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Abstract: In an era of precision medicine, it seems regressive that we do not use stratified approaches
to direct treatment of oral corticosteroids during an exacerbation of chronic obstructive pulmonary
disease (COPD). This is despite evidence suggesting that 40% of COPD patients have eosinophilic
inflammation and this is an indicator of corticosteroid response. Treatments with oral corticosteroids
are not always effective and not without harm, with significant and increased risk of hyperglycemia,
sepsis, and fractures. Eosinophils are innate immune cells with an incompletely understood role in
the pathology of airway disease. They are detected at increased levels in some patients and can be
measured using non-invasive methods during states of exacerbation and stable periods. Despite the
eosinophil having an unknown mechanism in COPD, it has been shown to be a marker of length of
stay in severe hospitalized exacerbations, a predictor of risk of future exacerbation and exacerbation
type. Although limited, promising data has come from one prospective clinical trial investigating
the eosinophil as a biomarker to direct systemic corticosteroid treatment. This identified that there
were statistically significant and clinically worsened symptoms in patients with low eosinophil levels
who were prescribed prednisolone, demonstrating the potential utility of the eosinophil. In an era of
precision medicine our patients’ needs are best served by accurate diagnosis, correct identification of
maximal treatment response and the abolition of harm. The peripheral blood eosinophil count could
be used towards reaching these aims.
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1. Eosinophil Cell Biology

Eosinophils are inflammatory leukocytes comprising of bi-lobed nuclei and large acidophilic
cytoplasm granules. The cationic protein granules bind to acid stains and in particular eosin which
allowed them to be identified by Paul Ehrlich in 1879 [1]. Four proteins are found to make up
the granules including major basic protein (MBP) located in the core and eosinophil basic proteins
forming the matrix, consisting of eosinophil cationic protein (ECP), eosinophil peroxidase (EPO), and
eosinophil-derived neurotoxin (EDN). These granules are toxic to various tissues and are capable of
inducing damage and dysfunction upon their secretion [2].

Produced in healthy bone marrow derived from CD34+ myeloid progenitors, the number of
eosinophils generated is typically low with circulating eosinophils range between 1–4% of the total
white blood cell count. Once mature, eosinophils enter the systemic circulation where they can reside
for 8–12 h. Unless stimulated, the cells then migrate to tissues [3]. Differentiation for this lineage is
promoted by interleukin (IL)-3, granulocyte/macrophage-colony-stimulating factor (GM-CSF) and
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IL-5 cytokines from a hematopoietic stem cell into a mature eosinophil [4]. These same cytokines
also act as priming agents, transforming the eosinophil from a quiescent cell into a hyper-responsive
state. This includes an increased response to chemotaxis, degranulation, and cytokine production [5].
The mechanism of entry of the eosinophil from the blood stream into tissue involves crossing a
microvascular wall. Eotaxin (CCL11) and IL-5 are the two main ligands that promote eosinophil
migration into the tissue [6]. The Eotaxins, in addition to RANTES, produced from epithelial,
mesenchymal, and endothelial cells are involved in migration and priming of eosinophils once in the
airway [7,8]. Expression of C-C chemokine receptor type 3 (CCR3) and IL-5 receptor subunit alpha
(IL5Rα) on the cell surface is integral to eosinophil recruitment to tissues. The role of the eosinophil
in both innate and adaptive immunity is poorly defined, and their response varies depending on the
environment and/or stimulus. Resident eosinophils are predominately found in the gastrointestinal
tract, although other resident populations are also found in healthy individuals in physiological
conditions in the thymus, spleen, lymph nodes, mammary glands and the uterus indicating other
potential roles in homeostasis. Their accumulation at these sites has given rise to the eosinophil role
extending to local immunity and/or remodeling and repair in health and disease (the so called “LIAR”
hypothesis) [9].

Eosinophils play an important role in immune-regulation by priming B cells and maintaining
type-2 immunity [10]. In the airway, the eosinophil can act as an antigen-presenting cell while several
stored and secreted mediators highlight their role as both an immunomodulatory and effector cell in
the airway (Figure 1) [11]. Eosinophils are capable of disrupting the pulmonary epithelial barrier and
causing alveolar epithelium cell lysis upon granular secretion, further exacerbating the inflammatory
response [10].
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2. Eosinophils in Chronic Obstructive Pulmonary Disease

In asthma, another common airway disease, the utility of the eosinophil to identify a corticosteroid
response has been established [12], leading the way to the successful development of monoclonal
antibodies to target severe eosinophilic asthma [13–17]. The lack of an underlying mechanism for the
role of eosinophils in asthma has not diminished their use in clinical practice to identify the patient that
requires treatment with anti-eosinophil depleting treatments, such as inhaled or oral corticosteroids,
or monoclonal antibodies.

The involvement of the eosinophil in the pathogenesis of chronic obstructive pulmonary disease
(COPD) has not been fully elucidated [18] and their role remains controversial. Up to 40% of patients
with COPD have eosinophilic airway inflammation and both invasive and non-invasive methods have
been used when measuring for this phenotype [19]. Historically, measurements of sputum eosinophils
have been undertaken to categorize the degree of eosinophilic inflammation found in patients with
COPD [20]. Although sputum induction is both a safe and repeatable procedure [20], it requires
time, technical processing and expertise in slide preparation and counting [21]. Hence, sputum
measurements in COPD (nor asthma) have not been adopted in routine clinical practice. The peripheral
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blood eosinophil count has emerged as an ideal surrogate for sputum eosinophilic inflammation [22].
Near-patient testing, validated against standard venipuncture laboratory analysis [23] allows for the
rapid measurement of the peripheral blood eosinophil count in real-time and in the clinic room or
surgery. In stable COPD, sputum eosinophils have been shown to identify both inhaled [24] and oral
corticosteroid [25] response with respect to lung function improvements, quality of life and exercise
capacity. Furthermore, in a direct replica of the seminal asthma study by Green et al. [12], reduction of
sputum eosinophils in stable COPD has been shown to reduce exacerbations in the order of 65% [26].

Since the emergence of the peripheral blood eosinophil as a useful biomarker in COPD, several
post-hoc analysis have explored its utility in directing inhaled corticosteroids to impact on exacerbation
burden [27–30]. These studies have unequivocally found that in patients with COPD and a history
of exacerbations, the peripheral blood eosinophil identifies patients with an increased risk of
exacerbations and the best response to inhaled corticosteroids [27–29] or a worsened response to
withdrawal of inhaled corticosteroids [31,32]. It is thus conceivable and arguably plausible that the
measurement of eosinophilic inflammation is likely to be crucial in determining the phenotype of the
disease and direction of therapy, making it critically useful as a biomarker to aid understanding in
COPD pathogenesis and treatment response [18].

3. Eosinophils in Exacerbations of COPD

Exacerbations of COPD are heterogeneous and attempts to delineate the biological heterogeneity
using plasma markers and symptoms have been made [33]. Unsupervised cluster analysis of sputum
mediators has highlighted that there are independent biological clusters, which relate to unique
inflammatory pathways and to underlying pathogenic etiology [22]. The biology of the exacerbation
varies with the presence of bacteria, virus, eosinophils and in some a low inflammatory state (likely
because of cardiac dysfunction or co-morbidity) [22]. The utility of the peripheral blood eosinophil as a
suitable, sensitive and specific biomarker in COPD and in particular COPD exacerbations, identifying
a type-2 eosinophilic phenotype was first reported in 2011 [22] and has been further validated by other
groups [34]. Exacerbations of COPD that are associated with a type-2 inflammatory response have been
shown to have increased concentrations of IL-5 and CCL11 and increased concentrations of sputum
and blood eosinophils [22]. Furthermore, the clinical characteristics at the onset of an exacerbation
cannot distinguish either type-1 or type-2 immune response [22,35,36]. Measurements of biological
expression during an exacerbation of COPD could be used to stratify treatment.

4. Systemic Corticosteroids at the Onset of an Exacerbation: A Poorly Effective Treatment?

At present, there is no ideal method to direct treatment during an exacerbation of COPD. In the
presence of dyspnea, exacerbations are usually always treated with systemic corticosteroids [37].
This is despite a small number of patients studied and heterogeneous evidence [37–39]. These
treatments are routinely given in attempt to improve patient outcomes such as symptom recovery
and prevent a treatment failure (defined as re-treatment, hospitalization or death), but have no
effect on length of intensive treatment unit (ITU) stay or longer term lung function and are not
without harm [40–43]. A Cochrane review for systemic corticosteroids in the management of an
exacerbation of COPD demonstrates no effect on mortality and a small reduction in treatment failures,
with a number-need-to-treat of 10, but a number-needed-to-harm of 6 [42]. Approximately 1 in
13 patients with an exacerbation of COPD treated with systemic corticosteroids will develop significant
hyperglycemia [42]. A recent retrospective cohort case-control study in the emergency department
demonstrates that even one short course of systemic corticosteroids are associated with an increase
rate of sepsis (incidence rate ratio 5.3, 95% confidence interval (CI) 3.8–7.4), venous thromboembolism
(incidence rate ratio 3.3, 95% CI 2.8–4.0) and fractures (incidence rate ratio 1.9, 95% CI 1.7–2.1) [40].
Corticosteroids however are an effective yet non-specific anti-inflammatory [44]. Approximately 30%
of exacerbations of COPD are associated with eosinophilic airway inflammation [22]. Exacerbations of
COPD with sputum eosinophilia have been shown to have the best forced expiratory volume (FEV1)
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response to systemic corticosteroid therapy [45]. Despite their unknown mechanism in airways disease
such as asthma and COPD, the eosinophil does inform of the likelihood of response to corticosteroids.

In a post-hoc analysis from severe hospitalized exacerbations, length of hospital stay is
significantly shorter in eosinophilic exacerbations treated with systemic corticosteroids [46] while
retrospective analysis in the intensive care unit, demonstrates that eosinophilic exacerbations are
associated with a lower mortality in COPD patients which are invasively ventilated [47]. Finally, the
corroboration that eosinophils are an important biomarker in COPD exacerbations is demonstrated
with the DECAF index, with eosinophils (and low levels, below 50 cells/mm3) being an independent
predictor of mortality in severe hospitalized exacerbations of COPD [48].

5. Eosinophils at the Onset of an Exacerbation to Direct Prednisolone Treatment: Time to Move
Towards Precision

Clinical trials using biomarkers such as Procalcitonin [49] or C-reactive protein [50] have been
successful in determining antibiotic prescription in exacerbations of COPD and go to some lengths
to drive antibiotic stewardship [51,52]. In the only prospective study so far, the eosinophil has been
successfully used to direct systemic corticosteroids at the time of a moderate exacerbation of COPD [53].
This single-center proof of concept study reached its primary outcome of non-inferiority in treatment
failure rates in biomarker-directed treatment of systemic corticosteroids versus standard therapy with
the additional signal of increased harm in patients who had low eosinophil levels (“biomarker low”
peripheral blood eosinophil counts below 2%) prescribed prednisolone. Furthermore, the “biomarker
low” patient population which received prednisolone therapy reported both statistically significant
and clinically worsened symptoms and a slower rate of recovery than in “biomarker low” patient
population receiving placebo. These findings were almost replicated in a pooled analysis of studies with
available eosinophil results at the time of an exacerbation, with the worst outcomes (significantly higher
treatment failure rates) in patients with eosinophilic exacerbations and treatment with placebo [54].
This has the implication that prednisolone is causing harm in some patients with COPD. At this
current time there are a further two multi-center randomized trials seeking to validate this finding
(NCT02857842 [55] and ISRCTN27510582), with planned read-outs by 2020.

In an era of precision medicine [56], our patients’ needs are best served by accurate diagnosis,
correct identification of maximal treatment response and the abolition of harm. The peripheral blood
eosinophil count could be used towards reaching these aims.
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