
medical
sciences

Review

Regulation of Polyamine Metabolism by Curcumin
for Cancer Prevention and Therapy

Tracy Murray-Stewart ID and Robert A. Casero Jr. *

Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA;
tmurray2@jhmi.edu
* Correspondence: rcasero@jhmi.edu; Tel.: +1-410-955-8580

Received: 17 November 2017; Accepted: 14 December 2017; Published: 18 December 2017

Abstract: Curcumin (diferuloylmethane), the natural polyphenol responsible for the characteristic
yellow pigment of the spice turmeric (Curcuma longa), is traditionally known for its antioxidant,
anti-inflammatory, and anticarcinogenic properties. Capable of affecting the initiation, promotion,
and progression of carcinogenesis through multiple mechanisms, curcumin has potential utility for
both chemoprevention and chemotherapy. In human cancer cell lines, curcumin has been shown to
decrease ornithine decarboxylase (ODC) activity, a rate-limiting enzyme in polyamine biosynthesis
that is frequently upregulated in cancer and other rapidly proliferating tissues. Numerous studies
have demonstrated that pretreatment with curcumin can abrogate carcinogen-induced ODC activity
and tumor development in rodent tumorigenesis models targeting various organs. This review
summarizes the results of curcumin exposure with regard to the modulation of polyamine metabolism
and discusses the potential utility of this natural compound in conjunction with the exploitation of
dysregulated polyamine metabolism in chemopreventive and chemotherapeutic settings.
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1. Introduction

Chemoprevention entails the long-term use of synthetic or natural agents by healthy individuals,
particularly those with a predisposing cancer risk, to delay disease onset. As such, potential side
effects and off-target effects must be absolutely minimal. Natural products derived from foods are
therefore at an advantage due to their accessibility and history of safe consumption. Epithelial cancers
are often age-related cancers: through its long-term, direct interaction with environmental and dietary
factors, the epithelium has the greatest potential for interactions that might prevent or modulate the
course of tumorigenesis. Naturally, gastrointestinal (GI) cancers have one of the greatest potentials for
dietary factor influence. As approximately 20% of cancers worldwide are associated with infection or
inflammation [1,2], the anti-inflammatory and antioxidant properties associated with many natural
products might be of particular value. Nutritional components also have the potential to participate in
therapeutic strategies, and elucidating the molecular mechanisms of these agents, including traditional
medicines, is providing clues as to how they might best be incorporated into treatment regimens.

2. Polyamines and Cancer

Increases in polyamine biosynthesis and intracellular polyamine content are some of the most
consistent biochemical alterations observed in cancer cells of all types, indicating their importance in
tumorigenesis [3,4]. The mammalian polyamines include spermine, spermidine, and putrescine, which
are essential polycations with pleiotropic roles in cellular proliferation and survival (Figure 1) [3]. Due
to their positive charge at physiological pH, many of the essential functions of polyamines stem from
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their interactions with negatively charged cellular components, including DNA, RNA, certain proteins,
and ion channels [5–8].

Figure 1. Chemical structures of the primary mammalian polyamines.

In neoplastic cells, loss of polyamine homeostasis occurs and is accompanied by dysregulated
proliferation involving upregulated biosynthesis, downregulated catabolism, and increased uptake
(Figure 2) [4,9–11]. The activity of ornithine decarboxylase (ODC), the initial rate-limiting step in
polyamine biosynthesis, has been directly correlated with the rates of DNA synthesis and cellular
proliferation in multiple tissue types [3].

Figure 2. The mammalian polyamine pathway. Polyamines are derived from the amino acid ornithine,
which is decarboxylated by ornithine decarboxylase (ODC) to form the diamine putrescine. Putrescine
undergoes the sequential addition of 2 aminopropyl groups to form spermidine followed by spermine.
These reactions are catalyzed by the spermidine and spermine synthases (SRM and SMS, respectively),
using decarboxylated S-adenosylmethionine as the aminopropyl donor. Catabolism of spermine back
to spermidine can occur through direct oxidation via spermine oxidase (SMOX) or by acetylation at
the N1 position by spermidine/spermine N1-acetyltransferase (SSAT), followed by oxidation by the
acetylpolyamine oxidase (PAOX). This latter two-step mechanism also back-converts spermidine to
putrescine via an N1-acetylspermidine (N1-AcSpd) intermediate. Alternatively, acetylated spermine
and spermidine can be readily exported from the cell.

The requirement for polyamines increases over the course of tumorigenesis, and studies in
multiple human cancer types have demonstrated an elevation of ODC activity and/or polyamines in
neoplastic or tumor tissue relative to adjacent normal tissue [12–15]. In a cohort of 50 primary breast
tumors, the level of ODC activity demonstrated a strong negative correlation with both disease-free and
overall survival, indicating ODC as a poor prognostic factor [16]. Polyamines have been implicated in
oncogenic and viral transformation, and ODC activity is rapidly induced upon exposure to oncogenic or
growth-promoting stimuli [10,17–19]. In particular, polyamine biosynthesis is upregulated at multiple
steps by the c-MYC oncogene [20–22], and the activation of k-RAS rapidly induces ODC activity
to promote malignant transformation and oncogenesis [23–25]. Colorectal carcinoma biopsies with
activating k-RAS mutations were shown to have enhanced polyamine biosynthesis compared to those
with wild-type k-RAS [26]. The expression level of ODC has been shown to directly correlate with the
potential to promote tumorigenesis in both lymphomas and in solid tumors [27,28]. Furthermore, ODC
activity rapidly increases with exposure to chemical carcinogens or tumor promoters, and this elevated
expression is often utilized as a biomarker of tumor promotion in carcinogenesis models [3,29–31].



Med. Sci. 2017, 5, 38 3 of 14

2.1. Targeting Polyamine Metabolism for Cancer Prevention

The potential targeting of polyamine biosynthesis as an antiproliferative strategy came with
the recognition that elevated polyamine biosynthesis was a general requirement for the survival of
cancer cells [32–34]. In fact, the ability of an agent to inhibit ODC activity is commonly considered
a predictor of chemopreventive activity [14]. The most widely studied and successful inhibitor of
polyamine biosynthesis, α-difluoromethylornithine (DFMO), or eflornithine, is enzyme-activated and
irreversibly inhibits ODC through covalently binding with its active site [35]. DFMO typically elicits
cytostatic effects in cell culture models through the depletion of putrescine and spermidine, with
variable effects on spermine, and it is capable of preventing tumor formation in numerous animal
models [36]. Early clinical trials investigating the prevention of colorectal cancer using low doses of
DFMO have established the safety of its administration as well as its efficacy in reducing polyamine
levels in colorectal mucosa [37].

Subsequent studies in colorectal cancer models have described enhanced antitumor benefits
when combining DFMO with common non-steroidal anti-inflammatory drugs (NSAIDs), including
sulindac and celecoxib. In addition to DFMO inhibiting ODC activity, the addition of an NSAID further
decreased intracellular polyamine content by stimulating polyamine catabolism and export through
activation of spermidine/spermine-N1-acetyltransferase (SSAT), resulting in an additive reduction
in the formation of colon tumors [38–40]. The combination of DFMO and sulindac has since been
clinically investigated with impressive outcomes including a 70% reduction in the number of total
metachronous colorectal adenomas [41,42], and additional studies are ongoing. Clinical trials have also
been conducted investigating the efficacy of DFMO as a chemopreventive agent in individuals with a
history of non-melanoma skin cancer, actinic keratosis (a squamous cell carcinoma precursor), Barrett’s
esophagus, and prostate cancer (reviewed in [43]). Although mostly in early clinical phases, DFMO
was safely administered in each of these studies, and the results warranted further trials. Importantly,
these studies have provided strong evidence supporting the targeting of polyamine metabolism as a
valid strategy for the prevention of tumorigenesis, particularly in those susceptible to colorectal cancer.

It should be noted that the long-term use of DFMO is not without minor, but unwanted, side effects:
a dose-related, but generally reversible, ototoxicity has frequently occurred in patients on long-term
treatment. However, a reduced daily oral dose of DFMO has been shown to be sufficient in reducing
polyamine levels in the colorectal mucosa while minimizing these side effects [31]. Furthermore,
combination therapies, such as that with DFMO and NSAIDs, allow for lower doses of the individual
agents, thereby lessening the risk for side effects. This is also important for the long-term use of
NSAIDs as chemoprevention, as the most common side effects are gastrointestinal mucosal injury and
renal toxicity, with cardiovascular, central nervous system (CNS) and platelet side effects occurring
less frequently [44].

2.2. Targeting Polyamine Metabolism for Cancer Treatment

Although DFMO effectively inhibits cellular proliferation in a variety of cancer cell types in vitro
and in vivo, its efficacy as a monotherapy against established tumors in clinical trials has been mostly
unsuccessful due to compensatory uptake of polyamines released into the intestinal lumen through
the turnover of gut mucosal cells as well as the microbiome and diet (reviewed in [45,46]). Polyamine
analogues have thus been developed with the ability to downregulate polyamine biosynthesis through
negative feedback mechanisms, inhibit uptake through the polyamine transporter, and induce the
catabolism of the natural polyamines [47–49]. These structural mimetics are capable of competing with
natural polyamines for binding sites, but are unable to substitute for their growth-sustaining functions.
Treatment of a wide variety of cancer cell lines both in vitro and in xenograft mouse models with
members of the symmetrically substituted bis(ethyl)polyamine analogues has resulted in tumor-specific
cytotoxicity that is associated with depletion of the natural polyamines and, in some cases, generation
of reactive oxygen species (ROS) [33,34,47,48]. Early clinical trials with a second-generation analogue,
PG-11047 [50], have shown it to be well tolerated as both a single agent and in combination with
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common chemotherapeutic agents (clinicaltrials.gov #NCT00293488, NCT00705653, NCT00705874).
Most recently, two of these analogues, bis(ethyl)norspermine (BENSpm) and PG-11047, were used
to generate polycationic polymers capable of targeting polyamine catabolism while simultaneously
acting as nanocarriers for the delivery of therapeutic nucleic acids, including microRNA (miRNA) and
small interfering RNA (siRNA) [51,52].

3. Dietary Factors with Potential to Moderate Carcinogenesis through the Polyamine Pathway

Although drug development targeting the polyamine pathway is progressing, evidence also
suggests that many naturally occurring compounds already present in our diet can affect polyamine
metabolism, with ultimate effects on cancer prevention or treatment. The interaction with dietary
components is greatest in the gastrointestinal tract, and it is here that the anticancer potential of dietary
or environmental factors might be most advantageous. As with DFMO and NSAIDs, colorectal cancer
(CRC) model systems have historically been used to study the efficacy of both synthetic and naturally
occurring dietary agents, including plant polyphenols, phytoestrogens, and probiotics, with regard to
chemopreventive and chemotherapeutic potential.

3.1. Plant Polyphenols

Naturally occurring polyphenols include several subclasses of structurally related plant
substances long recognized for their health benefits in traditional medicine. They can be classified as
phenolic acids (highly concentrated in coffee, teas, pomegranate, and berries), stilbenes (including
resveratrol; found in grapes, wine, and blueberries), tannins (grapes, tea, coffee, lentil, and walnuts),
diferuloylmethanes (turmeric), and flavonoids, which constitute the largest subclass of phenolic
compounds and are the major source in the average diet. Many flavonoids are produced by
plants as a means of protection against parasites, oxidative injury and harsh environmental stress
conditions, and can be further classified into groups including, but not limited to, anthocyanins
(blue- or purple-pigmented fruits), flavanols (including catechins found in teas, dark chocolate,
and cocoa), flavanones (citrus fruits) and isoflavones (phytoestrogens in soy products, such as
genistein). Representative compounds of nearly all of these groups have been demonstrated to
affect the polyamine metabolic pathway, primarily through an inhibition of ODC activity, resulting in
decreased tumorigenesis. The impact of certain flavonoids, including resveratrol, genistein, and green
tea (-)-epigallocatechin-3-gallate (EGCG) on polyamine metabolism and colorectal carcinogenesis,
as well as in other carcinogenesis models, is evident, and these data have been comprehensively
reviewed by Russo and colleagues [53,54]. The remainder of the current review will therefore focus
only on curcumin and its potential in the regulation of polyamine metabolism.

3.2. Curcumin

Curcumin, or 1,7-bis(4-hydroxy 3-methoxy phenyl)-1,6-heptadiene-3,5-dione, is a naturally
occurring polyphenol that has been the focus of many studies in a variety of medical fields (Figure 3).
A phenolic compound, this yellowish orange pigment’s only source is the rhizomatous turmeric
plant (Curcuma longa), which is cultivated mostly in India and Southeast Asia. Curcuminoids
constitute only approximately 5% of turmeric root powder, and exist in 3 forms: curcumin,
also referred to as diferuloylmethane (60–70% of crude extract), desmethoxycurcumin (20–27%),
and bisdesmethoxycurcumin (10–15%) [55].
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Figure 3. Chemical structure of curcumin, the principle active curcuminoid component of turmeric

Commonly used as a spice and food coloring as well as in skin care products and textile dyes,
curcumin has been used for centuries in traditional Chinese medicine and Indian Ayurvedic medicine
for its health-promoting properties. The pathologies believed to benefit from curcumin are diverse, and
likely stem from its potential to regulate key molecular processes involved in the pathology of many
diseases. Of particular interest in cancer etiology and prevention are the antioxidant, anti-inflammatory,
and antiproliferative benefits attributed to dietary curcumin. As an antioxidant, curcumin can act as a
free radical scavenger, inhibit the generation of free radicals and subsequent oxidative damage, and
induce the activity of antioxidant molecules and enzymes involved in detoxification processes, such as
glutathione-S-transferase (GST) and nuclear factor E2-related factor (NRF-2) [56,57].

The role of curcumin in the anti-inflammatory response is associated with its ability to
downregulate certain transcription factors that promote the production of inflammatory gene products.
Perhaps most significantly, curcumin inhibits nuclear factor-kappa B (NF-κB) activation, preventing
its translocation into the nucleus where it could directly induce the transcription of genes associated
with cell survival and inflammation [58,59]. Affected genes include the free-radical-producing
enzymes cyclooxygenase-2 (COX2), lipoxygenase (LOX), and inducible nitric oxide synthase (iNOS) as
well as pro-inflammatory cytokines, such as interferon gamma (IFNγ), tumor necrosis factor alpha
(TNFα), interleukin (IL)-1, IL-6, and others. In addition, curcumin invokes growth inhibitory effects
through other NF-κB target gene products, including cyclin D1 and c-MYC, induces apoptosis in
cancer cells, and demonstrates anti-angiogenic activity. Overall, the importance of curcumin in
cancer chemoprevention and treatment may originate from its inhibitory effect on molecules linking
inflammation and cancer. As several genes encoding polyamine metabolic enzymes are also regulated
by many of the above-mentioned molecules, the potential exists for transcriptional modulation of the
polyamine pathway via curcumin.

4. Investigations into the Antitumor Potential of Curcumin through Modulating
Polyamine Metabolism

4.1. Evidence of the Chemopreventive Activity of Curcumin in Carcinogenesis Models

Animal models of carcinogenesis involve the administration of carcinogens and/or toxicants
that act as tumor initiators or promoters. Studies with DFMO established a critical role for ODC
induction by tumor promoters such as phorbol esters in the early stages of tumor development [60].
Subsequently, ODC has been used as an indicator of tumor promotion induced by a variety of agents
in multiple carcinogenesis model systems [31].

4.1.1. Topical Application of Curcumin in Animal Models of Skin Cancer

The effects of curcumin on polyamine metabolism were first investigated in the CD-1 skin
carcinogenesis mouse model [61]. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA)
is well established to rapidly induce ODC activity [30], and this ODC induction contributes to
tumorigenesis [3]. Topical application of curcumin to the epidermis concurrently with TPA potently
inhibited the induction of epidermal ODC activity in a dose-dependent manner. Similarly, TPA-induced
DNA synthesis was progressively inhibited by increasing doses of curcumin. Ultimately, in a two-stage
initiation-promotion model using 7,12-dimethylbenz[a]anthracene (DMBA) followed by TPA, curcumin
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potently reduced TPA-induced tumor promotion, resulting in a 98% decrease in the number of skin
tumors observed [61]. In a similar strategy, both topical and intraperitoneal (i.p.) administrations
of curcumin were investigated for their effects on TPA-induced ODC mRNA and activity in mouse
epidermis. Both routes of administration were capable of inhibiting the induction of ODC mRNA and
activity in a near-parallel, dose-dependent manner, indicating that modulation of ODC by curcumin
occurs primarily at the mRNA transcript level [62].

The results of these studies were further verified in vitro using ME308 mouse keratinocytes
established from DMBA-initiated mouse skin [63]. Lee and Pezzuto [64] used this system to investigate
an extensive panel of potential chemopreventive agents, including curcumin, for their ability to inhibit
TPA-induced ODC activity. Their data revealed that co-incubation of curcumin with TPA provided one
of the most potent inhibitory effects on ODC activity, with a half maximal inhibitory concentration (IC50)
of 4 µM. In comparison, the irreversible ODC inhibitor DFMO prevented TPA-induced ODC activity
with an IC50 of 20 µM. A similar inhibitory effect for curcumin compared to DFMO was obtained in
a subsequent screen using the rat 2C5 tracheal epithelial cell line to investigate TPA-induced ODC
activity [65]. Of note, curcumin was not toxic to this non-tumorigenic immortalized cell line.

Studies into the mechanism of tumor promotion by TPA revealed a critical role for protein kinase
C (PKC) signaling in mediating many TPA-induced tumorigenic effects, including ODC activity.
Topical application of curcumin to the dorsal skin of Swiss bare mice prevented TPA-induced PKC
translocation, resulting in effects analogous to those observed using a known selective inhibitor of
PKC. These effects of PKC inhibition ultimately included the repression of ODC induction, ROS
generation, apoptosis, and hyperplasia, which were associated with alterations in TPA-induced kinases
and transcription factors [66].

Irradiation of CD-1 mice with ultraviolet A (UVA) has been shown to enhance the
tumor-promoting effects of TPA on the epidermis beyond that observed with TPA alone. These effects
include increased ODC activity and dermatitis, as evidenced by dermal infiltrating inflammatory
cells, and topical pretreatment with curcumin significantly prevented these increases as well as those
observed with TPA alone [67]. In the same model, it was subsequently determined that although
ODC mRNA was induced by TPA, as previously reported [62], it was not significantly enhanced
by addition of UVA; ODC activity was, however, induced by UVA in addition to TPA, suggesting
post-transcriptional regulation of ODC by UVA. Importantly, pretreatment with curcumin could block
the UVA-TPA-stimulated induction of both ODC mRNA and protein [68].

4.1.2. Dietary Curcumin in Rodent Models of Carcinogenesis

Following the initial finding that curcumin prevented TPA-induced ODC activity and
tumorigenesis when applied topically, studies were conducted investigating the effects of dietary
administration of curcumin. At the time of these studies, the chemopreventive effect of NSAIDs
on colon tumorigenesis was becoming apparent. As curcumin has traditionally been used in the
treatment of a variety of inflammatory conditions, its potential for inhibiting colon tumorigenesis
was investigated. F344 rats were fed diets containing 2000 p.p.m. curcumin for two weeks prior to
subcutaneous injections of azoxymethane (AOM), a carcinogen that specifically induces distal colon
tumors in rodents with a pathology mimicking that of sporadic human colon cancers [69]. In the group
receiving the curcumin-supplemented diet, AOM-induced ODC activity was significantly decreased in
the colonic mucosa as well as the liver, where AOM is metabolically activated. Additionally, animals
receiving dietary curcumin prior to AOM exposure demonstrated a greater than 50% reduction in
the number of AOM-induced aberrant crypt foci (ACF), which are early preneoplastic lesions in the
colon [70].

The F344 rat strain was also used to investigate the protective effect of curcumin on
4-nitroquinoline 1-oxide (NQO)-induced oral carcinogenesis. 4-NQO is easily administered to rats
in the drinking water and produces tongue lesions including squamous cell neoplasms that are
comparable to those in human oral carcinogenesis [71]. To study the efficacy of curcumin in preventing
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the initiation of tumorigenesis, rats were fed a diet containing 500 p.p.m. curcumin starting one week
prior to and throughout 4-NQO exposure for 8 weeks. A second group received no curcumin until one
week after the 8-week 4-NQO exposure (post-initiation), and curcumin remained in the diet of this
group until the conclusion of the study 22 weeks later. Rats in both curcumin groups demonstrated
impressive reductions in the frequency of tongue neoplasms: 4-NQO-induced carcinomas were
reduced from 54% of the animals to 5% when curcumin was added at the initiation phase and to 15%
when added post-initiation. The number of animals with preneoplastic squamous cell dysplasias
was similarly decreased. Analyses of the polyamine content of normal-appearing sections of tongue
tissue at the end of the study revealed that 4-NQO exposure significantly elevated the levels of
spermidine and spermine, as well as total polyamine content, above that of untreated animals,
consistent with an induction of ODC activity. Importantly, these elevated levels were prevented when
curcumin was also administered, with initiation phase exposure providing the greatest benefit and
maintaining polyamine pools that did not significantly differ from those of rats not receiving carcinogen.
These reduced polyamine levels and carcinoma numbers were also accompanied by reductions in
proliferation biomarkers in the tongue epithelium [72]. Of note is a previous study conducted by
the same investigators that analyzed the effects of the ODC inhibitor DFMO on NQO-induced oral
carcinogenesis with very similar results [73].

In a third model system, male ddY mice were pretreated with 1% dietary curcumin for 4 weeks
prior to receiving i.p. injections of the renal carcinogen ferric nitrilotriacetate (Fe-NTA). Twelve hours
after administration of Fe-NTA, ODC activity levels in the mouse kidney were increased approximately
4.4-fold, while pretreatment with curcumin inhibited this increase by 63%, with no effect on basal
enzyme activity. Concurrently, Fe-NTA-generated oxidative stress, a mechanism associated with its
tumor-promoting abilities, and nephrotoxicity were also alleviated by curcumin pretreatment [74].

4.2. Investigations into Polyamine-Associated Effects of Curcumin on Established Tumors—Potential for
Cancer Treatment

Unlike non-tumorigenic cells, cancer cells typically respond to curcumin exposure through
inducing apoptosis and cell death [75]. Several characteristics of cancer cells are responsible for this
differential sensitivity, including increased curcumin uptake and ROS generation, lower glutathione
levels, and the constitutive activation of NF-κB that often mediates the survival of cancer cells [75–78].
In addition to being a c-MYC-regulated gene, evidence exists for the regulation of ODC by NF-κB [79],
and the SSAT catabolic enzyme is also an NF-κB target [80]. Studies have also suggested that
NF-κB can be activated by the elevated levels of polyamines present in tumor cells [81]. Thus,
the inhibition of polyamine biosynthesis by curcumin might indirectly inhibit NF-κB activation.
In spite of these potential mechanistic links in terms of regulation by transcription factors, relatively
few studies have investigated the effect of curcumin exposure on polyamine metabolism in cell
lines. Mehta et al. [82] first analyzed the effect of curcumin on a panel of 8 breast cancer cell
lines representing multidrug-resistant (MDR), estrogen-dependent, and estrogen-independent breast
cancers. Impressive growth inhibitory effects were observed in all of the cell lines (1–26% viability
following 1 µg/mL treatment for 72 h), including an Adriamycin-resistant MCF-7 line (~15% viability).
This antiproliferative activity was time- and dose-dependently correlated with curcumin-induced
inhibition of ODC activity. Interestingly, in MCF-7 cells, there was no apparent evidence of apoptosis
and the apoptosis-related genes examined remained unchanged [82]. Flow cytometric studies in
MDA-231 cells indicated temporary growth arrest at the G2/M checkpoint after 24 h of curcumin
exposure; however, cells appeared to re-enter the cell cycle with longer exposure times. The results of
this study were the first to suggest the potential use of curcumin as an antiproliferative agent against
breast cancer cells.

In a more recent study using SK-BR-3 breast cancer cells, which overexpress Human Epidermal
Growth Factor (HER)-2, curcumin inhibited growth, and a flow cytometric assay measuring bromolated
deoxyuridine triphosphate (BrdU) incorporation indicated the induction of apoptosis even at the
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lowest concentration examined (2.5 µM after 72 h). Analysis of intracellular polyamine pools following
curcumin treatment revealed substantial decreases in spermidine and spermine levels (85% and
50%, respectively), suggesting that the loss of intracellular polyamines might be important in the
antiproliferative mechanism of curcumin [83].

Curcumin inhibits the activation and nuclear translocation of NF-κB, thereby preventing
stimulation of NF-κB target genes [58]. The involvement of NF-κB signaling in curcumin-mediated
changes in polyamine metabolism was recently investigated in human breast cancer [84]. Pretreatment
of MCF-7 breast cancer cells with an inhibitor of NF-κB prior to curcumin treatment suggested that
curcumin-mediated alterations in c-MYC, ODC, SSAT, and PAOX protein levels occurred in part
through this signaling pathway [84]. Interestingly, this response pattern to curcumin was altered
by overexpression of the B-cell lymphoma-2 (BCL2) gene, an alteration associated with chemo- and
radioresistance [85]. Although the MCF-7/BCL2 cells were less sensitive to the effects of curcumin
than the parental strain, significant inhibition of colony formation remained evident. Of note, as BCL2
overexpression in itself upregulates NF-κB [86], the basal expression levels of c-MYC, ODC, and SSAT
were also substantially increased in this cell line [84], providing further evidence for regulation of
these enzymes by NF-κB.

The ability to stimulate apoptosis in cancer cells of various origins is a key anti-carcinogenic
property of curcumin. In the HL-60 promyelocytic leukemia cell line, Liao et al. [87] provided
comprehensive evidence indicating a role for ODC in the mechanism of curcumin-induced apoptosis.
Treatment of these cells with curcumin quickly inhibited ODC enzymatic activity in a time- and
dose-dependent manner that correlated with growth inhibition; furthermore, overexpression of ODC
or pretreatment of wildtype cells with a caspase inhibitor increased survival in the presence of
curcumin. Relative to the parental cell line, ODC-overexpressing HL-60 cells were protected from the
apoptotic hallmarks of curcumin treatment and presented little evidence of DNA fragmentation, ROS
production, loss of mitochondrial membrane potential or cytochrome c release, cleavage of procaspases
3 and 9, downregulation of BCL2, or apoptosis-related morphological changes. Importantly, the loss of
curcumin-induced DNA fragmentation observed in the ODC-overexpressing cells was restored by
DFMO treatment or siRNA targeting ODC [87].

5. Translational Potential, Clinical Trials, and Limitations

In addition to the anecdotal evidence accompanying centuries of traditional medicine, curcumin
has been safely administered to humans in many registered clinical trials, with nearly 70 trials
completed that targeted a variety of conditions (clinicaltrials.gov). One patient population with
potential to benefit from curcumin supplementation includes individuals with familial adenomatous
polyposis (FAP), a hereditary form of colorectal cancer resulting from a germ-line mutation of the
adenomatous polyposis coli (APC) gene. ODC activity is elevated in normal-appearing colonic mucosa as
well as polyps of patients with FAP [88]; furthermore, pre-symptomatic FAP patients contain elevated
colorectal mucosa levels of putrescine [89]. Studies in the Min/+ mouse, a model of FAP with one
mutant and one wild type copy of the Apc gene, demonstrated a 64% reduction in adenoma formation
following daily dietary curcumin intake [90]. In a clinical study of FAP patients, the combination of
curcumin and a second polyphenol, quercetin, effectively reduced adenoma polyp number and size;
however, treatment arms with the individual agents were not conducted [91]. A recently completed
randomized, placebo-controlled phase 2 trial (clinicaltrials.gov identifier #NCT00641147) specifically
investigated the effect of daily dietary curcumin supplementation on the regression of adenomas in
FAP patients over the course of one year. According to the reported results, no significant benefit was
observed for the treatment group in terms of polyp number or size, nor were changes observed in the
levels of polyamines, suggesting a lack of drug availability.

The poor solubility, bioavailability, and stability of curcumin are common impediments to its
clinical utility, particularly when given orally. However, its stability is increased in acidic environments
such as the stomach, and the requirement for systemic bioavailability is lessened with the potential for
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direct contact. Strategies improving this bioavailability are a current area of research and include such
approaches as the use of adjuvants that interfere with the metabolism of curcumin, structural analogues
of curcumin, and curcumin-containing nanoparticles [57,92]. The structure of curcumin has been widely
modified, with particular focus on changes in the β-diketone structure and aryl substitution pattern of
the molecule. Of these structural analogues, the incorporation of a 3,5-dibenzylidenepiperidin-4-one
framework elicits enhanced antioxidant and antiproliferative actions relative to curcumin, potentially
offering an improved pharmacokinetic profile [93–95].

As curcumin has potential therapeutic value against multiple human conditions, enhancing its
bioavailability and ascertaining its efficacy in clinical trials could significantly impact the treatment
and health of many individuals around the world.

6. Conclusions

The ability of curcumin to specifically alter the signaling pathways required for cancer cell survival
strongly suggests its potential in chemopreventive and chemotherapeutic strategies, particularly in
inflammation- or ROS-associated carcinogenesis. Modulation of polyamine pathway enzymes and
the levels of intracellular polyamines appear to contribute to the anticancer potential of curcumin
both in terms of carcinogenesis and in the treatment of established tumors. Therefore, establishing the
molecular mechanisms underlying the regulation of polyamines by curcumin will potentially add to
our understanding of how to most effectively target and prevent tumor cell proliferation and might
provide insight on how to best supplement or substitute current more toxic therapies with curcumin.
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