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Abstract: The topic of flood phenomena has always been of considerable importance due to the
high risks it entails, both in terms of potential economic and social damage and the jeopardizing of
human lives themselves. The spread of climate change is making this topic even more relevant. This
work aims to contribute to evaluating the role that human factors can play in responding to critical
hydrogeological phenomena. In particular, we introduce an agent-based platform for analyzing
social behaviors in these critical situations. In our experiments, we simulate a population that is
faced with the risk of a potentially catastrophic event. In this scenario, citizens (modeled through
cognitive agents) must assess the risk they face by relying on their sources of information and mutual
trust, enabling them to respond effectively. Specifically, our contributions include (1) an analysis
of some behavioral profiles of citizens and authorities; (2) the identification of the “dissonance
between evaluation and action” effect, wherein an individual may behave differently from what their
information sources suggest, despite having full trust in them in situations of particular risk; (3) the
possibility of using the social structure as a “social risk absorber”, enabling support for a higher
level of risk. While the results obtained at this level of abstraction are not exhaustive, they identify
phenomena that can occur in real-world scenarios and can be useful in defining general guidelines.

Keywords: floods; hydrogeological phenomena; natural risk; climate change; social simulation;
agent-based framework; cognitive modeling

1. Introduction

Critical weather phenomena and, in particular, floods represent a serious inconve-
nience for all governments due to the damage they can cause, both in terms of human lives
(a single flood could cause the deaths of millions of people [1,2]), which is the primary
reason why governments should seriously care about floods and the huge economic losses
they incur.

Data concerning this problem are definitely alarming. Cuñado and Ferreira [3] report
that floods represented 40% of all natural disasters between 1985 and 2009; Luino and
colleagues [4] report that, in Italy, “In the 20-year period from 1980 to 2000 the State set
aside 7400 million euro for flood damage, or roughly one million euro per day”; Guha-
Sapir and colleagues [5] state that, in 2013, hydrological disasters took the largest share of
natural disaster occurrence (48.2%) and that the most expensive hydrological disaster ever
registered happened in Thailand in 2011, causing USD 41.4 billion worth of damages.

These types of events are expected to become increasingly emphasized due to cli-
mate change [6,7]. Indeed, we expect severe weather events to increase in severity and
frequency [8,9]. For instance, it has been predicted [10] that there will be a mean increase
in the 100-year precipitation event by 20% in magnitude and >200% in frequency in a
high-warming scenario.

Nevertheless, assessing the comprehensive adverse consequences of a natural disaster
is a challenging task. The types of damage we have just discussed pertain to direct harm
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inflicted upon buildings, infrastructure, residences, roads, and agriculture. Beyond these
readily visible and quantifiable direct damages, natural disasters also involve a multitude of
secondary and indirect consequences that pose substantial challenges in terms of detection
and assessment. For instance, being subjected to a natural disaster could lead to a decrease
in tourist flows, resulting in turn in a worker’s dismissal. An exemplary case is that of
Umbria, a central region of Italy that, in 2016, was repeatedly struck by earthquakes. The
entire area reported extensive damage to streets, houses, and structures in general. But
this is not all; the population is still paying the consequences. In fact, once people start
perceiving a particular geographical area as dangerous, it is not easy to change their minds.
As the result, the local authority reported in its data [11] that tourism, representing one of
the most important sources of earnings for the local population, decreased by 35%.

Similarly, the recent flood in Emilia Romagna [12] resulted in significant losses in
terms of casualties and direct damage to structures and infrastructure. In this case as well,
there was a significant decline in tourism, with some provinces experiencing a reduction
of 20% in local tourism and even 27.8% in foreign tourism [13]. Moreover, psychological
traumas [14–16] or other kinds of mental disease [17] may arise after a disaster due to the
risk of dying or to the loss of material goods or even someone we care about.

From the above considerations, it becomes evident that there is a need to identify more
effective ways to control the impacts of floods and mitigate the damages they cause. Indeed,
as [18] reports, “self-protective behavior by residents of flood-prone urban areas can reduce
monetary flood damage by 80%, and reduce the need for public risk management”. Then,
while it is indeed true that floods pose a significant threat to both authorities and the
general population, it is also true that citizens’ adoption of self-protective measures can
greatly mitigate the issue of both direct and indirect damages. Therefore, on the one hand,
it is necessary to investigate in detail the decision-making processes of citizens, and, on the
other hand, it is also crucial to identify community policies and improve strategic planning
to reduce the impacts of critical hydrogeological phenomena. This is precisely the task of
national governments and local authorities, which play a key role in this context [19,20].

We support the thesis that authorities should identify effective strategies to foster pos-
itive behaviors within populations. Their role extends beyond merely providing assistance
after a disaster; they should also have the goal of promoting preventive behaviors and
actions among the populace, which can in turn minimize future risks. In conclusion, the
role of the authority within this framework should be as follows:

1. To promptly inform the population with the most reliable forecast about what is going
to happen [21].

2. To provide information properly: for instance, the authors of [22] analyze commu-
nity resilience, i.e., the capacity of a community to lead itself in order to overcome
changes and crises. They showed that this value positively correlates with community
satisfaction concerning the information that the authority reports.

3. To encourage citizens to undertake self-protective behaviors as they can substantially
reduce the problem of direct and indirect damages [23,24].

The damage a population suffers strictly depends on the relationship between the
citizens and the authority, from their collaboration and coordination to their reciprocal
sensitization towards a safety culture. Citizens use a strategy to estimate the risk and
decide how to behave. Even though the authority possesses its own strategy, it could have
a different purpose; more precisely, each citizen wants to protect themselves while the
authority needs to protect and safeguard the collective interest. In general, there should
be a convergence between these two interests. Nevertheless, there may be important
differences. As a consequence of the contradicting goals between citizens and the authority,
a behavioral study of these actors becomes essential to understand how they relate and
what the outcome of their interaction is.

In this work, we propose a multi-agent system approach, creating a social simulation
in which the citizens and the authority are modeled through cognitive agents. We intend
to provide a useful tool to analyze the problem both from the authority’s and from the
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citizens’ point of view. By means of simulations, we investigate the authority’s role and
the possible choices it has to provoke the expected citizens’ behavior. The citizens have,
in turn, their own strategies to detect the most appropriate behavior in relation to real
events and the sources (including the authority) predicting them. The model is designed to
investigate the evolution of decision-making strategies by citizens and authorities during
floods. Therefore, the model simulates the following:

1. The pre-flood phase, where strategies are implemented to face the event.
2. The evolution of the event.
3. The damages caused by the event.

It is intended to not only assess the impact of an event on a population but also, above
all, to evaluate the effects of authorities’ strategies in the pre-flood phase.

In more detail, the objectives that this work aims to achieve are as follows:

1. Development of a social simulation platform based on multi-agent systems to explore
community behavior in the face of critical hydrogeological phenomena.

2. Analysis of citizens’ decision-making processes in hydrogeological risk situations,
considering subjective risk perception and their response to external information
and stimuli.

3. Evaluation of the strategies available to the authority to encourage citizens to adopt
appropriate behaviors in the face of hydrogeological risks, considering both incen-
tivizing and punitive approaches.

4. Exploration of emerging social dynamics between citizens and authorities in risk contexts.
5. Study of the role of institutional trust in this context, examining how trust influences

the effectiveness of strategies adopted by authorities.

Overall, the main goal is to contribute to a better understanding of the interactions
between citizens and authorities in hydrogeological risk contexts and to provide useful
tools to address these challenges more effectively.

The rest of this article is organized as follows. In Section 2, we describe related works.
In Section 3, we introduce the trust model used to handle information sources. Section 4
is dedicated to the realized platform. In Section 5, we analyze two possible scenarios. In
conclusion, Section 6 summarizes the results of the whole work.

2. State of the Art

The current literature mainly focuses on identifying and quantifying the damage that
weather phenomena and floods may cause. Fewer studies focus on the population’s re-
sponse. If we extend the search field to other types of natural risks, such as bushfires [25] or
earthquakes [26], there would be other studies to consider. Unfortunately, it is not possible
to use their conclusions and findings since the risk attitude is domain-dependent [27], so
their results cannot be applied to floods. It is, however, interesting to see how these works
approach the problem.

2.1. Quantifying Damages

A possible way to deal with this topic is to take into account the historical evolution of
the phenomena that happened in a given geographical area: the way they happened, their
intensity, frequency, etc. For instance, [28] analyzed all the historical natural events that
occurred in the area of Valtellina di Tirano, a mountain area in the Central Italian Alps, to
produce a georeferenced database. The study demonstrates the significance of collecting
and leveraging historical information, emphasizing its crucial role in identifying potential
critical scenarios, assessing territorial threats, and effectively managing future emergencies.

A second line of contribution exploits the simulation approach to estimate the damage
an event can cause [4,29]. For instance, in [4], the authors propose a model simulating
critical scenarios and evaluating the expected economic loss. Here, the flood water level
is considered as the factor indicating the event magnitude, which is a questionable sim-
plification (for instance, Grahn [30] states that including the duration of the event is a
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key factor). Another interesting contribution is that of Tierolf and colleagues [31]. As
urban development is concentrated in river areas in Asian countries, there is a risk that this
intense urbanization may increase flood risk. Therefore, the authors focus on quantifying
the impact of anthropization, projecting flood risk until 2040, and estimating the potential
increase, which in some cases is up to +211%.

Please note that there is no consensus in the literature on how the magnitude of events
should be classified. We refer to that produced by [32]. Here, the damage due to natural
disasters is divided into four types. They mainly distinguish between tangible (monetarily
quantifiable) and intangible damage, which is more difficult to quantify (such as loss of life,
psychological traumas, etc.). In turn, these are classified into direct, that is, the damage
caused directly by the event (damage to roads, buildings, houses, etc.), and indirect, i.e., the
secondary damage that the event causes, such as the closure of companies, the decline in
tourism, etc. Usually, researchers focus on tangible direct damage since this is the most
practical dimension to quantify economically. When a critical event affects a given area, the
proposed model computes the economic loss due to direct damage as a function of (1) the
economic value of the exposed area and (2) the degree of damage. The necessary condition
for the model to produce the output is therefore that there is a good knowledge of the local
area and a description of the physical event.

2.2. Risk Perception and Population’s Response

In this subsection, we will now discuss the specific approaches available to quantify
risk perception and to identify the reactions of citizens in the presence of floods. The study
of risk perception concerns the analysis of people’s knowledge and, consequently, the study
of their behavior concerning hazards.

The first and most common methodology is that of a survey [33–35], which aims
to identify what people did in the past or what they would do while facing a critical
flood. Some research relies on socio-demographic factors [36], while others state that
psychological factors provide a better picture of the situation [18]. Usually, the authors
start by proposing a psychological model, and then they lean on surveys to identify the
correlations among their variables and a regression analysis to try to explain people’s
behavior. Among these, Cao and colleagues [37] investigate the factors having a significant
impact on protective coping behaviors. Among the main factors, trust in the government
was found to be positively related to protective coping behaviors. Surveys represent a
useful instrument; however, sometimes what people say does not correspond to what they
actually do [38].

At last, social simulation can be used to model the choice and the behavior of a
population during floods. The purpose of this method is to provide a tool for emergency
managers, as it can lead to higher-quality decisions and a higher level of emergency
preparedness. Simonovic and Ahmad [39] propose a computational framework where the
human decision-making process is modeled following the work of [40]. The authors identify
the mathematical relations between the different variables of the model, implementing
them in a simulation framework. Among the most important variables they identify for
determining the final decision, we find their previous flood experience, the impact of the
warning, and the behavior of the others.

In a similar way, even though they refer to bushfires, Adam and Gaudou [25] propose
a multi-agent system, modeling fires, houses, shelters, and residents as agents. Their
study aims to understand the population’s behavior in response to various communication
strategies during bushfires.

In the domain of multi-agent simulation, an interesting contribution is provided by
Tonn and colleagues [41]. The authors introduce a model to simulate how individual behav-
ior influences flood risk over time in future climate scenarios. Although the purpose of the
simulation is exactly opposite to ours, it is certainly a highly relevant topic. Furthermore,
the results are closely tied to the specific context under consideration: the city of Fargo,
ND, USA.
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Another remarkable study by Dawson and colleagues [42] introduced a quantified
modeling strategy to predict the probable exposure of individuals to flooding across various
storm surge conditions. The study extensively examined scenarios involving breaches in
defenses, different flood warning durations, and various evacuation strategies. Within
the suggested ABM framework, interactions and feedback between floods and human
responses were simulated dynamically as the event unfolded. Notably, a probabilistic
finite state machine was employed to characterize the behaviors of agents, encompassing
potential states, permissible actions, and transitions between states.

In Li et al. [43], the authors explore the simulation of flood evacuation, a complex
geographic process involving the dynamic attributes of floods, field patches, and their
interactions with crowd behaviors. They introduce a Cellular Automata and Multi-Agent
System (CA-MAS) model to integrate water evolution, land cover, objective domain, crowd,
and individual movement data. The simulation experiments indicate that the weighted
potential field method is a practical approach to assessing individuals’ movement inclina-
tion. The study is regarded as initial research and an illustration of the CA-MAS model,
with future considerations for different flood levels, evacuation plans, and individual at-
tributes. The authors propose using augmented reality technology for real-participant flood
evacuation experiments in virtual environments to validate simulation models realistically.

Thus, both works give importance to the communicative aspect in determining citizens’
behavior. Moreover, they both use surveys to identify which parameters characterize the
population. While this choice is optimal for modeling a specific population, it is well
established in the literature that many of these parameters, such as risk perception [44], the
potential damage they may incur, and the trust they place in their information sources [45],
vary from one population to another and from one context to another. Therefore, such
data cannot be generalized, and the results under consideration are strongly tied to the
specific population under analysis. On the other hand, a generalizable approach requires
the identification of behavioral patterns of the involved agents while keeping the setting of
variables that are linked to the specific population parametric. Therefore, to be reusable, the
platform needs to be parametric. By doing so, this approach enables emergency managers
and local authorities to later utilize the model by simply specifying the characteristics of
their own population within the framework. The advantage of this approach is evident: it
allows for the exploration of various potential scenarios before an actual crisis occurs, with
the flexibility to adjust input parameters as needed.

Additionally, the contributions we analyze make use of two different approaches to
simulate human behavior. The first one is equation-based, exploiting mathematical equa-
tions and functions to model behaviors and the overall state of the system. The second one,
the agent-based model, is particularly suited for the representation of human behavior and
for the investigation of complex phenomena emerging from the interactions of individual
agents, especially if the population is composed of heterogeneous individuals [46,47]. In
both cases, the overall state of the system is a consequence of the individual agents’ actions.

In the context of a literature review, a notable scarcity of studies on behavioral aspects
regarding population responses to natural disasters, with a specific focus on floods, becomes
apparent. This lack is particularly relevant when considering that findings from studies
on other natural phenomena cannot be directly applied to floods due to the context-
dependent nature of risk behavior [27]. Our research addresses a significant gap in the
current literature, which predominantly centers on the identification and quantification
of damages caused by meteorological events and floods. What makes our contribution
relevant is the in-depth exploration of the behavioral aspect of the population in response to
floods; an area that has received comparatively less attention. This includes an analysis of
coping strategies, with particular attention to the citizen–authority relationship. Moreover,
since our aim is to focus on behavioral dynamics rather than the specifics of the particular
scenario under consideration, the developed platform is not limited to modeling a specific
population or region. Therefore, it can be easily generalized to other study contexts, as long
as the social dynamics among interacting entities remain consistent.



Behav. Sci. 2024, 14, 74 6 of 25

3. Managing Information Through Trust

The literature [48] demonstrates how trust, or the lack thereof, in authorities is one of
the most important factors in risk perception regarding natural hazards. For the manage-
ment and operationalization of the concept of trust, as well as its relative use in managing
information sources, we will refer to the socio-cognitive model of trust [49]. Indeed, in
addition to being one of the primary cognitive models of trust, it is of particular relevance
in this context as it allows us to articulate trust based on its sub-components. According
to [49], trusting an information source (S) means using a cognitive model based on the
dimensions of competence and reliability/motivation of the source, which in turn may
arise from different reasons [50]:

1. Our previous direct experience with S on that specific kind of information content.
2. Recommendations (other individuals reporting their direct experience with and evalua-

tion of S) or reputation (the shared general opinion of others about S) on that specific
information content [51–55].

3. Categorization of S (it is assumed that a source can be categorized and that its category
is known), exploiting inference and reasoning (analogy, inheritance, etc.): on this basis,
it is possible to establish the competence/reliability of S on that specific information
content [56–59].

The trust model used in this work exploits the trust definition defined in [49] and
mainly relies on direct experience to produce evaluations. Indeed, we also use categoriza-
tion analysis to distinguish the sources based on their different natures. Trust decisions in
the presence of uncertainty can be handled using uncertainty theory [60] or probability
theory. We decided to use the second approach since, on this platform, our agents work
with probabilities, possessing an a priori knowledge of all the possible events that can occur
and are able to estimate how plausible it is that they occur. We decided to exploit Bayesian
theory [61], one of the most used approaches in trust evaluation [62–64], and we based our
concept of trust on [49].

This model is composed of a set of citizens C, sources S, and information I. Each
citizen ck ∈ C evaluates the performance of its information sources to understand how
trustworthy they are concerning a specific kind of informative task. They will use the
function trustOnSource: S × I → T, where T is a real value defined in the range [0, 1],
producing a different evaluation for each source according to their direct experience.

Initially, there is no evidence about how trustworthy these sources are; thus, the initial
evaluations are set to 0.5, a value describing a situation of substantial uncertainty between
trust and distrust. Each source sj ∈ S possesses the information ij ∈ I, represented by a
probability density function (PDF). This PDF is divided into three segments, corresponding
to the intensity of the event (light, medium, and critical). The citizens can access the
PDF through the function getInfo: S × T → I. Here, the trust value is fundamental. In
fact, by means of the getIn f o function, information reported by the sources is properly
manipulated according to trust. The trust evaluation that the citizen attributes to the source
is used to appropriately weigh the informative contribution of the source, in the form of a
PDF, compared to the global evidence that they possess. The idea is that the agent trusts
what the source sj reports proportionally to how much they trust the source itself (as a
source of information). The individual segments of the PDF are processed according to
Equations (1) and (2):

segmentsmoothed
k = (1 + (segmentk − 1) ∗ trustOnSource(sj, i)) (1)

segmentnorm
k =

segmentsmoothed
k ∗ N

∑N
k=1 segmentsmoothed

k

(2)

Equation (2) has the sole purpose of normalizing the PDF (in order to be a PDF, its
area needs to be equal to (1)). Here, N is the number of segments and it is equal to 3; thus,
the index k goes from 1 to N. The output segmentsmoothed

k of Equation (1) is the update of
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the segment, but it still needs to be normalized. This is performed in Equation (2), which in
fact takes as input segmentsmoothed

k to produce segmentnorm
k .

Once the PDF for each information source is estimated, there is an aggregation process
aggregate: I× I → I. Each agent initially possesses a flat global distribution (global PDF or
GPDF) as there is no evidence/information. Then, they will add the information coming
from each source. To this purpose, it is possible to use the classical Bayesian logic recursively
on each source:

GEupdated = aggregate(GE, i) =
GE ∗ i

NF
(3)

In Equation (3), NF is a normalization factor that, as for i, ensures GE is still a probabil-
ity density function. In other words, GEupdated, that is, the global evidence that an agent has,
is computed as the product of the old GE and the new contribution reported by the source.
The probability that each event will happen is obtained by integrating information i in the
segment representing the specific event. The citizens will reason about these probabilities
to make their decisions. Since we consider three events, the PDFs are split into three parts.

3.1. Updating Trust

Our citizens adapt to the world they live in, which, within this framework, means
updating their trust assessments [65,66] towards information sources in order to precisely
understand how reliable their sources are. At the beginning, they solely possess a neutral
trust value, which will then be updated based on direct experience found around the world.
The new trust value (tkj: from the agent k to the agent j) is computed as the weighted mean
of the old evaluation and the new performance:

tupdated
kj =

α ∗ tkj + β ∗ newPer f ormancej

α + β
(4)

In Equation (4), α and β represent, respectively, the weights of the old trust value and
the newly realized experience. It is clear that they play a critical role, so it is important
to define them properly. We fixed the value of α to 10; on the contrary, β changes in the
range [0, 10] based on what the source reported and what actually happened. In this way,
we can ensure that the weight of the source’s performance on trust is proportional to the
impact that its information had on the agent. In other words, the greater the criticality of
the task (the risk to which the agent is subjected, the effective damage, and the cost of the
agent’s decision IncurredCost) the greater will be β. In particular, if the source suggests
investing (for critical and medium events), we will consider AvoidedDamage, the damage
the agent avoided thanks to the source (or that it would have avoided if it had listened
to the source), as in Equation (5), while for light events’ forecasts, we will consider the
incurred damage IncurredDamage, as in Equation (6). In both cases, we will take into
account the decision cost:

β = |AvoidedDamage − IncurredCost| (5)

β = |IncurredDamage − IncurredCost| (6)

In Equation (4), tk j is the previous trust degree and newPer f ormance is the objective
evaluation of the source performance. This last value is obtained by comparing what
the source said with what actually happened. We take into account just a portion of the
reported PDF, i.e., the estimated probability of the event that actually occurred.

4. Materials and Methods

In this work, we propose a social simulation tool to study how a population subjected
to the risk of a critical weather event behaves, based on different risk estimation methods
and external inputs. In fact, in our perspective, we do not focus only on the decision-
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making process but also on the information sources the population can use to evaluate
the risk. This is why we decided to use a multi-agent system to study the problem: it
models the presence of different (cognitive) agents possessing different goals and reasoning
about the situation to make the best choice. This approach to the problem allows us to
analyze the intriguing social phenomena that arise, as we can model agents in the world
starting from their specific behaviors and study how their complex interactions give rise to
emerging social phenomena. Furthermore, this approach provides us with the opportunity
to examine the role and influence of individual actors and parameters in shaping the final
decisions of citizens.

In our specific case, we are interested in studying the response of a population dis-
tributed in a particular geographic area to various hydrogeological phenomena of different
criticality and danger levels. Individual citizens aim to stay safe, and to achieve this, they
need to gather information, reason, and act in the most appropriate manner possible. In
this regard, the choice to model citizens as agents and to refer to multi-agent systems is
not only natural but also essential, as it allows for the modeling and representation of all
these concepts.

We realized the simulation using NetLogo [67] and implemented the trust model (see
Section 3) in Java as an extension to the predefined NetLogo framework.

When the simulation starts, the simulation world is populated by several cognitive
agents (citizens) that are randomly distributed and have the need to identify the future
weather event based on the information sources they have and the trustworthiness they
attribute to these different sources. To cope with these events, citizens possess an initial
capital they must manage by making the right investments. Therefore, they need to
determine which choice is most advantageous for them based on the potential costs and
damages associated with each decision. In addition to citizens, there is another agent
called the authority. Its objective is to promptly inform citizens about weather phenomena,
ensuring that they act promptly and in the best possible way to address the event.

When an event occurs, it can cause huge damage to citizens’ personal capital and to
the authorities’ social capital; thus, it is fundamental for them to understand what to do.

4.1. Severity of Flood Phenomena

The possible phenomena are categorized using, as a starting point, the classification
provided in [28], which is based on the provoked damage. They distinguish events as high,
affecting people and buildings; medium, affecting infrastructure; low, affecting agricultural
and forest areas; and no damage. To simplify, we associated low with no damage, so we
considered them as the same event. Consequently, we implemented in the framework three
possible events: 1 (light or no event), 2 (medium event), and 3 (critical event). Each of these
events can cause damage to citizens’ personal capital and to the authority’s social capital.

Note that the events we are going to analyze happen in a window covering a long
period of time (months); we are not analyzing short-term situations.

4.2. Information Sources

In this article, we focus on sources of information rather than channels of information.
In this regard, we refer to information producers (authorities, citizens through direct
observation of the phenomenon, citizens through observation of others’ behavior) rather
than information communication means (TV, radio, social media, etc.). What we consider
are categories of sources, which can therefore have multiple instances. Initially, each
citizen possesses a given amount of knowledge about critical weather phenomena. This
knowledge can derive from different factors, such as past experiences or environmental
or other external factors, and it could be influenced or biased by social or psychological
factors. In addition to this knowledge, the citizens can consult a set of different information
sources reporting evidence about the incoming meteorological phenomenon. Given that all
the information the citizens possess and that the sources report concerns probabilities, we
decided to represent it as a probability density function, or PDF.
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In particular, we considered three kinds of sources (whether active or passive) in
our framework:

1. Citizens’ personal judgment, based on their direct observation of the phenomena.
Actually, a common citizen is usually not able to understand the situation, which
may be because they are not skillful, do not possess the skills needed for the given
condition, or do not possess any instrument to conduct a proper evaluation.

2. The authority disseminates weather forecasts around the world, aiming to provide
citizens with information about upcoming events.

3. Observation of others’ behavior (other agents in the radius of three NetLogo patches):
agents are somehow influenced by community logic, tending to partially or totally
emulate their neighbors’ behavior. In the social source’s PDF, each event has a proba-
bility directly proportional to the number of neighbors making the related decision.
This source can have a positive influence if the neighbors behave correctly; otherwise,
it represents a drawback.

It is worth underlining that we take care to distinguish assessments made through
direct experience from those made through appropriate instruments and models for predict-
ing meteorological phenomena. Direct observation of the phenomenon is a useful means
for citizens to understand the level of hydrogeological risk, but it has intrinsic limitations.
Firstly, the majority of citizens are not experts in hydrogeological phenomena and may
therefore be unable to correctly interpret complex signals. Secondly, the lack of specialized
tools prevents citizens from making precise assessments and reliable predictions regarding
the meteorological evolution of the phenomenon. Conversely, information provided by au-
thorities based on meteorological forecasts and specialized data represents a more reliable
and accurate source. The experts behind these forecasts can accurately interpret complex
data and provide a professional assessment of the risk. Therefore, while direct observation
can provide a general perception, the guidance of authorities offers a more in-depth and
reliable evaluation of the hydrogeological risk level. It is important to note that, despite
their precision, even the latter methods have margins of error.

4.3. Citizens’ Description

Each citizen is characterized by their ability to see and understand the phenomena.
Citizens have a certain degree of skill in estimating events. Since these events are probabilis-
tic, citizens may correctly identify the event in some situations but not in others. Therefore,
citizens’ ability is modeled in probabilistic terms. Hence, for the same event and with
the same level of ability, some citizens will identify it correctly, while others will not. To
represent these abilities, we associated with the citizens’ evaluations a standard deviation
related to the meteorological events. The citizens also have a trust value for each of their
information sources.

Further, the citizens possess an initial monetary capital; they want to save it, but it
could decrease in time. Each citizen decides whether to invest their capital to make security
modifications to their property, reducing or even nullifying the possible damage in case of
an event. If they do not, they expose themselves to the risk of a high level of damage.

4.4. The Authority

Concerning the authority, it aims to inform citizens about what will happen and to
encourage them to invest to reduce possible damages. Its ability to produce forecasts is
modeled through a standard deviation. Similarly to the citizens, even the authority has
capital, which can be used to encourage citizens to take preventive measures for incoming
events. In particular, we modeled three possible strategies:

1. Punitive authority: it fines citizens if it asks them to take measures and they do not.
However, it will not discover all the guilty citizens but just a percentage of them. The
fine value is 1, so it is equal to the maximal investment, and the fine probability is
20%. The fines increase the capital of the authority.
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2. Encouraging authority: it monetarily helps citizens take measures; if the citizens invest,
they will receive an incentive equal to 50% of the investment.

3. Punitive and encouraging authority: it fines citizens if they do not take measures, and it
helps them to take measures.

In addition to this, the authority suffers damage because of the wrong choices of
citizens. In fact, when the population is affected by a medium or critical event, it will be
necessary to help it: the cost of hospitalization for the wounded, the cost of restructuring
infrastructure, the cost of helping the population, etc. All these necessary maneuvers of
authority will reduce its capital.

4.5. How Citizens Decide

Natural risk analysis can be carried out by leveraging qualitative data and predictive
models. This is typically what experts do, but common people do not have access to these
sophisticated approaches and require a practical way to perceive the risk.

As mentioned earlier, we modeled citizens using cognitive agents. These cognitive
agents want to identify the most convenient choice in every situation, which means min-
imizing the cost of their actions and the risk they are subjected to. These agents think,
reason, and interact to determine what actions to take in their specific situations. In this
regard, they need to subjectively assess the risk they are facing.

As highlighted in the literature [68], probabilistic risk assessment computes the risk as
a function of the following:

1. The magnitude of the event;
2. How likely it is that the event occurs, i.e., its probability of happening.

The agents do not know the actual risk to which they are subjected, so they try to
estimate it. First, they need to compute the event’s probability of happening. This can be
performed by considering the distribution of past events or gathering information from the
information sources. From the GPDF described in Section 3, the citizens can subjectively
estimate the probability with which each event will occur: P(e1), P(e2), and P(e3).

After that, they can quantify the damage they may suffer, which also depends on their
actions. They could decide to do one of the following:

1. To make a maximal investment: in this case, the damage is reduced to zero with light
and medium events, and it is minimal with critical events. This is the most conserva-
tive choice.

2. To make a medium investment: in this case, there is no damage from light and medium
events, but there is important damage from critical events.

3. Not to invest: this decision saves money, but it exposes the citizens to high-level dam-
ages in cases of medium events and very high-level damages in cases of critical events.

Resuming the previous considerations, the factors that can influence citizens’ decisions
are as follows:

1. The probability that each specific event occurs;
2. The costs related to each decision;
3. The estimation of the damages that the impending event could potentially cause.

Considering all this information, the probabilistic costs associated with individual
decisions can be modeled as Equations (7)–(9), respectively, for the decision to make a
maximal investment, to make a medium investment, or not to invest at all.
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TotalCostMaxInvestment = MaxInvestment+
MaxDamage

4
∗ P(e3)− Incentive

(7)

TotalCostMedInvestment =
MaxInvestment

2
+

MaxDamage
2

∗ P(e3)−

Incentive
2

+
Fine

2
∗ P(Fine)

(8)

TotalCostNoInvestment = MaxDamage ∗ P(e3) +
MaxDamage

2
∗ P(e2)+

Fine ∗ P(Fine)
(9)

In Equations (7)–(9), incentives and fines are considered according to the authority’s
profile. As for the fine, it is considered just if the authority predicted a critical or medium
event and indicated to the citizen to make a corresponding investment but the citizen did
not do so.

Please note that, in the case of a critical event, an agent will incur damage even if it
opted for the maximum investment. These formulas utilize the actual cost an agent has to
pay based on its chosen action and the potential damage it could suffer, providing only a
probabilistic estimate. The actual cost an agent pays is contingent on both their decision
and the actual event that occurs.

Clearly, we have considered all the information that a rational agent could leverage in
the case of natural hazards. However, it is not guaranteed that agents will act in this manner.
Consider, for example, the concept of “bounded rationality” introduced by Parker [69]: it is
not guaranteed that an individual in such a risk situation will act rationally. This is precisely
why, in addition to fully rational agents, we also take into account the presence of agents
with lower cognitive ability. In other words, these agents will only consider a portion of the
available information, engaging in simpler reasoning. Therefore, we introduced five types
of agents in the simulation:

1. Random agents: they do not consider any information about the event, their decision is
absolutely random. This is the most basic kind of agent; thus, we used them as a sort
of control group, as a reference for the other agents’ performance.

2. A priori agents (AP agents): this type of agent considers the a priori probabilities of
the events that characterize the world but does not refer to the specific situation.
They act considering the most probable event; therefore, they will always make the
same choice.

3. A priori and costs agents (APC agents): they can evaluate both the a priori probabilities
and the costs and damages corresponding to each decision. Although they produce
a better evaluation compared to AP and random agents, their decisions are still
context-independent, so they will always make the same choice.

4. Exploiting sources agents (ES agents): these agents produce an estimation of the proba-
bility that each event is likely to happen using the available information sources. Then
they decide according to the most probable event.

5. Exploiting source and costs agents (ESC agents): this is the most possible rational agent
in this context, as they take into account as much information as they can.

We care to highlight that, while the first four types of agents act intending to maximize
the probability of correctly identifying the event, the fifth and final type acts with the goal
of minimizing costs and potential losses. These two different strategies lead to different
choices and performances.

4.6. Input Parameters

Several parameters on the platform can be customized to produce a multitude of
possible scenarios.
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The first thing that can be customized is the events’ distribution. Next, it is possible to
change the number of citizens in the world, their ability, initial capital, and profile (random,
AP, APC, ES, ESC). Concerning the authority, it is possible to set the authority’s reliability, its
profile (punitive, encouraging, punitive and encouraging), and its initial capital. Concerning
the decision costs and damages, it is possible to set the costs of the investments and the
damages resulting from a wrong choice, as well as the fine amount, its probability, and the
incentives provided by the authority.

4.7. Output Parameters

We are going to consider a few dimensions to understand the agents’ performance
in each scenario. The most intuitive is the final capital. This provides a representation of
how good the citizen is at saving money. This would be enough if the citizens’ capital was
not influenced by the authority. Given that, we also need to take into consideration the
citizen’s ability to avoid damage. This dimension is crucial since we do not just want them
to save money, but to be safe. The final capital and the avoided damage need to be considered
together as they provide a partial view of the performance if taken individually: an agent
performs properly if it saves enough capital and if it avoids a high percentage of damage.
For instance, if we live in a region where critical situations happen frequently, we will make
a lot of preventive investments, but the invested capital will be justified by the high amount
of avoided damage. If, on the other hand, we live in a region where risky weather events
happen rarely, the investment will often be useless. These dimensions are available both to
the citizens and the authority.

Another dimension is the percentage of successes the citizens have in facing a given type
of event with adequate investment. Finally, we consider the percentage of times the citizens
follow what a specific source reports. In particular, we will use it for the authority.

4.8. Workflow

The world consists of 32 × 32 patches, wrapping both horizontally and vertically.
It is geographically divided into four equal-sized quadrants, with agents randomly dis-
tributed within each quadrant. Furthermore, each quadrant operates independently from a
meteorological perspective.

During the simulation, agents gain experience with their information sources, assess-
ing their reliability. At the beginning, the world contains an authority and a given number
of citizens with a partial understanding of weather phenomena. To anticipate upcoming
events, citizens begin collecting information from their respective sources. The authority
provides forecasts, along with estimated criticality levels. It is important to note that these
forecasts are not guaranteed to occur. The probability of forecast accuracy is tied to the
precision of the authority, which depends on its standard deviation.

In addition to institutional information, the citizens can evaluate the situation on their
own and can also exploit the evaluations produced by their neighbors by observing the
effect of their decisions. As already said, the PDF of the social source is the result of the
aggregation of the agents’ decisions in the neighborhood; if a neighbor has not decided, it
is not considered.

Then, they estimate the events’ likelihood, considering all the information they can
access and aggregating each single contribution according to how trustworthy the corre-
sponding source is.

The citizens collecting information are marked as “thinking”, meaning that they have
not decided yet. When they reach the decision phase, they must make a decision, which
cannot then be changed. This information is then visible to the others (the neighborhood),
who can in turn exploit it for their decision-making.

When the event ends, the citizens evaluate their sources’ performance, adjusting the
corresponding trust values. After that, each citizen possesses a given capital and has
avoided a given amount of damage; the same stands for the authority. The best strategy
will maximize these two dimensions. Of course, it is not a given that the strategy that
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maximizes the citizens’ performance also maximizes the authority’s performance. Figure 1
reports the flowchart of the simulation.

Figure 1. The flowchart of the simulation.

5. Results

This section has the dual purpose of presenting the results of the agent-based simula-
tion experiments, implementing what was described in the previous section on the NetLogo
platform [67], and demonstrating the practical functioning of the system by providing a
few examples considering the behavior of hypothetical populations.

As for the event distribution, we used data provided by [28] concerning Valtellina di
Tirano: 77.91% light event; 17.44% medium event; 4.65% critical event.

We considered a small community of 200 citizens. We assume that they have no initial
beliefs or prior knowledge biasing their choices, as we are not interested in investigating
their effects in this context. At the beginning of the simulation, all citizens start with a
neutral trust evaluation (0.5) for all their information sources. Therefore, through direct
interaction with the sources and by observing what happens in the world, they estimate
how trustworthy their sources are (see Section 3.1).

Concerning their ability to interpret phenomena, we consider a standard deviation of
0.7, which means that agents’ assessments will be correct in 45% of cases.

As for the authority, we assume that it is capable of informing all citizens with a high
level of accuracy. Thus, it generates forecasts with a standard deviation of 0.5, indicating
an accuracy rate of 70%. The choice of this parameter aims to make it more beneficial for
citizens to refer to the authority rather than relying on their personal assessments. This
choice is reasonable, since the authority generally has better resources and capabilities to
provide more precise indications.

The values of the remaining parameters will be specified in the specific simulation
settings since they vary from case to case. Each simulation lasts for 100 events, meaning
that the citizens will be affected by 100 events, which is enough to properly judge their
sources. Moreover, the results we report below represent the average values for 100 cases
to eliminate the variability introduced in the individual runs.

5.1. First Simulation

With the first experiment, we aim to investigate the various profiles of citizens, starting
from the simplest to the most sophisticated ones, and assess how they perform in the world.
We use the following experimental settings:
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1. Number of citizens: 200;
2. Citizens’ initial capital: 100 units;
3. Authority’s standard deviation: 0.5, which implies a correctness of 70%;
4. Authority’s profile: punitive, encouraging, punitive and encouraging;
5. Authority’s initial capital: 20,000 units;
6. Maximal investment: 1 unit;
7. Medium investment: 0.5 units;
8. Maximal damage: 10 units;
9. Medium damage: 5 units;
10. Fine amount: 1 unit;
11. Fine probability: 20%.

As for the initial capital, the absolute number is not fundamental. Instead, it serves as
a unique reference point for comparing the different strategies of citizens. The authority’s
capital is set to be equal to that of the entire community of citizens. The choice of the
investment cost is designed to be much lower than the damage that the respective event
would cause (a ratio of 1:10), ensuring that the upfront investment cost is always less
favorable than investing based on probabilistic estimates. In other words, it is beneficial for
citizens to stay informed about what is happening since the strategy of investing, while safe,
is always very costly. The amount of the fine is equal to the maximum investment. This is
because the fine is intended to discourage approaches that tend not to invest, making the
option of not investing less attractive.

Tables 1 and 2 report the values of the final capital and the avoided damage for all the
types of agents we analyzed. Table 3 instead provides the sum of these two dimensions,
which allows for a better interpretation of what is happening.

Table 1. Final capital of random, AP, APC, ES, and ESC agents by type of authority.

Punitive Encouraging P and E

Random −8.49 19.07 17.07
AP −38.34 −33.88 −38.91

APC 26.35 51.59 51.92
ES 47.31 59.57 59.46

ESC 36.92 54.67 54.9

Table 2. Avoided damage of random, AP, APC, ES, and ESC agents by type of authority.

Punitive Encouraging P and E

Random 77.64 77.75 77.22
AP 0 0 0

APC 110.56 110.89 110.11
ES 104.64 106.64 105.35

ESC 116.29 119.17 117.77

Table 3. Final capital plus avoided damage of random, AP, APC, ES, and ESC agents by type of authority.

Punitive Encouraging P and E

Random 69.15 96.82 94.29
AP −38.34 −33.88 −38.91

APC 136.91 162.48 162.03
ES 151.95 166.21 164.81

ESC 153.21 173.84 172.67

The simplest strategy to implement is the random one. Agents adopting it do not
make any use of the information they have and simply make random decisions. In this case,
they will correctly identify the event about to occur only once out of three, unnecessarily
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wasting their capital when there is no risk and exposing themselves to high risk without
investing. Their final capital is very low, reaching even below zero if we consider a punitive
authority (−8.49), and the avoided damage is very low as well, with a lower value of 77.22
in the P and E case.

A second type of agent is the AP agent, who evaluates the situation with a priori
information, meaning they base their decisions solely on the event distribution in the world.
Consequently, they react to the most likely event to occur, which in this case is the light
event. As a result, they never invest and always incur all the damages. Although they
consider initial information, their performance is even worse than that of the random
agents. Their capital reaches a very negative value, as low as −38.91 in the P and E case,
while their avoided damage is always equal to zero since they do not make investments.

When agents begin to consider the costs and damages associated with their decisions
(the APC, a priori with costs agents), their performance starts to improve significantly.
Although they do not utilize their information sources, they are aware that each decision
is associated with a cost as well as a risk and potential damage. Taking this knowledge
into account allows them to achieve higher performance. Indeed, as we can see in Table 3,
the average overall improvement compared to random agents goes from 67.82% in the
encouraging case to 98% in the punitive case.

Differently from APC agents, ES agents exploit just the information from their sources,
but they ignore costs and damages. Their strategy aims to maximize the probability of
guessing the event. Thanks to this, they obtain high performance, both in terms of final
capital and avoided damage. The final kind of agent, the most complete one, is the ESC
agent. This type of agent acts in a purely rational manner, utilizing all available information
with the strategy of minimizing risk and the extent of damage they experience. In this
case, the average improvement concerning random agents goes from 71.67% in the case of
encouraging authority up to 119.74% in the case of punitive authority.

The performance of ES and ESC agents is very similar. The former have a higher
final capital, while the latter have a higher avoided damage. Comparing the sum of these
two dimensions (Table 4), it is clear that the latter perform better. As we can see from
Table 3, the average improvement compared to random agents goes from 79.55% in the
case of encouraging to 118.67% in the case of punitive authority.

Table 4. The sum of final capital and avoided damage for ES and ESC agents by type of authority.

Punitive Encouraging P and E

ES 151.95 166.21 164.82
ESC 153.21 173.84 172.67

These results clearly demonstrate that the superior decision-making strategy belongs
to ESC agents (on the right), although ES agents achieve very similar outcomes. It is
important to note that the performance gap between them would widen in the presence of
more substantial damage. Additionally, it is essential to clarify that this analysis considers
only direct damages and excludes indirect or secondary ones. The latter would further
disadvantage ES agents’ performance, as they are more susceptible to critical events.

A peculiarity of ESC agents concerns the way they use their information sources.
Normally, we expect them to follow the indications of the sources they consider most
reliable. This is the case of ES agents, but ESC agents reason differently: it happens that,
even if they highly trust a source (here, in particular, we are interested in the institutional
source), they could not follow its indications. Although this phenomenon may appear
unusual, it becomes natural when we consider their goals and thought processes. ES
agents aim to maximize the probability of correctly predicting an event, leading them to
rely on the most reliable sources. In contrast, ESC agents aim to minimize risk to reduce
potential damages. Consequently, even if they have a high level of trust in a source, they
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may make different decisions from what the source suggests, as this often serves to reduce
potential risks.

In this connection, we can see from Table 5 that ES agents follow the authority’s
instructions in 99% of the cases. This is precisely because the authority is the best source
they have, as it is the one communicating the most accurate information. On the contrary,
ESC agents follow its indication just 58% of the time when the authority is punitive and
42% when it is encouraging or punitive and encouraging. This phenomenon is completely
independent of trust values, which derive from the authority’s estimated reliability. Its
average value is about 70%, and it is correctly identified in both cases. However, even
though their trust evaluation of the authority is exactly equal, ES agents completely rely
on the authority, as it allows them to maximize the results of their strategy, while the
ESC agents go beyond what the source reports. Although ESC agents believe that the
authority provides accurate information, they also consider the potential risks associated
with making an incorrect decision. In other words, “I trust enough what you say, but since
the risk is too high I would adopt precautionary behavior”. This is why they act differently.
We call this phenomenon “dissonance between evaluation and action”.

Table 5. Percentage of times in which ES and ESC agents follow the authority’s indications.

Punitive Encouraging P and E

ES 99.26 99.28 99.07
ESC 57.62 42.15 42.19

After reviewing the strategies of citizens, let us now analyze the behavior of the
authority. In particular, we consider its interaction with ES and ESC agents, which exhibit
the most interesting characteristics. As already said, the authority has a strong influence on
ES agents, who completely follow its indications. This is independent of the authority’s
strategy to stimulate their action.

With the ESC agents, it is a very different story. They follow the authority’s instruction
58% of the time with a punitive authority and 42% of the time when it is encouraging or
punitive and encouraging. These lower values should not be interpreted as a bad result;
what happens here is that, thanks to the available incentives, they can afford to avoid much
more risk, so they invest even if it is not strictly necessary. This allows them to avoid a
critical event 10% more often than ES agents (the difference in the medium events is very
low, as they already avoid the majority of them). On the contrary, fines are almost unused;
they do not have any effect on these agents since, due to their very nature, they already
tend towards protecting themselves.

We report the data on the authority’s final capital (Table 6) and the percentage of
correctly identified critical events (CICE) by the ESC agents (Table 7).

Table 6. Final capital of the authority.

Punitive Encouraging P and E

Final Capital 18,382.22 12,337.77 12,354.86

Table 7. Percentage of correctly identified critical events (CICE) by the ESC agents.

Punitive Encouraging P and E

CICE 72.67 82.45 82.1

The punitive authority can retain almost all of its capital; however, this significantly
affects the performance of the agents. There are no significant differences between the
encouraging and punitive and encouraging approaches since fines have a relatively minor
impact in this context. To enhance their influence on the population, it would be necessary
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to increase the fine. In conclusion, for the purpose of maximizing citizens’ safety, the most
effective authority profile is the encouraging one.

5.2. Second Simulation

As we have seen in the first experiment, the social utility of fines is very low. The agents
think and act according to their personal well-being and this leads them to underestimate
what the authority said and to take further preventive measures. However, in the real world,
there can be situations in which the actions of the individual agents are non-independent but
have ramifications for others. An example of such a situation could be complex residential
structures, such as apartment buildings. In this case, the decision to take preventive
measures benefits not only the individual agent but also their neighborhood. Therefore, the
choice not to invest negatively affects not only the individual but also their neighbors. In
other words, the citizens’ choices are interdependent. Of course, in such a complex social
structure, a citizen could decide to exploit their neighbors by not investing and relying on
others to do so for them (a free rider). We therefore introduce new calculation procedures
for the agents—Equations (10)–(12)—to take into account the actions of their neighbors
as well.

TotalCostMaxInvestment =

MaxInvestment +
MaxDamage

4 ∗ (nO f Neighbors + 1)
∗ P(e3)− Incentive +

CDFN
4 ∗ P(e3)

(10)

TotalCostMedInvestment =
MaxInvestment

2
+

MaxDamage
2 ∗ (nO f Neighbors + 1)

∗ P(e3)− Incentive
2

+
Fine

2
∗ P(Fine) +

CDFN
2 ∗ P(e3)

(11)

TotalCostNoInvestment =
MaxDamage

(nO f Neighbors + 1)
∗ P(e3)+

MaxDamage
2

∗ P(e2) + Fine ∗ P(Fine) +
CDFN
P(e3)

+
MDFN
P(e2)

(12)

CDFN =
MaxDamage

nO f Neighbors + 1
∗ nO f Neighbors ∗ (1 − socialTrust) (13)

MDFN =
MaxDamage

2 ∗ (nO f Neighbors + 1)
∗ nO f Neighbors ∗ (1 − socialTrust) (14)

In Equations (13) and (14), CDFN and MDFN are, respectively, the critical and
medium damage expected for a citizen to receive from neighbors. The citizens’ choices are
influenced by what their neighbors do, as each choice implies possible further damage that
they cannot avoid but can reduce. To estimate the potential damage from the neighbors,
we use the dimension of social trust: the more I believe that my neighbors’ decisions are
correct, the less damage I expect from them, and vice versa. So, the effect of weather events
on the agents remains the same as in the first experiment. What changes in this case is that
the impact of this damage no longer depends on the individual choice of the citizen but is
now mainly dependent on the choices of their neighbors.

In this experiment, we will only consider ESC agents so as to fully apply the reasoning
model introduced above. Thus, we report below (Table 8) what happens to ESC citizens.
As we can see, it immediately stands out that these agents make a lower number of
maximal investments compared to the previous experiment and instead focus on medium
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investments. This phenomenon occurs because, since they can trust their neighbors’ choices,
they estimate that they will receive less damage from the events. Therefore, they can afford
to concentrate on smaller investments and decide to make use of maximal investments
only when they believe it is really necessary.

Table 8. Final capital and avoided damage of ESC agents.

Punitive Encouraging P and E

Final capital 51.48 68.23 68.44
Avoided damage 120.84 122.94 124.65

In other words, in this case, the neighborhood functions as a social absorber of risk.
It should be noted that this does not mean that the citizens will transfer their damage
to their neighbors, but rather that, thanks to social interaction, the risk they are exposed
to is reduced. In fact, personal risk becomes a collective dimension that is shared with
neighbors. If there is a high level of community trust, this mechanism can prove to be a
valuable resource, allowing citizens to achieve high performance as they will preserve their
own capital. Remarkably, the results show that they perform even better here than in the
first experiment.

However, it is still true that the very nature of this social structure could potentially
encourage unfair behavior, as someone may attempt to exploit this positive attribute for
personal gain. In the subsequent part of this scenario, we introduce a certain percentage of
free rider agents into the system who aim to offset their personal losses by relying on the
neighborhood without making any contribution. Specifically, we investigate a scenario
with 20% of the agents being free riders.

Evaluating the final capital and the avoided damage (Tables 9 and 10), it is clear
that the presence of free riders poses a problem for the entire social system. First and
foremost, they incur significant harm. Although they save money from the investment,
they experience greater damage both directly from the event and from their neighbors.
Moreover, these agents harm the ESC agents.

Table 9. Final capital of ESC and free rider agents by type of authority when 20% are free riders.

Punitive Encouraging P and E

ESC 43.29 58.87 58.96
Free riders 46.44 54.51 50.09

Table 10. Avoided damage of ESC and free rider agents by type of authority when 20% are free riders.

Punitive Encouraging P and E

ESC 111.57 116.25 116.4
Free riders 87.94 91.56 91.68

In the first part of this experiment, we were able to harness the positive effect of the
social structure thanks to the high level of social trust. However, when we introduced free
riders attempting to exploit their neighbors’ benevolence, the ESC agents needed to react.
However, in doing so, they lost the opportunity to benefit from their neighborhood trust,
which instead became a social burden they had to sustain. The logical consequence here is
an increase in investments, both medium and maximal. As a result, despite the measures
implemented to mitigate this problem, their performance is slightly penalized as well.

As for the authority, from the results (Table 11), it emerges that the social risk absorp-
tion effect allows for a higher impact of its indications on ESC decisions. Indeed, in this
scenario, both the encouraging and punitive and encouraging authorities manage to save
more capital units (see Table 12). This result occurs because agents have the opportunity to
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take a higher level of risk. Therefore, they will limit their investments (and hence request
fewer incentives from the authority) only when it is truly necessary. However, this also
implies that, in the event of a critical event that was not correctly anticipated, agents will be
less capable of addressing this event. It should be noted that medium events are addressed
with the correct investment in 91% of cases when the authority is punitive and in 95%
of cases when it is encouraging or punitive and encouraging. Regarding critical events
(Table 13), as for the first experiment, the encouraging strategy has a greater impact than
the punitive one. However, the best performance is achieved with the punitive and encour-
aging strategy. This time, in fact, since agents tend to be conservative in their investments,
fines have a greater impact on their decisions.

Table 11. Percentage of times in which ESC agents follow the authority indications.

Punitive Encouraging P and E

ESC 83.43 68.85 70.14

Table 12. Final capital of the authority.

Punitive Encouraging P and E

Final Capital 18,435.84 14,772.86 14811.06

Table 13. Percentage of correctly identified critical events (CICE) by the ESC agents.

Punitive Encouraging P and E

CICE 58.55 68.68 71.83

6. Discussion

In this study, we introduced a social simulation platform designed to investigate
the social behavior of a community in the presence of hydrogeological phenomena with
varying degrees of criticality.

For this simulation, we chose to make use of multi-agent systems due to their ap-
titude for exploring community phenomena that arise from the behavior of individual
agents [70,71]. Additionally, their capacity to model cognitive agents in depth allows us to
gain insights into human behavior and reasoning. In our model, citizens make decisions
based on their subjective risk perception, relying on quantitative factors such as the po-
tential damage they might incur and the subjective estimation that the event will occur.
Additionally, this modeling approach allows us to explore the connection between risk
perception and the information sources that convey risk-related information.

In these scenarios, we have citizens on one hand and authorities on the other. As
we specified, the interests of these two entities do not always align, as they have at least
partially distinct objectives. Consequently, we conducted an analysis of optimal strategies
within different contextual settings.

We introduced two distinct scenarios, each marked by unique social dynamics. In the
first scenario, citizens’ decisions are entirely independent, while in the second scenario, we
explored a situation where they mutually influence one another.

Concerning citizens, we modeled their choices to be strictly dependent on their subjec-
tive risk perception [72,73]. If authorities wish to intervene in their decisions, it is precisely
this perception that needs to be modified. To a lesser extent, interventions can also be made
through fines and incentives [74].

We examined various cognitive strategies for the citizens based on the amount of
information they consider. While utilizing all available information ensures the best perfor-
mance, there are situations, especially in high-risk contexts, where it may be challenging to
consider all available knowledge.
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In this regard, results suggest that relying solely on information sources can yield
good results, even when ignoring cost and potential damage considerations. This could
be a consequence of the fact that even the most delicate decision-making processes can be
simplified when relying on clear and easily understandable sources of information [75,76].
If the population is not inclined to make completely rational decisions, simplifying the
decision-making process can lead to more effective results. In addition, risk perception
is often subjective and can vary among individuals. If authorities present accurate and
accessible information, the population may respond positively, even without a detailed
assessment of costs and damages. This consideration in itself provides valuable insights for
authorities. A more advanced strategy would involve not just focusing on the information
but emphasizing the utilization of specific information over others. For example, if the
population is not inclined towards fully rational decision-making (as not all members can
always consider all relevant parameters), it may be more effective to encourage the use of
information sources rather than focusing on providing detailed information about costs
and damages.

Another remarkable outcome of our study is the phenomenon we termed “dissonance
between evaluation and action”, which was specifically observed in ESC agents, i.e., agents
relying on both information sources and cost considerations in their decision-making
process. Despite placing a high level of trust in their information sources, their ultimate
decisions diverged from the information reported. This divergence arose from their engage-
ment in reasoning at a distinct level of abstraction, wherein they accounted for potential
risks associated with an incorrect choice. This phenomenon highlights the intricate na-
ture of decision-making, especially in the context of probabilistic forecasts. Our findings
underscore the importance of acknowledging even less probable events, as these events,
if realized, could have a significant impact. The dissonance observed in ESC agents em-
phasizes the nuanced interplay between trust in information sources, the incorporation of
cost considerations, and the cognitive processes involved in decision-making. Effectively
addressing this dissonance requires a deeper understanding of how individuals balance
these factors and the cognitive strategies they employ when faced with hydrogeological
risk scenarios.

Another intriguing phenomenon that emerged in the second experiment concerns
the use of the social structure as a social absorber of risk. Indeed, this structure represents a
shared resource that agents can exploit and rely upon to mitigate the individual risks they
face. The validity of this result is highlighted by its ability to demonstrate how cooperation
and resource-sharing within a community can significantly contribute to the mitigation
of individual risks. In this way, citizens can afford to undergo greater risk while making
fewer individual investments. The possibility of relying on this phenomenon allows agents
to achieve better performance, even compared to agents in the first scenario. Clearly, this
social effect has a significantly positive impact on both individuals and the community.
This aspect is crucial as it suggests that social cooperation can translate into tangible
benefits for the entire community, enhancing overall performance in the management of
hydrogeological risks. The impact of this result is relevant as it provides authorities and
emergency managers with a strategic opportunity. The awareness that a well-organized
social structure can act as a buffer for risks suggests that promoting collaboration within
communities can be equally important as providing detailed information about costs
and damages. Furthermore, it underscores the need to encourage social practices and
cooperative behaviors as integral parts of risk management strategies.

However, this phenomenon also opens the door to potential side effects. Indeed,
malicious and uncooperative agents (free riders) could decide to exploit the social structure
for their personal advantage by not making any investments and shifting the burden onto
others. In fact, the experiments reveal that this is indeed a deleterious strategy, even for
the agents implementing it, as the social structure ceases to function as an absorber and
instead becomes a social burden. In response to this, the remaining agents will increase the
number of investments to mitigate the damage caused by their free-riding neighbors.
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Concerning the authority, we analyzed three possible strategies aimed at encouraging
citizens to adopt appropriate behaviors. From the results, it emerges that, in general, an
encouraging authority has a greater impact than a punitive one. The strategy of fining has
a stronger effect in the second scenario, where citizens’ choices are strongly interdependent.
In this scenario, the authority maximizes its performance by implementing a punitive and
encouraging strategy.

The purpose of this work is to provide a framework that can be instantiated across
multiple contexts and is not specifically focused on a particular population, city, or region.
The platform is also flexible regarding information sources, which may vary in number,
trustworthiness, and type. Yet, the premises of the social structure must remain consistent:
a society in which citizens have capital to protect themselves and there is a central authority
with the goal of preserving the population and the means to act toward that end.

In this regard, a case of particular interest involves third-world countries where the
rate of precipitation is low. In this specific scenario, some unique challenges may emerge.
For instance, on the one hand, there may be a lack of trust in what authorities communicate.
From this perspective, implementing better communication strategies and building a
trusting relationship with the population could be a more effective path to pursue. On the
other hand, it should also be emphasized that, in many of these countries, citizens’ primary
issue is the lack of resources to make investments. In these cases, local authorities should
not simply focus on encouraging investments in security but could instead become active
participants in the investments, directing their efforts towards the direct management of
social security, which is undoubtedly a complex task.

7. Conclusions

The results presented in this study, along with the implemented platform, provide
valuable insights and a solid starting point for authorities and emergency managers. This
is because, in addition to identifying the most effective strategies in the various situations
we have considered, they enable an understanding of the effects and connections that arise
within the population. This work contributes to aiding hydrogeological risk management
in several ways. First and foremost, it allows us to investigate decision-making processes
in the context of hydrogeological risk. The work presents a model that takes into account
social behavior and citizens’ decisions in hydrogeological hazard situations. This can be
valuable in understanding how individuals respond to varying levels of hydrogeological
risk events. The information obtained can assist authorities in developing strategies to
positively influence people’s behavior and promote mitigation actions.

Indeed, the work aims to investigate the role and impact of institutional communi-
cation. The article examines various strategies that authorities can employ to influence
citizen behavior. For instance, it emphasizes that an encouraging approach by authorities
tends to be more effective than a punitive one, which can serve as a significant input for
policy formulation.

Furthermore, the article examines the effects of the social structure on risk sharing.
We highlighted how the social structure can act as a “social absorber of risk”, suggesting
that the sharing of resources and cooperation among individuals and communities can
contribute to reducing individual environmental risks.

Last but not least, the article highlights the role of institutional trust in this context,
emphasizing the importance of citizens’ trust in authorities. Trust is crucial for the actions
of authorities to have a direct impact on the safety and well-being of the population. The
effectiveness of these strategies is closely influenced by citizens’ perceptions of authorities.
If people have trust in the authorities, they are more likely to respond positively to their
directives and incentives.

Of course, this study is not without limitations. Firstly, we did not address the investi-
gation of the effect of individuals’ impulsive and irrational decisions in these risk contexts.
This could involve exploring psychological factors, behavioral biases, and emotional re-
sponses that may significantly affect decision outcomes. Although this aspect has been
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partially explored in other studies [77–79], it requires a more careful analysis. Additionally,
the impact of fines should be further investigated and considered in varying amounts.
In fact, we have observed that, in some scenarios, the weight of fines was relatively less
significant compared to other factors influencing individuals’ decisions. Analyzing how
different penalty levels influence citizens’ decision-making processes will contribute to
the development of more targeted and impactful regulatory strategies. This task may
involve experiments or simulations with diverse fine scenarios to identify optimal punitive
measures for encouraging desirable behaviors. To broaden the applicability of our results,
future tasks should focus on adapting the findings to regions with fewer data sources.
Indeed, the model employed in this work for source management is robust in this regard.
It assesses the information that agents possess based on the estimated reliability of the
sources, regardless of their quantity. Nevertheless, this also involves developing strategies
that are robust in the face of data scarcity. We reserve the possibility of exploring such
aspects in greater detail in future studies.
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