methods

The submarine hull was modelled with the help of close-range photogrammetry and terrestrial
laser scanning techniques. The research object is a decommissioned Polish Navy Ship Jastrzab (PNS
Jastrzab), ex-HNoMS “Kobben” (S-318) (presented in Figure 1). The submarine represents the Kobben
class (also known as Type 207), which is a customized version of the German Type 205 submarine.
Fifteen vessels of this class were built for the Royal Norwegian Navy in the 1960s. Later on, the class
has been withdrawn from service in the Norwegian and Danish Navy. Some of them was transferred
to Poland and The Polish Navy still operates Kobben-class submarines. The PNS Jastrzab submarine
was commissioned on 15, August 1964, which was transferred to Poland in 2002 for spare parts on
17, December 2011, which moved to the Polish Naval Academy in Gdynia as a base for the crew
training laboratory.Geosciences 2019, 9, x FOR PEER REVIEW 4 of 16 
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Figure 1. PNS Jastrzab—decommissioned submarine—object of research: (a) wet object during laser
scanning with control points, (b) general view of the submarine (source: by Pawel Kusiak, CC BY-SA
4.0, https://commons.wikimedia.org/w/index.php?curid=42676502).

The presented ship hull is a challenging object due to remote sensing modelling techniques.
Thus, it was intentionally chosen to stress the applied modelling methods and to highlight their pros
and cons. The hull is painted with black paint, which highly absorbs the laser light beam. In addition,
a rainy measurement day was chosen in order to point out the methods greater and to simulate real
industrial measurement environment, where the freshly docked hulls are wet. The absence of texture
and tie points makes this object hard to model by means of photogrammetric methods. In the case
of object measurement, the hull was wet and it triggered an additional measurement demand for
the sensors. Highly demanding object size, shape, and surface, complemented by challenges faced
during the research, made a clear explicit display of the presented techniques in highly unfavorable
conditions due to sensors and algorithms. The measurement conditions were prescribed in order to
simulate and consequently assess the efficiency and accuracy of the applied sensors. The accuracy of
sensors in unfavorable measurement conditions was assessed separately in the case of each applied

https://commons.wikimedia.org/w/index.php?curid=42676502
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technique. In order to eliminate the weakness of each separate technique with regard to the final object,
multiple spatial data combining techniques were applied in the post processing phase of the research.
The diagram (Figure 2) shows the sequence of activities leading to the 3D model of the hull. First of all,
the measurements were made using a laser scanner (in order to detect the edge and shape of the hull)
and the cloud of points obtained from the photographs. After combining, the photograph based data
was supposed to fill the spaces between the edges, registered by the laser scanner impulse. The object
modelling means fitting the shape of the hull to the obtained point cloud. In connection with market
expectations and previously conducted tests described in the introduction, accuracy analysis of the
model was made, assuming a boundary value equal to 1 cm.
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Figure 2. Block diagram of the proposed framework.

2.1. Photogrammetry

The photogrammetry technique encompasses methods of image measurement and interpretation
in order to derive the shape and location of an object based on a single number up to several photographs.
The photogrammetric methods can be applied in the case the object can be photographically recorded.
The purpose of the photogrammetric measurement is the three-dimensional reconstruction in digital
or graphical form [23]. The measurements (photos of the modelled object) and a mathematical
transformation between the image and the object space have the means to model the object.
The presented case showed a structure from motion (SfM) applied for hull modelling (Figure 3a).
A structure from motion is the process of estimating a 3-D structure of a scene from a set of 2-D images.
In the considered case, the image series was taken by means of a single calibrated Digital Single Lens
Reflex Camera (DSLR). The initial camera calibration parameters compared with the optimized ones
are shown in Table 1. The initial calibration parameters were taken from Bentley’s database. Further on,
these values were optimized in the autocalibration process.

Table 1. Camera calibration results (camera Canon EOS 550D, lens EF-S18-55 mm f/3.5-5.6 IS 18 mm).

Focal
Length
(mm)

Focal Length
Equivalent

35 mm (mm)

Principal
Point X
(pixels)

Principal
Point Y
(pixels)

K1 K2 K3 P1 P2

Initial Values 19.23 31.04 2618.21 1715.30 −0.1699 0.1792 −0.0335 0 0
Optimized Values 19.22 31.03 2618.93 1714.47 −0.1697 0.1776 −0.0315 0 0

Difference Initial/Optimized −0.01 −0.01 0.71 −0.83 0.0002 −0.0017 0.002 0 0

The 3-D structure and camera exterior orientation parameters were only recovered up to the scale,
i.e., observing the structure and the magnitude of the camera motion in some units, which do not
correspond to the world dimensions. In order to compute the actual scale of the structure of modelled
objects and the camera motion in world units, additional information is required, e.g., the object size in
the scene or distance between some known points (constrains). The object true size can be computed
while the camera Exterior Orientation Parameters (EOP) are acquired by other means. This process is
referred to as direct georeferencing. In traditional photogrammetry, the EOP are derived from Aerial
Triangulation (AT), where the Control Points (CP) are required. Generally speaking, when the camera
is able to record EOP directly from a navigation and orientation system, GCP (Ground Control Points)
are not required to compute the object scale. In the presented case, in order to achieve real-world units
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and dimensions, photogrammetric control points are introduced to the modelled object and measured
by traditional high accuracy geodetic techniques incorporating tachymeter (Figure 3b). All control
points are applied in order to align the model scale and to determine its real dimensions.
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Figure 3. The object modelled with a photogrammetry technique: (a) tie points and camera positions
for SfM modelling and (b) photogrammetric control point placed on the object.

The object has been modelled by means of 159 photos, acquired by Canon EOS 550D (Canon Inc.,
Tokyo, Japan), with the image dimensions of 5184 × 3456 pixels recorded in the JPEG format. In the
data acquisition process, more than 600 photos have been taken according to the presented object
size. The dark color of the object, and highly light absorbing paint with a relatively vivid background
made the acquisition a high demand. The photos rejected from the final calculation were either too
dark or overexposed top parts of the hull. In that case, the surplus images acquired allowed us to
select the ones with correct exposition. On the incorrectly exposed photos, the algorithm are not able
to detect a sufficient number of automatic tie points. The overall number of tie points detected in
the object is 15314 (Figure 3a), with a median number of 330 points per photo and with the median
0.44 pixels reprojection error. The median number of photos per point was equal to 4. Figure 4a shows
the scene with marked camera positions and position uncertainties and Figure 4b presents the set of
photos to potentially cover each area. The object in green denotes the amount of information on the
object, taken from approximately 43 photos, due to the respective parts of the hull. The minimum
reprojection error is 0.01 pixels and the maximum is 1.85 pixels due to the automatic tie point (Figure 4c).
The automatic tie points have not been stated in selected parts of the object (top and bottom part
of the hull). It is the result of insufficiency of textures. Nevertheless, exploring the automatic tie
points done, the SfM algorithm unable to recover the ego motion (external orientation parameters -
camera position and orientation), so the object could not be reconstructed correctly. The problem of
wrongly matched images is bound to appear at the bow and stern parts of the object. In this case,
the 33 manual (user-defined) tie points have been stated in the entire object, most of them situated
within the problematic areas. The manual tie points are defined by the user. Their position on the
images is pointed manually, theoretically on a minimum of three consecutive images. In the presented
case, all 33 user-defined tie points have been pointed on all images to achieve sufficient visibility. It was
a necessary step to start the reconstruction stage.
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the scene (XY plane), (c) reprojection Errors per Tie Point: top view (XY plane) displays of all tie points,
with colors representing the reprojection error in pixels.

2.2. Terrestrial Laser Scanning

The second measurement method was applied for ship hull as-build modelling and reverse
engineering is the Terrestrial Laser Scanning (TLS). The laser scanning technology is based on
measurements with the laser application. This technique is also called LiDAR (Light Detection and
Ranging). Involving automatic data acquisition TLS is able to register huge amounts of data to be widely
explored in many applications. A possible application range covers a method to assess suspensions
of harmful dust [25], deformation monitoring [26], or concrete diagnosis [27]. However, due to the
development of techniques and striving to achieve maximum effects in the shortest possible time,
significant progress has been made in the use of a vast domain of mobile systems, where the measuring
device can be located on a moving unit (for example, aircraft, car, or boat). Calibration of the scanner



Geosciences 2019, 9, 242 7 of 16

on a mobile unit has been widely described in Reference [28]. This solution is applied for popular
navigation and measurements in buildings [29] or in tunnels [30].

In order to provide data acquisition, the Riegl VZ-400 Terrestrial Laser Scanner (RIEGL Laser
Measurement Systems GmbH, Horn, Austria) was used in courtesy of the Apeks Company, which
rented the equipment for research. The instrument specification denotes that the VZ-400 is able to
register 122,000 thousands of points per second on a distance not exceeding 350 meters in a High Speed
mode. The accuracy of the scanner equals 5 mm. Its precision is 3 mm. Thus, the accuracy of the
ship-hull model, to be post-processed in the next steps, should be equivalent to 1 cm accuracy value.

In order to provide spatial data acquisition, a number of 20 scan positions was conducted in
different scan patterns. The scan positions are presented in Figure 5. Bad weather including rain and
insolation appeared to negatively act upon the results. Although Terrestrial Laser Scanning shows
many applications, it can be hard to assess the geometry of the submarine based only on this method
due to bad weather conditions. In the article, we present the combination possibility between point
clouds from TLS and terrestrial photographs.

It is worth mentioning that the black nature covering the submarine upon the results of laser
scanning is due to light absorption of black material. Thus, the results were not straightforward.
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Figure 5. Scan positions during data acquisition.

The data post-processing was performed in two steps. The first step concerned manual alignment
of scan positions by means of indicating four corresponding pairs of points. The second step applied
the ICP (Iterative Closest Points) algorithm for accurate and precise scan alignment. In order to
minimize the error, the parameters of rotation and translation matrices were appropriately computed.
The least square fitting method was used to automatically match corresponding pairs of points.

The results of scan alignment are shown in Figure 6 in the form of the histogram of residues where
the distances between the aligned pairs of points are displayed.
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According to Figure 6, it may be clear that the maximum distance between the alignment planes
is equal to 6 mm. Most of the planes belong to the group between 1 mm and −1 mm, according to their
spatial position. Based on the values of residues, the standard deviation may be estimated where the
accuracy of the scan alignment can be approximated. The standard deviation equals 2 mm. Based on
that information, the accuracy of the point cloud can be less than 1 cm, according to the possibilities of
spatial data acquisition by the Riegl VZ-400. The accuracy of the measured points equal 5 mm.

The assessment of acquired data was performed by a visual evaluation. First, cross sections of the
buildings and ground were created where the noise was estimated. Figure 7 presents the results of the
noise evaluation.
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Figure 7 points it out that the deviation from various scan positions does not exceed 8 mm.

3. Results

3.1. Photogrammetry

The results of final hull photogrammetry modelling are presented in Figure 8. It is shown that
almost all photographed surfaces are modelled and represented in the point could. The very top of
the object and some parts on the bottom have not been modelled at all. These parts have not been
photographed due to the object specific shape and size. Basically, the model was mapped almost in
entirety, which shows no significant shortages. The possible output for further analysis is the point
cloud (*.las file format), triangulated mesh (*.obj) with material information (*.mtl) and texture map
(*.jpg), orthophotoplans (*.jpeg, *.tiff).
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3.2. Terrestrial Laser Scanning

Based on the results, presented in chapter 2, the authors assumed that the accuracy of the point
cloud may reach 1 cm. Data filtration and extraction results in the point cloud are presented in Figure 9.
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Figure 9. The obtained point cloud of the ship hull.

Mapping of the bottom parts of the model is much better in the case of the upper ones. The reasons
are rain, insolation, and black material covering the submarine. The results provide a valuable spatial
information for further analysis and modelling. The collected data may be a modelling dataset only or
possibly combined with other techniques presented in the article. In order to assess the quality of the
obtained data, the cross section was created and presented in Figure 10.
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3.3. Data Merging

Figure 11 compares two modelling techniques: Photogrammetry RGB point cloud and laser (a)
and pure laser scanning (b) and two point clouds merged (white—photogrammetry, blue—laser).
The TLS technique complements photogrammetry and vice versa. The parts of the hull not modelled
by TLS (top of the hull) were covered by a photogrammetric point cloud. The bottom parts of the
model, not covered by the photos, were modelled by the TLS. Moreover, some micro details are
shown, e.g., welding lines, Kingston valves, torpedo launcher muzzle door, water intake, and outtake.
Small, detailed elements are visible in the laser point cloud, and they may be visually investigated in
the photogrammetry model. The orthophoto plane clearly shows the details.
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The idea of data merging indicates the same tie points on the model by means of photogrammetric
techniques and laser scanning. Figure 12 shows the representation of points visible in the point cloud
by means of photos, and by means of laser scanning. The aggregation standard deviation is about
1 cm. The coordinates of the points were read from the laser scanner and implemented into the model
from the photographs.
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Figure 12. The representation of control points (a) on a laser scanning view and (b) on images.

As a result of the data merging from terrestrial photogrammetry and laser scanning, the computed
distances to individual points were presented by means of the module in the Cloud Compare software.
It requires a more extensive explanation. Comparison between two point cloud models are shown in
Figure 13 in the form of distances between points. The distances where the laser data were available
(bottom part) range by a few centimeters only. The lack of TLS data results in a green to a red
color change, which exceeds the value by 1 meter. It clearly shows what can be expected from both
technologies, especially within a highly reflective or absorbing area, which is also highly inclined to
the laser beam. In order to assess the results of data aggregation, it is crucial to create a histogram
in groups where the data overlapped and no registration from one of the sensors. The histogram is
presented in Figure 14.
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It is clearly visible in Figures 13 and 14 that distances from data aggregation reach 10 cm. In order
to assess the error of data aggregation, we separate the values from 0 to 10 cm and fit a Gaussian
model to estimate the standard deviation corresponding to the Gaussian-type variable. This action
indicates the accuracy of data aggregation, how they fit each other, to form the basis for hull modelling.
The results of such an operation are shown in Figure 15 as a fit of a Gauss model. The standard
deviation between the common set of points is about 0.03 m, but, in terms of modelling accuracy, there
is a need to reflect distance distribution in a point cloud model. The results are shown in Figure 16.
The values reaching 3 cm represent the parts of the hull modelled from the scanner with similar
precision. The excess values can be observed especially on the boat’s edges, and at its bottom.
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Figure 16. Points distribution presented in three dimensions, which is based on the values from
Figure 13.

3.4. As-Build Modeling

The results of 3D CAD (Autodesk Inventor) is presented in Figure 17. This part of the modelling
process is based on the merged point clouds form TLS and photogrammetry. The modelling process is
not possible without the data merging, as not all the object parts had its point representation of each
part object in each single technique. The hull was divided into equal sections (Figure 17a), their cross
sections have been created. Each cross section was a basic element to draw a CAD line on the basis of
the section shape. A number of shapes served for the modelling process in the CAD software. The hull,
as a 3D CAD object, is a perfect tool for documentation preparing, reverse engineering, and general
engineering work with the modelled object, without any numerical representation.
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4. Discussion

At the very beginning of the discussion, there is a need to focus on the measurement conditions.
They were marked by high insolation and rain, to possibly prevent the inventory from being carried
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out. The main purpose of choosing such difficult weather conditions was to assess the limitations of
combining methods such as laser scanning and photogrammetry. It is shown in Figures 6, 7 and 9
that the cloud of points was obtained with a precision of 5 mm, losing some information about the
upper part of the ship’s hull, but, considering the edges, necessary to register in order to properly
create the model. In the case of a cloud of points obtained from photographs, the edges were not
represented well. Therefore, the standard deviation of connections between particular measurements
has increased. It should also be noted that the distances in Figure 13 result from variations in density
and completeness of information between clouds. Based on these results, the estimated standard
deviation at the level of 3 cm is high. However, limiting a single method, other authors may attempt
to model the hull with much greater accuracy. The results, presented in Figure 17, are extended in
Figure 18, of the following features: a) registration differences on the edge between the point cloud
and the cloud obtained from the pictures are shown, b) the average deviation of the section of the
created model to the resulting point cloud is presented, and, at the same time, attempting to apply
the model with an accuracy greater than 3 cm. A black color in Figure 18a presents the point cloud
obtained from photographs purple from the laser scanner and, in Figure 18b, presents the points
applied for modelling.
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Overall, the review of point cloud registration methods provides wide opportunities to apply
them during data processing to achieve greater accuracy of data combining. Currently, hundreds of
publications are related to this topic. One of the simplest and widely applied algorithm is the ICP
algorithm. The algorithm itself is based on coverage between two sets of data. However, applying
filtration and optimization methods, it is possible to increase their reliability as a merged set of data.
Such examples are shown in Reference [31] where, showing the use of the ICP algorithm in robotics,
without any general comparison of this method depending on the field of science. This is reasonable,
mentioning a variety of applications, sensor characteristics, and the characteristics of environments
that make it difficult to choose an appropriate algorithm. Thus, it provides multiplication of this
simple solution. It is worth mentioning that another, common algorithm used to connect data sets
is the RANSAC algorithm. This algorithm can be described as a method of dataset merging with
a large number of outliers and noise. In our future research, we will focus on automation of data
aggregation in the case of ship hulls inventories analyzing the method’s possibilities published in
literature. The featured publication [32] shows the use of the 4PCS. This algorithm makes it possible
to register raw point cloud data characterized by a high level of noise and outliers. In addition, this
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method reduces the number of attempts required to obtain reliable accuracy while making registrations.
The publications [33,34] address novel methods of combining subsets of data. The authors showed that
their method makes the multimodal models automatically merged, regardless of differences in noise,
detail, scale, and unknown relative coverage. In order to increase the accuracy of merging, adequate
filtration has to be made in the data preparation course for further processing.

5. Conclusions

Concluding the article, we focused on the proposed method of combining two measurements:
photogrammetry and laser scanning suitable for modelling ship hulls in unfavorable conditions.
Based on interviews with shipbuilding companies, the maximum value of the analyzed model should
be about 1 cm. Statistical analyses showed that this value is difficult to obtain based on the accuracy of
model generation and their subsequent merger. In the case of hull modelling, it is possible to achieve
the accuracy of 1 cm when laser scanning provides edge information, while photogrammetry achieves
spatial data between these edges.

The idea for this task was to take pictures with a camera to connect them, generate a point cloud,
appy laser scanning technology, and then scan around the hull of the ship. The limitations noted by
the authors during the development of the results are significant on the generated edges. A problem is
shown in Figure 18a where the edge registered by the laser scanner is not represented in the cloud,
but is represented from photos.

Noting this dependence and knowing that the accuracy of edge logging by the laser scanner is not
greater than 1 cm, the edges recorded by the scanner and their filling registered by the camera were
applied to fit appropriate cross-sections from the exact 3D model that was generated. Such a fitted
section is located within a 1-cm accuracy. It was the main purpose of the article.

Concluding, we suggest that the use of combined data from laser scanning and photogrammetry
make it reasonable to provide engineering measurements requiring high accuracy (less than 1 cm).
When using these methods, there is some awareness of their advantages and disadvantages.
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