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Abstract: The main purpose of this study is to comparatively assess the susceptibility of
earthquake-triggered landslides in the island of Lefkada (Ionian Islands, Greece) using two different
statistical analysis models, a bivariate model represented by frequency ratio (FR), and a multivariate
model represented by logistic regression (LR). For the implementation of the models, the relationship
between geo-environmental factors contributing to landslides and documented events related to the
17th November 2015 earthquake was investigated by geographic information systems (GIS)-based
analysis. A landslide inventory with events attributed to the specific earthquake was prepared using
satellite imagery interpretation and field surveys. Eight factors: Elevation, slope angle, slope aspect,
distance to main road network, distance to faults, land cover, geology, and peak ground acceleration
(PGA), were considered and used as thematic data layers. The prediction capability of the models
and the accuracy of the resulting susceptibility maps were tested by a standard validation method,
the receiver operator characteristic (ROC) analysis. Based on the validation results, the output map
with the highest reliability could potentially constitute an ideal basis for use within regional spatial
planning as well as for the organization of emergency actions by local authorities.
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1. Introduction

Globally, landslides are related to a great number of human losses and economic damages (Table 1).
One of the major mechanisms by which a landslide can occur is triggering due to earthquakes [1].
Over the last two decades, strong earthquakes have triggered the occurrence of landslides in many
islands of the Ionian Sea (2003 in Lefkada, 2014 in Kephalonia, 2015 in Lefkada, 2018 in Zakynthos).
This part of Greece can be characterized as a high-seismicity region, particularly prone and vulnerable
to earthquake-triggered landslides.

In order to determine the most fragile landslide areas under the influence of a given earthquake
in the future, it is important to indicate these areas through landslide susceptibility assessment and
mapping [2]. A landslide susceptibility map gives an indication of “where” future landslides are likely
to occur over a region on the basis of local geo-environmental conditions. Susceptibility mapping
of earthquake-triggered landslides can be particularly useful for decision makers and planners. The
knowledge about the spatial probability of their occurrence is very important for hazard management
and mitigation, and safe planning [3].
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Today, there are numerous landslide susceptibility assessment models, with most of them being
assisted by the advances in Geoinformatics technologies such as geographic information systems
(GIS) and remote sensing [2]. These models are divided into two main approaches: Qualitative and
quantitative. In the qualitative approaches, used extensively during the 1970s and 1980s, the “expert”
(engineering geologist or geomorphologist), based on his/her experience and knowledge of the terrain
conditions, determines the degree of susceptibility by geomorphologic analyses, combinations of
index maps, and logical analytical models [4–6]. In the quantitative approaches, widely applied in
the last few decades, the numerical expressions of the relationship between landslide occurrence and
influencing factors are estimated by geotechnical engineering, statistical analysis, and soft computing
models [7–10].

Statistical analysis models can be either bivariate [11–13] or multivariate [14–16]. In bivariate
models, each individual factor is combined with a landslide inventory map, and weight values based
on landslide densities are calculated for its corresponding categories [17]. In multivariate models, the
factors are sampled, and for each of the sampling units, the presence or absence of landslides is firstly
determined. Following this, weight values for the factors are statistically estimated [18].

The main purpose of this study is to produce a reliable landslide susceptibility map that will
present “where” landslides are likely to occur in the island of Lefkada in case of a potential earthquake
with magnitude similar to the that witnessed on the 17th November 2015 (Mw = 6.4). The epicenter of
the earthquake was located in the south-western part of the island between the villages Athani and
Agios Petros and, with a focal depth of 10.7 km, was felt in a significant part of western Greece. The
main consequences were the loss of two human lives, as well as the occurrence of extensive landslides,
which in turn caused serious damage to properties and the road network. These landslide events
affected mainly the western part of the island, namely: (a) The villages of Komilio, Dragano, and
Athani, (b) the coastal zone from Eggremni to Gialos, and (c) the road axis from Tsoukalades to Agios
Nikitas, with an overall length of 6 km [19].

Previous works referring to the aforementioned earthquake have focused on the mapping of
triggered landslide events and the evaluation of their effects in the island of Lefkada. Specifically,
Kazantzidou-Firtinidou et al. [20] carried out two field surveys in the island after the 17th November 2015
earthquake to observe and record the geotechnical damages represented by the triggered landslides, and
the resulting structural damages. Papathanassiou et al. [19] provided detailed information regarding
the spatial distribution and characteristics of the earthquake-induced landslides by field mapping.
Furthermore, Grendas et al. [21] investigated the engineering geological conditions at areas influenced
by landslides, and assessed the characteristics and physical quantities (type, area, volume, etc.) of
these slope instability events. Based on the interpretation of aerial imagery and UAV-acquired photos,
Valkaniotis et al. [22] identified the characteristics of a landslide triggered by the 17th November
2015 earthquake. A research effort focusing on the susceptibility assessment of earthquake-triggered
landslides for the island of Lefkada is found in the research of Papathanassiou et al. [23] who, however,
analyzed the previous similar magnitude (Mw = 6.3) earthquake in 2003.

In order to create the targeted susceptibility map, two different statistical analysis models, a
bivariate like frequency ratio (FR) and a multivariate like logistic regression (LR), were applied. The
implementation of these models has been widely preferred for landslide susceptibility assessment in
various case studies [24–27]. Based on a landslide inventory, including landslides that were triggered
by the 17th November 2015 earthquake, each of the models produced a susceptibility map. Between
the two maps, the most reliable was found through a standard validation method, the receiver operator
characteristic (ROC) analysis, in terms of accuracy and prediction ability of the models.
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Table 1. Human and economic effects due to landslides represented on a global scale (Data provided
by EM-DAT: The Emergency Events Database, Universite catholique de Louvain-CRED, D. Guha-Sapir,
www.emdat.be, Brussels, Belgium).

Year Occurrence Total Deaths Injured Affected Homeless Total Affected Total Damage (US$)

1970–1979 45 7217 1041 94,019 3100 98,160 124,166
1980–1989 78 5647 4250 860,691 2,520,332 3,385,273 1,030,141
1990–1999 93 5104 977 590,027 1,170,860 1,761,864 1,695,190
2000–2009 147 6182 1276 1,119,597 193,539 1,314,412 288,107
2010–2019 126 6579 1304 2,543,562 84,378 2,629,244 1,633,414

2. Study Area

Lefkada is located in the Ionian Sea, between Corfu and Kefalonia, and a narrow strip of sea
separates it from mainland Greece (Figure 1). With an extent of about 300 km2, it is the fourth largest
Ionian Island. Lefkada can be characterized as a mostly mountainous region (about 70% of the total
area) with an average altitude of 500 m. Its climate includes mild and rainy winter, and hot summer.
Because of these climatic conditions and its geomorphology, the island offers a variety of landscapes, a
key element of which is the rich vegetation, narrow plateaus, white beaches, springs, and gorges.Geosciences 2019, 9, x FOR PEER REVIEW  4 of 17 
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Due to the “nature” of the examined landslides as earthquake-triggered events, both 
preconditioning and triggering factors were used in this study. The selection of these factors mainly 

Figure 1. The landslide inventory map, including location map and images illustrating two landslide
events triggered by the 17th November 2015 earthquake in the island of Lefkada: (a) Earth slide on the
Eggremni beach; (b) Rock slide on the road axis from Tsoukalades to Agios Nikitas.

Geologically, most of its terrain belongs to the western margin of the Ionian zone covered by thick
limestone formations, while a small part of its south-western territory belongs to the northern extent of
the pre-Apulian (Paxos) zone composed of limestones extending to a total thickness of 200 m. Even
younger deposits have been detected on the north-east of the island, while the most recent deposits
comprising alluvial sediments of loose sand and soft marine clays are found in the homonym capital
town [28].

In regard to its tectonic aspect, a large number of faults are situated in Lefkada as a result of its
geodynamic complexity. However, the main active tectonic structure accommodating the relative
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motion of the African and Eurasian lithospheric plates, and thus highly influencing the seismicity of
the region, is the Kefalonia transform fault (KTF) (Figure 1). The fault consists of two segments, the
Kefalonia and Lefkada segments. Its length and width for the Kefalonia segment is estimated as 85
and 20 km, respectively, whereas for the Lefkada segment as 40 and 15 km, respectively. Due to the
activity of KTF, Lefkada has a rich history of strong earthquakes with magnitudes up to 6.5 (1914, 1948,
1973, and 2003). An earthquake of similar magnitude occurred in the island on 17th November, 2015.

3. Data

Based on the above-described study area, the appropriate data were collected. Specifically, in order
to carry out the landslide susceptibility assessment, a spatial database was designed and developed in
GIS environment (by ArcGIS ver. 10.2 software package, ESRI, California, CA, USA). This database
included two different types of datasets: (a) The landslide inventory dataset, and (b) the datasets with
the geo-environmental factors.

3.1. Landslide Inventory

The landslide inventory contains critical information in order to apply quantitative modeling.
Following the introduced landslide classification by [29], in the present inventory the term landslide is
used to describe earth and rock slides, debris flows, and complex movements (Figure 1). Its creation
was based on the use of cloud-free satellite imagery from Google Earth, and field surveys. A landslide
database maintained by the Laboratory of Engineering Geology in the Department of Geology at the
University of Patras [30] was previously exploited for the detection of landslide events triggered by
the 17th November 2015 earthquake in the island of Lefkada. The final landslide inventory contained
43 landslide events. Given that in landslide inventories it is not always possible to differentiate their
depletion and accumulation zones [15], these zones were mapped together in an entire area forming a
single polygon feature for each landslide event (Figure 1).

3.2. Geo-Environmental Factors

A landslide constitutes the result of interaction between several geo-environmental factors. These
factors can be subdivided into two categories: (a) The preconditioning factors that are expected to have
an effect on the landslide occurrence, and (b) the triggering factors that trigger it. Due to the “nature”
of the examined landslides as earthquake-triggered events, both preconditioning and triggering factors
were used in this study. The selection of these factors mainly depends on the scale of the analysis and
the availability of data [31]. Seven preconditioning factors representing the conditions in the study
area before the occurrence of the earthquake, such as land cover, lithology, elevation, slope angle, slope
aspect, distance to main road network, and distance to faults, and one (during the) earthquake-related
triggering factor like peak ground acceleration (PGA) were taken into account.

Changes in land cover as a result of human activities like forest logging, deforestation, cultivation
on steep slopes, and road construction can have a significant impact on landslide occurrence [32]. Land
cover types were defined from the European CORINE (Coordinate of Information on the Environment)
program [33] by following the level-3 classification scheme of the CORINE 2018 data. Given that the
various lithological formations have different slope stability performance, lithology is also characterized
as a significant factor for landslide susceptibility assessment [34]. The lithological units of the study
area were derived from the geological map sheets (Leykas and Agios Petros) at 1:50,000 scale, provided
by the Institute of Geology and Mineral Exploration (IGME). It is worth mentioning that by grouping
the initial categories based on their common characteristics, the final land cover and lithology datasets
were created.

The elevation factor is useful to classify the local relief and locate points of maximum and
minimum heights within terrains [31]. Furthermore, an increase in slope angle is correlated with
an increased likelihood of failure [35]. The slope aspect expressing the azimuthal orientation of a
slope constitutes a decisive proxy for slope-influencing natural processes like incoming precipitation,
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differential weathering, as well as wind and solar radiation, which may modulate slope stability.
The elevation, slope angle, and slope aspect datasets were produced from the ASTER DEM (digital
elevation model) product (with spatial resolution of 30 m) using GIS-based spatial analysis tools.

Road openings at the slope bases have negative impacts on slope stability. The dataset of distance
to main road network was based on the digitization of the main roads from satellite images. Moreover,
since the seismic ground acceleration and intensity diminish with the distance to tectonic elements,
it was necessary for the relative factors (distance to faults and PGA) to be included in the present
study. The dataset of distance to faults was derived from the digitization of the faults from the 1:50,000
geological map sheets. A PGA dataset was obtained from the earthquake strong-motion record of
the Hellenic Strong Motion Network (HSMN) maintained by the Institute of Geodynamics-National
Observatory of Athens (IG-NOA). At a national scale, HSMN consists of permanent stations in
continuous and triggering mode across the entirety of Greece, an instrument-based observation array,
and a network management system [36].

All the factors were organized in the relative GIS data layers and converted into raster grid format
with pixel size 30 m. An overview of these factors is presented in Figure 2.
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4. Methodology

4.1. Frequency Ratio (FR) Model

Frequency ratio is a simple and understandable bivariate statistical model based on the spatial
associations between distribution of landslide events and each of the landslide-influencing factors, to
expose the level of their correlation. It is calculated for each category of the factors by dividing the
landslide occurrence ratio by the area ratio:

FR =

Npix(S j)∑
Npix(S j)

Npix(N j)∑
Npix(N j)

(1)

where Npix(Sj) is the number of landslide pixels in factor category j, and Npix(Nj) is the number of
pixels in the same factor category. A FR value of 1 (average value) means that the density of landslides
in the category is proportional to the size of the category. If the value is greater than 1, then there is a
high correlation, whereas a value of less than 1 means a lower correlation [37].
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The overall landslide susceptibility (LS) value for each pixel can be obtained by summing the FR
values of different landslide-influencing factors:

LS =
n∑

i=1

FRi, j (2)

where FRi,j is the frequency ratio value for the category j of the factor i, and n is the total number of
the factors.

4.2. Logistic Regression (LR) Model

A logistic regression model forms a multivariate relation between a dependent variable and
several independent variables [38]. The dependent variable is binary (i.e. it can take only the value
1 and 0), while its predictors, the independent variables, can be either continuous, discrete, or any
combination of both types. In terms of a landslide susceptibility assessment, the goal of LR is to find
the best fitting model to describe the relationship between the absence or presence (value of 0 or 1) of
landslides (dependent variable) and a set of landslide-influencing factors (independent variables). The
model can be expressed in its simplest form as:

P =
1

1 + e−z (3)

where P is the probability of landslide occurrence, which ranges from 0 to 1, and z is a linear sum of a
constant and the product of the independent variables with their respective coefficients. The value of z
varies from –∞ to +∞ and is calculated from the equation:

z = b0 + b1x1 + b2x2 + · · ·+ bnxn (4)

where n is the number of independent variables, xi (i = 1, 2, . . . , n) are the independent variables, b0 is
the constant of the model, and bi (i = 1, 2, . . . , n) are the coefficients.

Another way to write the LR model is the logit transformation using an equation in the form of:

Logit(p) = ln
(

p(Y = 1)
1− p(Y = 1)

)
= b0 + b1x1 + b2x2 + · · ·+ bnxn (5)

where p(Y = 1)/1 − p(Y = 1) is the so-called odds or likelihood ratio. The result represents the probability
that a landslide event will occur divided by the probability that it fails to do so. If a coefficient is
positive, its transformed log value will be greater than 1, meaning that the event is more likely to occur.
If a coefficient is negative, the relative value will be less than 1 and the odds of the event occurring
decreases. A coefficient of 0 has a transformed log value of 1, and it does not change the odds one way
or the other [31].

Generally, the model estimates the coefficients and statistics based on the values of independent
variables and the status of the dependent variable in a sampling dataset, using a maximum likelihood
method [39]. Using the estimates derived from the implementation of the model on the selected sample,
the probability of a landslide can be calculated on a pixel by pixel basis (Equation (3)).

4.3. Data Processing

The data processing included two different processes, such as the landslide data sampling and
preparation of factor data. For the landslide data sampling, the landslide dataset derived from the
inventory should be separated into two parts: (a) A training dataset, for the implementation of the
models, and (b) a validation dataset, for the evaluation of their outputs. The total of 43 landslide
polygons were converted into raster grid format with pixel size 30 m, resulting to 542 pixels. Among
these pixels, 80% (434 pixels) was randomly selected as the training dataset, and the remaining 20%
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(108 pixels) made up the validation dataset [2,3]. Furthermore, an equal number of pixels from the
landslide-not-occurrence area were randomly selected for both the training and validation datasets.
The FR model handled only a landslide dataset, whereas the LR model handled both the landslide and
non-landslide datasets. Thus, the training dataset for FR model contained 434 pixels, and for the LR
model 868 pixels. The validation dataset contained a total of 216 pixels. In both training and validation
datasets, the target value of 1 was assigned to the landslide pixels, while the target value of 0 to the
non-landslide pixels.

For the preparation of factor data used in FR model, the GIS-based “Natural Breaks” categorization
was implemented for most of the factors with a continuous numerical scale (elevation, slope angle,
distance to main road network, and distance to faults), except for PGA factor whose categorization was
executed in a manually according to its presented values. In “Natural Breaks” categorization, category
breaks identify best group similar values and maximize the differences between categories according
to the deviations about the median [40]. For the preparation of factor data used in the LR model, the
factors with continuous numerical scale, such as elevation, slope angle, distance to main road network,
distance to faults, and PGA were handled in their original format, in order not to alter the state and
information presented in their data layers. On the contrary, the factors with discrete categorical scale,
such as land cover, lithology, and slope aspect were re-scaled in the range of 0.1 to 0.9 by coding and
ranking their categories based on the relative landslide densities.

4.4. Implementation of Models

For the FR model, by crossing the landslide training dataset (434 pixels) with each factor layer,
the relative landslide density in each factor category was calculated. The FR value for each of these
categories was then estimated with Equation (1) (Table 2). Finally, all factor layers were overlaid
by summation (Equation (2)) and a resultant the landslide susceptibility map was obtained. This
map was categorized into five categories (“Very Low,” “Low,” “Moderate,” “High,” and “Very High”
susceptibility) through the “Natural Breaks” method (Figure 3).

Table 2. Values derived from the frequency ratio (FR) model for all factor categories, and multicollinearity
checking indexes (tolerance (TOL) and variance inflation factor (VIF)) and coefficients derived from
logistic regression (LR) model for all factors.

Factors and Their
Categories

FR Model LR Model

Number of
Total Pixels

Number of
Landslide Pixels FR Value TOL VIF Coefficients

Elevation (m) 0.615 1.627 −0.015
(1) 0–134 96,907 315 2.78

(2) 135–306 86,741 111 1.09
(3) 307–501 95,228 4 0.04
(4) 502–754 58,042 4 0.06
(5) 755–1171 33,779 0 0

Slope Angle (Degrees) 0.898 1.113 0.052
(1) 0–8 97,552 56 0.49

(2) 9–16 100,441 102 0.87
(3) 17–25 85,991 95 0.94
(4) 26–35 58,647 93 1.35
(5) 35–65 28,066 88 2.68
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Table 2. Cont.

Factors and Their
Categories

FR Model LR Model

Number of
Total Pixels

Number of
Landslide Pixels FR Value TOL VIF Coefficients

Slope Aspect 0.670 1.493 4.709
(1) North 34,034 9 0.22

(2) North-East 40,218 6 0.12
(3) East 56,505 0 0

(4) South-East 49,155 3 0.05
(5) South 34,312 4 0.10

(6) South-West 41,160 19 0.39
(7) West 60,759 243 3.35

(8) North-West 46,861 150 2.68

Distance to Main Road
network (m) 0.850 1.177 −0.004

(1) 0−347 179,992 166 0.79
(2) 348−846 111,966 218 1.66

(3) 847−1,648 63,214 50 0.68
(4) 1,649−3,231 12,889 0 0
(5) 3,232−5,530 2611 0 0

Distance to Faults (m) 0.627 1.595 −0.002
(1) 0−324 162,088 425 2.24

(2) 325−765 101,455 6 0.05
(3) 766−1,354 62,190 1 0.01

(4) 1,355−2,163 29,937 2 0.06
(5) 2,164−3,752 15,002 0 0

PGA (g) 0.704 1.420 60.946
(1) 0,08 10,895 0 0

(2) 0.09–0.12 238,830 35 0.13
(3) 0.13−0.16 98,023 398 3.47
(4) 0.17−0.20 22,924 1 0.04

Land Cover 0.816 1.225 2.948
(1) Artificial Surfaces 14,182 9 0.54
(2) Permanent Crops 60,462 7 0.10

(3) Pastures 8997 0 0
(4) Heterogeneous
Agricultural Areas 114,705 45 0.34

(5) Forests 48,515 83 1.46
(6) Scrub/Herbaceous

Vegetation 107,438 241 1.92

(7) Open Spaces with
Little/No Vegetation 12,907 49 3.24

(8) Water 3466 0 0

Lithology 0.822 1.216 2.274
(1) Alluvium Deposits 12,059 41 2.89

(2) Limestones 209,228 381 1.55
(3) Marls 47,455 6 0.11

(4) Conglomerates 25,303 0 0
(5) Scree-Talus Cones 6466 0 0

(6) Flysch 12,736 1 0.07
(7) Metamorphic Rocks 55,804 5 0.08
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In case of the LR model, the training dataset (868 landslide and non-landslide pixels) were matched
with each factor layer in order to create a database. This database with the eight factors as independent
variables, and the presence and absence of landslide (binary value of 0 and 1) as the dependent variable
was imported into the SPSS (ver. 23, Company, City, Country IBM, New York, N.Y., USA) software
package. The tolerance (TOL) and variance inflation factor (VIF) indexes were then estimated to check
the multicollinearity of independent variables. TOL estimation is based on the determination of a
regression of each explanatory variable on all the other explanatory variables. VIF is calculated by
1/TOL [41]. These indexes were found to be greater than 0.2 for TOL and less than 10 for VIF revealing
that there is no multicollinearity between any of the factors (Table 2). Following the multicollinearity
checking, the binary LR algorithm was carried out to calculate the correlation of landslides to each
factor. This correlation is expressed by the coefficients (Table 2). After the assignment of coefficients
to all the factors, a GIS-based weighted overlay was applied using Equation (4). By inserting the
output of overlay into Equation (3), a resultant landslide susceptibility map was produced and finally
categorized into five categories (Figure 3).

5. Results

The results of the FR and LR models are summarized in Table 2. Based on the FR model, the
factor categories that presented the highest correlation with the occurrence of landslides triggered by
the 17th November 2015 earthquake were “0.12 to 0.16 g” (FR = 3.47) for PGA, “west” facing (FR =

3.35) for slope aspect, “open spaces with little/no vegetation” (FR = 3.24) for land cover, “alluvium
deposits” (FR = 2.89) for lithology, “0 to 134 m” (FR = 2.78) for elevation, ‘’35 to 65 degrees” (FR = 2.68)
for slope angle, and “0 to 324 m” (FR = 2.24) for distance to faults. There is no mention for the factor of
distance to main road network because its highest value (FR = 1.66) was very close to 1 (average value).
According to the LR model, the factors of PGA, slope aspect, land cover, lithology, and slope angle had
positive coefficients, whereas the factors of elevation, distance to main road network, and distance to
faults had negative coefficients. Among the factors with positive coefficients, the highest value was
presented by PGA (coefficient of 60.946) followed by slope aspect (coefficient of 4.709).

The landslide susceptibility maps produced by the two models are presented in Figure 3. In the
map from the FR model, the “High” and “Very High” susceptibility categories were mainly located
in the western coastal zone of Lefkada Island, including large pockets of “High” susceptibility in its
central and southern parts. These two categories cover 13% and 3%, respectively, of the study area
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(Figure 4). In the map from the LR model, the “Very High” susceptibility category was detected in the
western coastal zone of the island, with some limited pockets of “High” and “Very High” susceptibility
in its southern part. The coverage percentages for the two susceptibility categories were found to
be 4% and 5%, respectively (Figure 4). Moreover, the cross-comparison of the two output maps in
terms of coverage differences between their categories (Table 3) indicated that the highest difference
percentages (29% and 19%, respectively) were shown between the “Low” and “Moderate” categories
of the FR model, and the “Very Low” category of LR model. It is also worth mentioning that no
coverage relation was observed between the “High” and “Very High” categories of the LR model, and
the “Very Low” and “Low” categories of the FR model. On the contrary, 5% and 1% of the “High”
and “Very High”, categories of the FR model were characterized with “Very Low” susceptibility in the
map from the LR model. Concerning the coverage similarities, it is indicated that 2% of the study area
was characterized by similar susceptibility for each of two, “High” and “Very High”, categories. The
corresponding percentages for the other three, “Moderate”, “Low”, and “Very Low”, categories were
3%, 4% and 21%, respectively. The distribution of these similarities are presented in Figure 5.
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Table 3. Coverage cross-comparison for the landslide susceptibility categories between both the FR
and LR models.

FR
LR

VL (%) L (%) M (%) H (%) VH (%)

VL 21 1 – – –
L 29 4 1 – –
M 19 4 3 2 1
H 5 2 1 2 2

VH 1 – – – 2
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Validation of Results

Validation is an essential process to obtain knowledge about the accuracy and prediction ability of
the models [42]. The overlay of produced susceptibility maps with a landslide dataset is considered
as a standard validation method. In the present study, the results of this overlay with the landslide
validation dataset (Figure 6) showed that, for the FR model, 69% and 28% of the landslide pixels
were found within the “Very High” and “High”, susceptibility categories and none of these pixels
were found within the “Very Low” and “Low” susceptibility categories. Regarding the LR model, the
percentages were 87% and 8% for the “Very High” and “High”, susceptibility categories, and only 1%
for the “Very Low” and “Low” susceptibility categories.

A more advanced validation method, which has been widely applied, is the receiver operating
characteristics (ROC) analysis [8,15,43,44]. Based on the overlay of landslide susceptibility maps
with an “independent” validation dataset (with landslide and non-landslide data), a ROC graph was
created. In this graph, the sensitivity of a model, which is determined as the percentage of the correctly
predicted landslide pixels by the model, was plotted against specificity, which is the percentage of
predicted landslide pixels over the total study area [45]. The value of area under the ROC curve (AUC)
indicates the prediction ability of the model. With a range from 0.5 to 1.0, the higher this value is, the
better is the prediction ability of the model. More details about ROC analysis can be found in [46]. The
results of ROC analysis are presented in Figure 7 and Table 4. The AUC value of the LR model was
equal to 0.984, followed by the FR model with a value of 0.976. The accuracy percentages were equal to
93.1% and 78.2%, respectively.
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Table 4. ROC analysis results of the models.

ROC Analysis Results FR LR

Number of Cases 216 216
Number Correct 169 201

Positive Cases Missed 0 2
Negative Cases Missed 47 13

Accuracy (%) 78.2 93.1
Sensitivity (%) 100 98.1
Specificity (%) 56.5 88

6. Discussion

For the seismically active region of Ionian Islands, and specifically the island of Lefkada, the
occurrence of strong earthquakes acting as a triggering mechanism for landslides, is a frequent
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phenomenon. Therefore, the acquisition of knowledge about the spatial definition of potential
earthquake-triggered landslides is considered as an essential need for the region. In terms of acquisition
of this knowledge, the present study focused on the creation of a reliable landslide susceptibility map
that will spatially define the landslide occurrence for the island of Lefkada. This was designed in case
an earthquake with a magnitude similar to the one witnessed on the 17th November 2015 occurs in
the future.

In order to obtain the desired map, two different statistical models, such as bivariate FR and
multivariate LR were applied based on the integration of eight geo-environmental factors and a
landslide inventory including landslides triggered by the specific earthquake. As a bivariate model,
FR uses the observed densities of landslide pixels within factor datasets to estimate susceptibility in a
“sub-factor”, category level. Concerning the category results of the FR model in this study, the areas of
island with low elevation, very high slope angle and western facing, being very close to faults, covered
by little or no vegetation and alluvium deposits, and presenting high PGA during the earthquake,
were highly correlated with the occurrence of the resultant landslides.

Multivariate LR analyzes variables that are non-symmetrical and show skewed distributions
to create a mathematical model that predicts the probability of occurrence in a sampling unit. The
coefficients assigned to influencing factors from the LR model are useful to assess their importance on
the presence or absence of landslides. In the present study, the factors of PGA, slope aspect, land cover,
lithology, and slope angle were found to have positive coefficients indicating that these factors are
positively related with the occurrence of earthquake-triggered landslides. However, among them, the
factor with the significantly strongest effect on their occurrence was the PGA. It could be said that this
finding confirms the “nature” of landslides under investigation as earthquake-triggered events.

The output maps of the two models visualized the spatial distribution of the estimated landslide
susceptibility in the study area. Both maps presented the western coastal zone as the part of the island
with the highest probability to produce landslides under the influence of a potential earthquake with a
magnitude similar to earthquake examined in this paper. According to the study [23], the same part of
the island was proved to be riskiest area for earthquake-triggered landslides after the 2003 earthquake.

In regard to reliable results, the susceptibility maps produced by the two models were compared
by means of validation using a dataset not originally included in the training process. From the method
of overlay, it was derived that the “Very High” and “High” susceptibility categories, contained a total
of about 95% of landslide data included in the validation dataset. Although both models present a
very good prediction ability (based on their AUC values in Figure 7), the better one is found in the the
LR model. The same model also shows superiority against the FR model in terms of accuracy, as the
last one tended to present a susceptibility overestimation, which is expressed by high sensitivity and
simultaneously low specificity values (Table 4). Both models can successfully detect the susceptible
areas (“High” and “Very High” categories), but only the LR model can, at the same time, successfully
detect the non-susceptible areas (“Very Low” and “Low” categories). Thus, LR can be assumed as
more balanced model against FR. In general, among statistical analysis models, multivariate LR has
been proved to give better validation results compared to bivariate models for landslide susceptibility
assessments [47–49]. Regarding specifically the susceptibility assessment of earthquake-triggered
landslides, in the study [2], LR model presented very good validation results from two susceptibility
maps produced for a region of China using multi-temporal and earthquake triggered landslide datasets.
Moreover, in the study [3], the susceptibility of earthquake-triggered landslides was comparatively
evaluated for a watershed of China based on the implementation of six different quantitative models.
One of these models was the LR, which provided the best validation results when compared to the
other models.

It is worth mentioning that in this study important analysis parameters, such as the number
and type of geo-environmental factors, their “pre-model” processing, the size of training and
validation datasets, and the categorization of final susceptibility maps, were based on objective
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criteria. Considering the data-driven “nature” of the two models, the examination of alternative
choices for these parameters could lead to different results.

7. Conclusions and Outlook

Due to its confirmed higher reliability, the landslide susceptibility map produced by the LR model
could constitute an important basis for the assessment and management of landslide hazard over the
island of Lefkada. This map provides useful information for decision makers and planners to choose
suitable locations to implement reconstructions and developments. Furthermore, it could be used for
the estimation of the amount of damages and losses that landslide hazards may potentially cause, and
the consequent planning of mitigation actions that will reduce the risk of structural damage and loss of
life on the island.

Future research work may include testing the LR model in other areas affected by
earthquake-triggered landslide events, and its comparison with other advanced soft computing
models, such as artificial neural networks (ANNs), support vector machines (SVMs), as well as
ensemble random forest and neuro-fuzzy models.
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(NAFZ) on the northern part of Suşehri Town, Turkey. Nat. Hazards 2018, 92, 133–154. [CrossRef]

27. Mondal, S.; Mandal, S. Landslide susceptibility and risk: A micro level study from the Balason River basin in
Darjeeling Himalaya. Arab. J. Geosci. 2018, 11, 197. [CrossRef]

28. Karababa, F.S.; Pomonis, A. Damage data analysis and vulnerability estimation following the August 14,
2003 Lefkada Island, Greece, Earthquake. Bull. Earthq. Eng. 2011, 9, 1015–1046. [CrossRef]

29. Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides: Investigation and Mitigation;
Turner, A.K., Schuster, R.L., Eds.; National Academy Press: Washington, DC, USA, 1996; pp. 36–75.

30. Landslide Inventory Database, Laboratory of Engineering Geology, University of Patras. Available online:
http://www.geoarch.gr/ (accessed on 5 September 2017).

31. Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility
mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [CrossRef]

32. Glade, T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand.
Catena 2003, 51, 297–314. [CrossRef]

http://dx.doi.org/10.1007/s12517-015-1891-7
http://dx.doi.org/10.1007/s11069-015-1740-8
http://dx.doi.org/10.1080/17499518.2017.1343482
http://dx.doi.org/10.1007/s10064-015-0759-0
http://dx.doi.org/10.1007/s00267-014-0357-0
http://www.ncbi.nlm.nih.gov/pubmed/25164982
http://dx.doi.org/10.1002/esp.263
http://dx.doi.org/10.1016/j.enggeo.2017.01.019
http://dx.doi.org/10.1007/s12665-018-7598-9
http://dx.doi.org/10.1016/j.enggeo.2018.08.010
http://dx.doi.org/10.1007/s10346-012-0357-1
http://dx.doi.org/10.1007/s12303-015-0026-1
http://dx.doi.org/10.1016/j.geomorph.2018.06.006
http://dx.doi.org/10.1007/s11069-018-3195-1
http://dx.doi.org/10.1007/s12517-018-3538-y
http://dx.doi.org/10.1007/s10518-010-9231-5
http://www.geoarch.gr/
http://dx.doi.org/10.1016/j.geomorph.2004.06.010
http://dx.doi.org/10.1016/S0341-8162(02)00170-4


Geosciences 2019, 9, 350 17 of 17

33. Heymann, Y.; Steenmans, C.; Croisille, G.; Bossard, M. CORINE Land Cover Project: Technical Guide; European
Commission, Directorate General Environment, Nuclear Safety and Civil Protection, ECSC-EEC-EAEC:
Brussels, Belgium, 1994.

34. Carrara, A.; Cardinali, M.; Detti, R.; Guzzetti, F.; Pasqui, V.; Reichenbach, P. GIS techniques and statistical
models in evaluating landslide hazard. Earth Surf. Process. Landf. 1991, 16, 427–445. [CrossRef]

35. Dai, F.C.; Lee, C.F. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong
Kong. Geomorphology 2002, 42, 213–228. [CrossRef]

36. Margaris, B.; Kalogeras, I.; Papaioannou, C.; Savvaidis, A.; Theodoulidis, N. Evaluation of the national strong
motion network in Greece: Deployment, data-processing and site characterization. Bull. Earthq. Eng. 2014,
12, 237–254. [CrossRef]

37. Choi, J.; Oh, H.-J.; Lee, H.-J.; Lee, C.; Lee, S. Combining landslide susceptibility maps obtained from frequency
ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng. Geol. 2012,
124, 12–23. [CrossRef]

38. Atkinson, P.M.; Massari, R. Generalized linear modeling of susceptibility to landsliding in the central
Apennines, Italy. Comput. Geosci 1998, 24, 373–385. [CrossRef]

39. Kundu, S.; Saha, A.K.; Sharma, D.C.; Pant, C.C. Remote Sensing and GIS Based Landslide Susceptibility
Assessment using Binary Logistic Regression Model: A Case Study in the Ganeshganga Watershed,
Himalayas. J. Indian Soc. Remote Sens. 2013, 41, 697–709. [CrossRef]

40. Jenks, G.F. Optimal Data Classification for Choropleth Maps; University of Kansas: Lawrence, KS, USA, 1977.
41. Pourghasemi, H.R.; Gayen, A.; Park, S.; Lee, C.-W.; Lee, S. Assessment of Landslide-Prone Areas and

TheirZonation Using Logistic Regression, LogitBoost, and NaïveBayes Machine-Learning Algorithms.
Sustainability 2018, 10, 3697. [CrossRef]

42. Remondo, J.; González-Díez, A.; Díaz de Terán, J.R.; Cendrero, A. Landslide susceptibility models utilizing
spatial data analysis techniques: A case study from the Lower Deba Valley, Guipúzcoa (Spain). Nat. Hazards
2003, 30, 267–279. [CrossRef]

43. Pradhan, A.M.S.; Kim, Y.-T. GIS-based landslide susceptibility model considering effective contributing area
for drainage time. Geocarto Int. 2018, 33, 810–829. [CrossRef]

44. Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B.; Li, Y.; Catani, F.; Pourghasemi, H.R. Landslide susceptibility modeling
applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China.
Comput. Geosci. 2018, 112, 23–37. [CrossRef]

45. Romer, C.; Ferentinou, M. Shallow landslide susceptibility assessment in a semiarid environment—A
Quaternary catchment of KwaZulu-Natal, South Africa. Eng. Geol. 2016, 201, 29–44. [CrossRef]

46. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
47. Mahdadi, F.; Boumezbeur, A.; Hadji, R.; Kanungo, D.P.; Zahri, F. GIS-based landslide susceptibility assessment

using statistical models: A case study from Souk Ahras province, N-E Algeria. Arab. J. Geos. 2018, 11, 476.
[CrossRef]

48. Achour, Y.; Garçia, S.; Cavaleiro, V. GIS-based spatial prediction of debris flows using logistic regression
and frequency ratio models for Zêzere River basin and its surrounding area, Northwest Covilhã, Portugal.
Arab. J. Geos. 2018, 11, 550. [CrossRef]

49. Youssef, A.M.; Pradhan, B.; Jebur, M.N.; El-Harbi, H.M. Landslide susceptibility mapping using ensemble
bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environ. Earth Sci. 2015, 73,
3745–3761. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/esp.3290160505
http://dx.doi.org/10.1016/S0169-555X(01)00087-3
http://dx.doi.org/10.1007/s10518-013-9580-y
http://dx.doi.org/10.1016/j.enggeo.2011.09.011
http://dx.doi.org/10.1016/S0098-3004(97)00117-9
http://dx.doi.org/10.1007/s12524-012-0255-y
http://dx.doi.org/10.3390/su10103697
http://dx.doi.org/10.1023/B:NHAZ.0000007202.12543.3a
http://dx.doi.org/10.1080/10106049.2017.1303089
http://dx.doi.org/10.1016/j.cageo.2017.11.019
http://dx.doi.org/10.1016/j.enggeo.2015.12.013
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1007/s12517-018-3770-5
http://dx.doi.org/10.1007/s12517-018-3920-9
http://dx.doi.org/10.1007/s12665-014-3661-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area 
	Data 
	Landslide Inventory 
	Geo-Environmental Factors 

	Methodology 
	Frequency Ratio (FR) Model 
	Logistic Regression (LR) Model 
	Data Processing 
	Implementation of Models 

	Results 
	Discussion 
	Conclusions and Outlook 
	References

