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Abstract: With the advancement of technology and a global shift towards clean energy, the need for
rare earth metals is increasing. Scandium, a rare earth metal, has been extensively used over the
decades in solid oxide fuel cells and aluminum–scandium alloys that have a vast, evolving market in
aerospace, automobiles and 3D printing. However, the market struggles to maintain the supply chain
due to expensive production processes and the absence of uniform global distribution of primary
sources. Therefore, identification of alternative sources and technological advancements for scandium
recovery are needed. To this end, an effort has been made to provide a review of the advances in
different technologies applied in scandium recovery from diverse sources. Emphasis has been given
to the improvements and upgrades to technologies in terms of environmental impact and recovery
efficacy. An attempt has been made to discuss and deliver a clear representation of the challenges
associated with every source for scandium recovery and the major developments in solving them.
The environmental impact of scandium recovery and recycling has also been discussed.

Keywords: hydrometallurgy; leaching; adsorption; solvent extraction; crystallization; life cycle
assessment

1. Introduction

The release of carbon from the waste materials generated by the mining of minerals
significantly influences the environment and the climate, which have a great impact on
human health and biodiversity [1]. However, the role of mining is also important for the
recovery of critical metals like gallium, indium, scandium and other rare earths that are
used in high-tech and low carbon emission technologies [2]. Furthermore, the mining
industries are also important from an economical point of view for various states and
provinces where mining activities are mostly concentrated. Usually, the wastes generated
during mining activities have been discarded as such in the form of slag and tailings
dams, even though these contain valuable minerals. In addition, the failure of the tailings
dams has led to unmitigated disasters in Brazil, Hungary and Italy [3]. Therefore, mining
waste recycling may stimulate innovative local industries, reduce waste production and
natural resources intake, prevent environmental damage and create financial assets. The
assessment of environmental benefits after mining waste reprocessing and final disposal
of waste is important. It is also necessary to employ cost and benefits methods to assess
the expenditure of waste reprocessing and the monetary value of recovered metals. For
this, a detailed understanding of the metal extraction process is important. In this review,
scandium has been discussed as it is considered an expensive as well as rare metal due to its
difficult extraction and poor distribution [4]. It is generated as an ore-processing by-product
and is generally present in the waste liquors, tailings, slags and residues. However, since
the concentration of scandium is very low in comparison to contaminating metals, its
recovery becomes challenging, expensive and environmentally hazardous. Additionally, a
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low recycling rate, irreplaceable application in green technologies, limited mining regions
and high economic importance makes it therefore important to focus on high efficiency
recovery. It is also referred to as a critical metal by Brazil, the USA and the European
Union [5,6].

Scandium is one of the most highly abundant metals in the earth’s crust, yet, it is
not readily available for mining and extraction due to its dispersed nature. Scandium
as an ore with a concentration greater than 40% has been reported only in Norway [7].
Other countries with main scandium resources are China, Russia, the United States of
America, Madagascar, Australia and Kazakhstan [8–10]. Scandium predominantly occurs
in traces along with other minerals in ores of cobalt, iron, nickel, tin, etc. [11,12]. The major
application of scandium is as an alloy with metals like aluminum, magnesium, zirconium,
etc. These alloys find extensive use in sports, military [9] aircraft industries [13] and solid
oxide fuel cells (SOFCs), respectively [14]. At present, the worldwide market for scandium
has a demand of 98 t/annum of scandium for aircraft and vehicles, which will increase to
3000 t/annum of scandium by 2032 [15]. Owing to this steep increase in demand, scandium
has been classified as a critical metal [16].

With such a predicted rise in the demand of scandium in the upcoming decade, the
production rate does not seem to increase accordingly. The low production and demand
of scandium is a chicken and egg problem. The high price and limited market availability
seem to discourage industries from using this raw material. Hence, the number of buy-
ers is low. Due to the small market, metal producers are deterred from investing in the
recovery of scandium, despite its high price. Presently, the amount of scandium produced
is clearly insufficient to address the increasing demand across the world. Therefore, new
supply strategies for scandium are highly desirable. Paradoxically, although scandium is
abundant in the earth’s crust, it is not an ore-forming metal. Therefore, it rarely occurs
in concentrations above 100 ppm as a primary source, making its extraction economi-
cally unattractive [15]. Hence, new sources and recovery processes are required to break
this cycle.

Few review articles have been published on scandium separation and recovery from
different sources [12,17–20]. Wang and Cheng [12] reviewed the separation and purifica-
tion of scandium by synergistic solvent extraction and solvent extraction with chelating
extractants, focusing on their recovery performance as well as their extraction mechanisms.
In addition, ion exchange and liquid membrane extraction for scandium recovery were
also discussed. Zou et al. [17] reviewed the extraction chemistry of scandium in differ-
ent extraction systems in detail. Wang et al. [18] reviewed scandium recovery through
metallurgical pathway from various resources, including scandium ores, residues, tailings
and waste liquors, focusing on the selection of processes to recover scandium as a minor
element and incorporating the scandium recovery process into the main flowsheet for the
production of the main metal. Junior et al. [19] also reviewed scandium extraction from
different sources. However, the primary focus was on eco-friendly processing and clean
technologies. Pyrzynska et al. [20] discussed some recent progress made in the research
on scandium separation, purification and pre-concentration from different sources such
as ores, electronic waste (e-waste), water, sediment, soil and plants both in industrial as
well as laboratory systems. However, consolidated information on the advances in the
recovery of scandium from various sources, especially from mining tailings/e-waste is not
discussed properly. Moreover, the diversity in the treatment process and the associated
prospects and consequence of these methodologies with respect to their environmental
impact and metallurgical gain have not been discussed properly. Different metallurgical
operations have been used to recover scandium from secondary sources. One such choice is
pyrometallurgy, which is a conventional method to recover different metals from different
type of wastes. However, high energy consumption and generation of toxic substances
are the disadvantages associated with pyrometallurgy [21]. In recent times, the principal
technologies being used to recover scandium from secondary sources are based on hy-
drometallurgical processes. Hydrometallurgical processes are suitable alternatives for the
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treatment of industrial materials waste because of their cost effectiveness, reduced forma-
tion of poisonous gases and dust, operational selectivity, simple control of the procedure
and effectiveness [22,23]. In comparison to pyrometallurgy, hydrometallurgical processes
utilize low temperatures and are more predictable and controllable, which make them
more environmentally friendly. Therefore, the main objective of the present review is to
give a clear portrait of the growth in hydrometallurgical processes regarding scandium
recovery from various sources especially mining tailings/e-waste. It will provide a deep
insight into the wide-ranging technologies that are available, from leaching to the use of
polymer inclusion membranes for the recovery of the metals, along with their advantages
and disadvantages. Further, to support the idea, discussions on several cases of scandium
recovery carried out across the world for the last decade have also been included.

2. Scandium Sources

Scandium seldom occurs in concentrated quantities and is usually found distributed as
traces in rocks containing ferromagnesium reserves [18]. Worldwide, there is about 2 million
tons of scandium, with China accounting for 27.5% of the total reserves [24]. However,
most of the reserves cannot be exploited due to technical, economic and environmental
challenges [19]. Therefore, the extraction of scandium in pure form is complicated as well
as expensive [24]. Across the globe, scandium occurs in more than 800 variants of minerals
in low concentrations and a highly complexed state. The scandium minerals containing
considerable quantities of the metal (i.e., more than 20 wt%) are thortveitite (Sc2Si2O7),
pretulite (ScPO4) and kolbeckite (ScPO4·2H2O) [25].

2.1. Scandium Abundance

Major scandium ore deposits have been found in the USA, Norway, Australia, China,
Russia, Madagascar, Kazakhstan and Ukraine [8,11]. Any resources with scandium con-
centration between 20–50 mg/kg can be considered as ore for exploitation [26]. In USA
and Kazakhstan, scandium sources are mainly ores of aluminum uranium, zirconium and
tantalum. In Australia, it occurs in ores of nickel laterite. In China, Russia and Ukraine,
scandium is found in ores of tungsten, iron and tin, while in Madagascar and Norway,
it occurs in pegmatite rocks. Globally, the principal source of scandium is niobium-rare
earth element-iron (Nb–REE–Fe), the largest REE resource and second largest resource
of scandium in the world. It is located in Inner Mongolia, China and accounts for ap-
proximately 90% of global scandium production. In Bayan Obo, scandium is regenerated
as a by-product of mining of the other REEs and iron [27]. The scandium content of the
Bayan Obo deposit ranges between 26–110 ppm in various ores and it reaches 163 ppm
of scandium in the REE ore tailings [28]. Scandium in the Bayan Obo deposit is mainly
hosted by Aegirine. Numerous lateritic deposits in eastern Australia (New South Wales
and Queensland) that have sumptuous scandium content and are being considered for
viable mining [29]. A mining lease has been awarded for the Nyngan deposit in New
South Wales, Australia. The laterites in these deposits are generated due to intense weather
conditioning of ultramafic and mafic rocks. These rocks have concentrated scandium in
the range of 100–400 ppm by the adsorption of geothite or incorporation into the hematite
structure [29]. The Zhovti body deposit in Russia is graded at 105 ppm scandium and
contains aegirine as its main scandium bearing mineral (Table 1) [25]. The most important
and largest source of scandium in Russia is the Kovdor baddeleyite–magnetite–apatite
deposit. It contains a scandium reserve of 420 tons and the grade of the ore is 800 ppm
of scandium [30]. The other major source of scandium in Russia is Tomtor, one of the
world’s largest carbonatites contributors, which has elevated concentrations of the REEs,
including scandium up to 570 ppm (Table 1) [31–33]. High scandium content (45%) is
found in thortveitite-rich pegmatites in Madagascar and Norway. It is also reported that in
the Iveland-Evje district of Norway, scandium-bearing pegmatites contain approximately
1000 ppm scandium [25]. Table 1 shows some of other primary sources of scandium.
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Table 1. Concentration of scandium in different mineral ores other than bauxite ores.

S. No. Mineral Ore Scandium Content References

1. Aegirine (Russia) 105 ppm [25]
2. Pegmatites 1000 ppm [25]
3. Aegirine (Bayan Obo) 26–110 ppm [28]
4. Lateritic deposits 100–400 ppm [29]
5. Baddeleyite–magnetite–apatite 800 ppm [30]

6. Araxa (SE Brazil) complex REE
(Nb–P) ore

219–322 ppm
(Sc2O3) [32,33]

7. Tomtor
deposit

570 ppm
(Sc2O3) [32,33]

8. REE–monazite 15 ppm [34]
9. REE–allanite 24 ppm [35]

2.2. Scandium from Secondary Sources (Mining Process and End-of-Life Products)

Scandium was classified as a critical metal owing to its steep increase in demand [16].
An economically profitable option is to recover scandium from waste streams of scandium-
associated ore processing units. Scandium is found in a large extent in aluminum ores.
Bauxite is the most common aluminum ore, which has a high content of scandium. The
Bayer process associated with aluminum extraction results in enrichment of the scandium
concentration in the bauxite residue [36]. The concentration of rare earth elements in baux-
ite varies from their region of origin. Table 2 gives the scandium concentration in red mud
from studies done in recent years for its recovery. A review by Zang et al. gives a detailed
discussion about the sources, concentration and scandium recovery from red mud [10].
In red mud, the approximate concentration of rare earths varies in the range of 500–1700
ppm, with scandium concentrations ranging between 130–390 ppm [37]. If all the scandium
present in red mud could be recovered, then 6600–20,400 t/annum would be available [15].
Several rare earth metals are present in bauxite residue. However, the maximum concen-
tration in terms of presence belongs to scandium which is around 95%compared to rest
rare earth metals present in the waste [38]. However, the presence of other metals like iron,
aluminum, etc., in large concentrations hinders the hydrometallurgical processes making it
difficult to recover such high concentrations.

Table 2. List of countries reported to be generating bauxite ore in recent years and the scandium
content of the ore.

S. No. Country Scandium Content Reference

1. Jamaica 550 ppm [15]
2. Canada 31,100 ppm [39]
3. Greece 20 ppm [40]
4. China 20–38 ppm [41]
5. Russia 70–120 ppm [42]
6. Germany 57 ppm [42]
7. Hungary 94 ppm [42]

One important source of scandium is coal/coal combustion byproducts (CCPs) [43–49].
CCPs accumulate at an annual rate of 115 million tons in the United States alone and contain
an average scandium concentration of 36–70 ppm along with up to 1000 ppm rare earth
metals (REEs). Technoeconomic analyses suggest that scandium extraction from these
waste residues will be critical for industrially viable recovery of REEs since scandium
comprises more than 90% of the total REE value at current prices [46]. Scandium at low
concentrations is also found with transition and rare earth elements like molybdenum,
tungsten, titanium, tantalum, yttrium, zirconium, etc. [50]. The rare earth minerals such
as bastnasite and monazite contain scandium in the range of 20–50 ppm [51]. Scandium
is also found in ores of uranium as uraninite in Russia, Kazakhstan, Australia, Namibia
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and Canada [52]. It is also recovered from titanium ore like magnetovana–ilmenite located
in Panzhihua, China at a concentration as high as 0.04% [53]. A report by the United
States Geological Survey, (Mineral commodity summaries, 2019) stated that approximately
5,400,000 metric tons of ilmenite (FeTiO3) and 750,000 metric tons of rutile (TiO2) are mined
across the globe annually [54]. Apart from that, major titanium ores are found in India,
Norway, Australia, Canada and South Africa [16], accounting for a potential global yield of
scandium (Sc2O3) in the range of 96–194 tons. A noticeable amount of scandium is also
found in tungsten [55], nickel and cobalt ores. Nickel laterite ores from Cuba, the Dominican
Republic and New Caledonia [56] have high concentration of scandium, up to 100 ppm,
and are a probable source for exploitation. Apart from the sources mentioned above,
there are many new potential sources that have been identified, such as electronics and
electrical waste, municipality waste, coal fly ash, phosphor-gypsum and phosphate rocks
and many more that have been identified to contain recoverable amounts of scandium [19].
The main problem with the exploitation of these sources is the irregularity in the metal’s
concentration. For example, use of e-waste as a scandium source needs collection and
segregation of the waste, which is an additional challenge. Moreover, the exploitation of
the phosphorus reserves as a scandium source is restricted due to their insufficiency [53].

3. Scandium Applications

The two main applications of scandium are in solid oxide fuel cells and aluminum–
scandium alloys. An enhanced oxygen ion conductivity can be attained in solid oxide
fuel cells through scandium doping with zirconia in place of yttrium [19]. Aluminum–
scandium alloys are among the most promising candidates for light weight alloys [57]. The
advantages of a minor addition, generally 0.2–0.6 wt% of scandium in aluminum alloys,
are improved strength, thermal resistance, weldability and corrosion resistance. The main
application of aluminum–scandium alloys is in the aerospace and automotive industries
and for sports equipment (bikes, baseball bats, etc.) which rely on high performance
materials. Scandium, along with aluminum and magnesium as an alloy is used in 3D
printing which finds application in the aerospace and automobile industries. Sc2O3 is
used in Erbium-doped yttrium–aluminum–garnet (Er:YSG) crystals for optics in laser
applications [37].

Due to its specific mechanical and chemical properties, the applications of scandium
are increasing, which has heightened the market demand for scandium. However, it is
difficult to extract scandium because it is sparsely distributed in trace amounts in natural
minerals, and the resources of scandium mineral deposits usually exist in complicated
forms. There is an urgent need to separate and recover scandium from secondary resources.

4. Possible Flow Sheets for Scandium Recovery

A cascade of different operations is generally required to obtain and enhance the purity
of any metal recovered from its ore or from byproducts of other metal extraction processes.
The principal steps from the mining to the extraction of its purest form include liberation,
separation/upgrading and purification. The most commonly used processes for metal
processing for minor elements in hydrometallurgy include leaching, solvent extraction,
ion-exchange, precipitation and electrochemical refining. The choices of the processes are
based on the type of ore being handled. However, different options were developed in
addition to the classical approach [58]. In the classical approach, scandium was recovered
from uranium ores in Russia. The process began with low-concentration sulfuric acid
leaching, followed by solvent extraction with 0.1 M dodecyl phosphoric acid solvent in
kerosene to extract uranium. This led to the build-up of concentrated scandium, titanium
and thorium in the organic phase leading to solvent poisoning. Stripping of the organic
solvent with HF acid led to the precipitation of a scandium–thorium fluoride cake. The cake
was then double-digested with NaOH for conversion to scandium hydroxide. The crude
scandium hydroxide was digested again with hydrochloric acid to remove impurities like
thorium, titanium, uranium, etc. Once the precipitate was removed, the filtrate was further
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treated with controlled oxalic acid to recover scandium oxalate precipitate. The scandium
oxalate cake was then calcined below 800 ◦C to generate scandium oxide. To enhance the
purity of the oxide obtained, it was further dissolved in hydrochloric acid and stripped
with ammonia. The scandium oxide formed was again calcined at 700 ◦C to generate
scandium oxide with a purity of 99.5%. This process applies reagents, which are corrosive
as well as poisonous resulting in the generation and release of toxic byproducts. Hence,
it is clearly understandable that this process contributes to the environmental burden as
it utilizes large amounts of hazardous chemicals and generates toxic products. However,
since no life cycle assessment (LCA) has been done on the recovery of scandium following
the classical approach from uranium ores, a direct relationship with indicators cannot
be concluded. Recently, a study done by Wang et al. [27] discussed the environmental
impact of scandium production from the Bayan Obo Mines. Figure 1 shows the processes
followed in the recovery of Sc2O3 from the Byan Obo Mine’s REEs tailings. The process is
studied from ore mining to the final scandium products. It includes primary, secondary and
tertiary separation of iron, other REEs, scandium and niobium. Once other major impurities
are separated, scandium is further concentrated and purified by processes like pressure
filtration, pressure acid leaching, extraction, back extraction, calcination, precipitation
and many more. The environmental impact for the production of 1 kg of Sc2O3 was
analyzed with the help of the Tools for Reduction and Assessment of Chemicals and Other
Environmental Impacts (TRACI 2.1) which include ten potential environmental indicators
some of which are Ecotoxicity, Human Toxicity Cancer, Human Toxicity Non-Cancer,
Global Warming Air (GWA) and many more. From the assessment, it was seen that the
process has a major environmental burden in form of GWA, with extraction and separation
being the major contributors. However, in the present case where scandium contributes
only 0.01% of the ore, the removal of the other REEs and iron takes up a large amount
of energy as well as material. Hence, along with identification of new potential sources
of scandium, advancement of technology that can reduce this burden is very important.
As time advanced, new methodologies were developed and proposed to overcome the
environmental problems along with the ability to recover the maximum scandium available
in the source. The following sections will discuss all the possible alternatives that have
been identified for scandium recovery.
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5. Separation Processes for Scandium Recovery

As scandium occurs in concentrations around 0.002–0.005% in ores of other metals, the
recovery processes become complex as well as expensive. The major processes employed
for recovery of scandium are hydrometallurgical in nature, such as extraction, adsorption
filtration, ion-exchange, solvent extraction, etc. The flow of these processes is dependent
upon the initial source and most of the process begins with leaching followed by a series
of different hydrometallurgical processes. Thus, scandium’s rare availability coupled
with the complex recovery processes adds to its cost of production making it highly
expensive. According to the US Geological Survey report [49], the price of 99.99% pure
Sc2O3 is USD 2200 per kg and the global supply and consumption of scandium oxide was
estimated to be about 15–25 tons per year [59]. In spite of the increasing cost, scandium
demand is increasing for modern technologies in automotive, optical, electronics and
related industries [9], as discussed above. Thus, different processes for the recovery and
purification of scandium are in urgent need.

5.1. Chemical Leaching

Chemical leaching is one of the oldest and most important operations in metallurgical
industries for the extraction of metals from their ores. It is a process through which the
metals trapped in ore and industrial process waste are recovered using strong mineral acids.
The performance of different leaching systems from different secondary sources reported
in the literature for scandium leaching is reviewed and tabulated in Table 3. Li et al. [60],
Wei et al. [61] and Xiao et al. [24] studied the recovery of scandium using hydrochloride
acid (HCl) as the leaching agent. They further compared their studies with other mineral
acids and concluded that the scandium leaching rate was either high or similar to the other
leaching agents. Ochsenkuehn-Petropoulou et al. [62] and Rivera et al. [63] used H2SO4
as the leaching agent for the scandium leaching from bauxite residue, but it showed poor
leaching efficiency among all the tested systems. Furthermore, Bonomi et al. [64] studied
scandium recovery using ionic liquid at 200 ◦C. The biggest hurdle faced in the direct
leaching of bauxite residue is the development of silica gel. Alkan et al. [65] provided a
solution by preventing the synthesis of silica gel using hydrogen peroxide (H2O2). However,
it affected the recovery as it reduced the leaching efficiency. Thus, as observed, the use of
H2O2 can avoid silicon leaching and consequent silica gel formation.

Table 3. A brief summary of different systems of scandium leaching from secondary sources.

S. No. Real
Sample

Leaching
System

Leaching
Conditions

Leaching Rate of
Scandium (%) Reference

1. Scandium Rough
Concentrate HCl s/l = 1/1.5, 60 ◦C,

90 min 95.1 [24]

2. Red Mud HCl 75 ◦C, 2 h 99.97 [60]
3. Red Mud HCl s/l = 1/10, 80 ◦C, 3 h 83.9 [61]

4. Bauxite Residue H2SO4
s/l = 1/5, 90 ◦C,

60 min. 50 [62]

5. Bauxite Residue H2SO4 s/l = 1/20, 25 ◦C, 24 h 40 [63]

6. Bauxite Residue
1-ethyl-3methyl

imidazolium
hydrogen sulphate

s/l = 5% w/v, 200 ◦C, 12 h 80 [64]

7. Bauxite Residue H2SO4 + H2O2
s/l = 1/10, 90 ◦C,

30 min 68 [65]

8. Red Mud HCl + H2O: Red
mud: EDTA

40 mL HCl, 10 g red mud, 2 g EDTA,
70 ◦C, 4 h 79.6 [66]

9. Bauxite Residue CO2 + H2SO4 s/l = 1/3, 30 ◦C, 6 h 50 [67]

10. Bauxite Residue H2SO4
s/l = 1/50, 80 ◦C,

60 min 60 [68]

11. Fe-Ti Residue H2SO4 s/l = 1/7, 95 ◦C, 5 h 85–95 [69]
12. REE Silicate H2SO4 s/l = 1/30, 200 ◦C, 15 h - [70]
13. Blast Furnace Slag H2SO4 + H2O 400 rpm, 200 ◦C, 10 min 83 [71]
14. Bayan Obo Tailings H2SO4 s/l = 1/4, 245 ◦C 96 [72]
15. Nb Ore Concentrate HCl s/l = 2.2, 100 ◦C 97 [73]
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5.2. Bioleaching

Bioleaching, also known as microbial leaching or biomining, is a process where metals
are solubilized from insoluble solid matter either by direct metabolism by the microbes
or by the metabolism products of the microbes [74]. This procedure helps in recovering
valuable metals from low-grade ores, industrial process wastes, mine tailings, etc., in a
more effective and environment friendly way. This phenomenon typically occurs as a result
of the microbe generating organic or inorganic acids in their metabolic pathway [75].

Bioleaching can be done either by using heterotrophic or autotrophic microorganisms.
The autotrophic process follows bio-oxidation/reduction cycles in the presence of inorganic
acids, while heterotrophic leaching is carried out by the produced organic metabolites
that complexes with the metal leading to the formation of soluble chelates. Heterotrophic
microorganisms have successfully leached scandium from primarily bauxite and fly ash
residues (Table 4). Most of the microbes studied for the leaching of scandium produced
mainly oxalic acid. The high production of oxalic acid is promoted by the high pH (6–10)
of the system [76]. Apart from oxalic acid, other organic acids produced by the microbes
are acetic acid, succinic acid, gluconic acid, malic acid, citric acid and lactic acid. In all the
bioleaching studies mentioned here, the system follows low pulp density and one-step
bioleaching. The stimulating effect of interactions between strains and scandium are long-
lasting in one-step processes. Moreover, increasing the pulp density causes loss of microbial
metabolic activities, inhibiting growth and resulting in poor leaching of the metal [77].
However, exceptionally high leaching efficiency (94%) has been seen when leaching has
been done using Gluconobacter oxydans from red mud [78]. Only two studies have been
reported that showed leaching of scandium from red mud through gluconic acid produced
by Gluconobacter oxydans [79,80]. However, no such detailed discussion on the mechanism
has been reported. Therefore, further detailed studies with gluconic acid on other scandium
sources can be carried out in the future.

Table 4. A brief summary of different systems of scandium leaching from secondary sources.

S. No Sample Leaching System Leaching Conditions Leaching Agents Leaching Rate of
Scandium (%) Mechanism Reference

1. Red Mud Indian
and German

chemoorganotrophic
microorganisms,

Gluconobacter oxydans
(DSMZ 46616)

10% pulp density, 37 ◦C,
was observed after
18–20 d, 120 rpm

gluconic acid 83% and 94%,
respectively - [80]

2. Red Mud Penicillium tricolor
(RM-10)

10 days, 2% pulp
density, one-step

bioleaching

citric, oxalic, and
gluconic acids 70% Detoxification [79]

3. Residual Fly Ash C. bombicola, C. curvatus,
P. chrysosporium

Fly ash leached with
supernatant

28 ◦C, 6 h, 50 rpm, 1%
pulp density

- 63, 48.5 and 52.1,
respectively - [81]

4. Ash–Slag Waste

acidophilic
chemolithotrophic

microbial
communities

45 ◦C, 10 days, 10%
pulp density, pH 2.0 by

adding sulfuric acid
sulfuric acid 52% - [82]

5. Red Mud chemoheterotrophic
bacteria, Acetobacter sp.

30 ◦C, 120 rpm, 2% pulp
density, one-step

succinic acid
acetic acid,

malic acid, oxalic
acid, lactic acid

52% Acidolysis,
complexolysis [83]

6. Red Mud

fungal strain Aspergillus
niger isolated from
pistachio husk and

grape skin

30 ◦C, 150 rpm, 20 days,
3% pulp density

citric and oxalic
acids

29% and 38%,
respectively

Detoxification
and

complexation by
acidic

metabolites

[84]

7. Bauxite Residue Acetobacter tropicalis
one-step bioleaching

process at 1% s/l, 30 ◦C,
120 rpm, 20 days

acetic, oxalic,
and citric acids 42%

Detoxification
and

complexation
[85]

Compared to conventional leaching methods, bioleaching has higher selectivity to-
wards scandium in the presence of impurities. Moreover, it is a greener and better option
for the extraction of metal from solid materials as it has operational flexibility, low cost, no
toxic by-product generation, less energy consumption and is environmentally friendly [79].
The most significant disadvantage that has been observed is the low leaching efficiency
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and high leaching time compared to conventional mineral acid leaching. Bioleaching is a
significantly less exploited process for extraction of REEs. It has a huge scope in exploring
scandium recovery from other sources, such as waste printing circuit boards, which con-
tains neodymium, dysprosium, lanthanum, scandium and yttrium along with zinc, nickel,
copper and gold. Bacterial or fungal bioleaching of scandium as well as rare earth elements
from waste printing circuit boards, has not been addressed properly [78].

6. Recovery Processes
6.1. Liquid/Liquid Extraction

Liquid/liquid extraction, also known as solvent extraction, is a traditional method
used extensively in the chemical industry for the separation of compounds based on their
relative solubility in two different immiscible liquids [41]. For scandium recovery from
various processing liquid wastes and leachates, solvent extraction is widely used because
it generally offers the advantages of good processing capacity, operational ease at larger
scales and lower operating costs. Different types of extractants, such as acidic, basic,
neutral, chelating, as well as synergetic extraction systems have been explored for the
extraction and purification of scandium [86]. The extraction studies that have been reported
in the literature is reviewed and summarized in Table 5. These studies suggest that acidic
organophosphorus extractants such as di-(2-ethylhexyl)phosphoric acid (DEHPA) and
bis(2,4,4-trimethylpentyl)phosphonic acid (Cyanex 272), were the most applied extractants
for the separation of scandium from various other metal ions. Due to its high charge
density, scandium generally shows a higher extractability than the other rare earths. Upon
application of Cyanex 272 and 923 (mixture of four tri-alkylphosphine oxides) in sulfuric
acid media, the recovery of scandium was >98%, whereas selective separation of scandium
from thorium and zirconium was achieved using Cyanex 572 (organo-phosphorus con-
taining phosphinic and phosphonic acids) in HCl media. Selective separation of scandium
from Fe was reported using betainium bis(trifluoromethanesulfonyl)imide ([Hbet][TF2N])
in aqueous medium by Onghena et al. [87]. The percentage extraction of scandium was
99% using D2EHPA + tributyl phosphate (TBP), while 90% scandium was stripped when
D2EHPA + primary amine (N1923) was applied as the extractant. The extraction percentage
was greater than 99% using 2-ethylhexyl phosphonic acid mono-2ethylhexyl ester (P507)
+ TBP and trialkylphosphine oxide (TRPO) as extractants in different media. It is evident
from the given data that sulfuric acid media was widely used for the recovery of scandium.
The extraction percentage is greater than 90% using most of the reported extractants, which
suggests that application of these extractants for the recovery of scandium is feasible. The
comparative data also indicate that in order to obtain highly pure (>99%) scandium oxide,
P507 + TBP and TRPO can be applied as extractants.
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Table 5. Summary sheet on the extraction of scandium using different extractants.

S. No. Starting Metals (mg/L) Extractant Aqueous Medium Extraction Mechanism Extracted Metal Ions Comments Reference

1.

Sc (9.9), Th (8.9), Ti (30.7),
Zr (1.3), Fe (13,091.4), Mn

(9530.9), REs (40.5), Al
(506.5), Ca (5591.9), Mg

(221.1)

Cyanex 572 HCl M+3
(aq) + 3HL(org) =

ML3(org) + 3H+ Sc, Th, Zr Selective separation of Sc from Th and
Zr; HCl as stripping agent [55]

2. Sc (1.8 mol/kg) [Hbet][
TF2N] - M+3 + 3[Hbet][TF2N](org) =

[M(bet)3(TF2N]3(org) + 3H+ Sc, Fe Selective separation of Sc from Fe using
scrubbing; HCl as stripping agent [88]

3. Sc (139) Cyanex 272+
Cyanex 923 H2SO4

Sc+3 + (HL)2(org) + B (org) =
Sc(HL2)B(SO4)org + H+ Sc 98.79% Sc is recovered using oxalic acid

as stripping agent [89]

4. Sc (9), Fe (22), Al (203), Si
(28), Na (5837), Ca (416)

P204
P507

Versatic 10
H2SO4

M+3 + 3(HA)2(org) =
MA3.3HA(org) + 3H+ Sc, Fe P204 is a better extractant than P204 and

Versatic acid 10; 97% recovery of Sc [90]

5. Sc (23.6) P507 + isooctanol H2SO4
Sc+3 + 3 (HA)2(org) =
Sc(HA2)3(org) + 3H+ Sc, Zr, Ti

SF(Sc/Zr) = 34, SF(Sc/Ti) = 494; 99% Sc is
recovered using H2SO4 as

stripping agent
[91]

6.

Sc (4.33), Na (23,800), Fe
(107), La (14.4), Ti (0.08),

Ca (400Al (2510), Y (15.3),
Ce (30.3), Nd (3.06), Dy

(1.74)

[Hbet][
TF2N] H2O M+3 + 3[Hbet][TF2N](org) =

[M(bet)3(TF2N]3(org) + 3H+ Sc, Fe
Separation of Sc from Fe is achieved by
reducing Fe; ascorbic acid as reducing

agent; H2SO4 as stripping agent
[88]

7.

Sc (5.53), Ca (611), Fe
(1653), Ti (311), V (49.1),
Cr (9.36), Zr (5.91), Ga

(2.00)

D2EHPA + TBP H2SO4 - Sc

D2EHPA is selective extractant for Sc;
%E = 99%; TBP used as phase modifier;
Sc is recovered as Sc(OH)3 using NaOH

as stripping agent

[92]

8. Sc (365), Ti (579), Fe (6), Zr
(53.9) TRPO H2SO4 + H2O2

Sc+3
(aq) + HSO4

−
(aq) +

SO4
2−

(aq) = HSc(SO4)2(aq)
HSc(SO4)2(aq) + 2TRPO(org)

= HSc(SO4)2.2TRPO(org)

Sc

H2O2 is added to prevent the extraction
of Ti;

99.9% stripping Sc using oxalic acid;
95% Sc2O3 is recovered with

99.34% purity

[93]

9.
Sc (17), Ti (3875), Fe (5562),

Al (8431), Ca (29), Na
(4824), Mg (1521)

P507 + TBP H2SO4 + CaF2 - Sc
99% pure Sc2O3 is recovered after

stripping, precipitation and calcinations;
phase modifier is required

[94]

10.

Sc (23), Ti (2400), Fe
(28,360), Mn (2400), Al
(1030), Ca (1500), Mg

(1900)

D2EHPA + N1923 H2SO4

Sc+3 + (HL)2(org) +
[(RNH3)2(SO4)]2(org) +

SO4
2− =

Sc(HL2)[(RNH3)2(SO4)]2
(SO4)(org) + H+

Sc, Ti
90% Sc is stripped using HNO3; 80%

Sc2O3 with 90% purity is obtained after
precipitation and calcination

[95]
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6.2. Adsorption

Adsorption is a surface phenomenon where the transfer of molecules from the bulk
fluid occurs on the solid particle. The transfer can be physical or chemical in nature; how-
ever, it is usually reversible in nature. The reverse of adsorption is desorption in which the
molecule is released back, regenerating the adsorbent without altering the chemistry of
the adsorbent. Table 6 discusses different kinds of adsorbents that have been used for the
recovery of scandium such as ion exchange resins, solvent impregnated resins, bio-sorbents
and many more. Carbon-based adsorbents like wood dust biochar, coconut shell activated
carbon nanotubes and pristine were able to adsorb scandium selectively over rare earth
elements like cerium and neodymium in the acidic media. Although wood dust biochar
has shown low adsorption capacity compared to those available commercially, it is cheap
and developed from agricultural waste giving it a sustainability and economic advantage.
Sol-gel-processed silica doped with bifunctional ionic liquid trioctylmethylammonium
1-phenyl-3-methyl-4-benzoylpyrazol-5-onate [96] and Fe3O4@SiO2 nanoparticles function-
alized with the coupling agent (3-aminopropyl) triethoxysilane (APTES) and ethylenedi-
amine tetraacetic acid (EDTA) as a ligand were also used as adsorbent with high selectivity
towards scandium compared to other rare earth elements [97]. The latter is a magnetic
adsorbent with an adsorption capacity as high as 95% as well as being easy to handle.
However, nothing has been reported regarding the elution of the metal from the adsorbent
which is important for the recovery of scandium. A recent study showed that zirconium
phosphate (ZrP), when used as an adsorbent, showed high selectivity towards scandium
compared to iron (III) with a separation factor of approximately 23. Around 99.9% pure
scandium was recovered, although the elution after two cycles could reach only 60% [98].
Adsorption overcomes most of the drawbacks of solvent extraction, such as loss of solvent,
generation of chemical sludge, multiple stage operation, emulsification, etc. However, it
has its own drawbacks, such as slow processing, time consuming, low specificity towards
selective ions and low efficiency desorption. In this review, other kinds of adsorbents used
and their related problems, advantages and disadvantages will be discussed.

6.3. Ion Exchange

Ion exchange is a chemical treatment process where metal ions from the solvent are
exchanged with ions on the resins. In this process, the ions in a solution are replaced by
ions attached to a solid phase. Thus, the ions present in solutions are replaced by different
ions originally present in the resin. These ions are of different types but of the same polarity.
Ion exchange has been applied for recovery of scandium from as early as 1957, where
it was recovered from a mixture of scandium, vanadium and titanium with the help of
Dowex 1. The adsorbed scandium was recovered through desorption with 0.1 M oxalic
acid and 0.1 M HCl [99]. Though the ion exchange technique is not new, it has undergone
massive changes over time, just being based on the principal of reversible adsorption of
ions at the solid/liquid interface. The developments were made in resin utilization and
activity enhancement for maximum extraction. To date, various kind of resins has been
employed for the recovery of scandium from different type of real industrially processed
feeds like zirconium tailing waste, uranium leachate, copper leachate, coal ash leachate,
red mud leachate, etc. which has scandium along with other REEs, and high concentration
of impurities like thorium, iron, aluminum, etc. that strongly interfere with the recovery
process. As most feed sources containing scandium are acidic in nature, cationic resins are
the primary choice for recovery [100–105]. However, anionic resins are also been reported
for the recovery of scandium [106,107]. From Table 6, most of the resins lack high selectivity
towards scandium. Hence with scandium, other REEs as well as impurities, are adsorbed.
While eluting, along with scandium, some impurities like aluminum [105], REEs [108],
thorium [108] and iron [109] are desorbed as well. Eluting methods have been further
developed and modified where selective elution of scandium in the presence of other REEs
from the resin was achieved to some extent [107,108].
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The biggest hurdle faced in the retrieval of scandium from leaching solution is the
separation and segregation of scandium from other metals especially like iron due to their
chemical resemblances. To overcome this issue, functionalized resin materials have been
used [109–112]. Ethyleneglycol tetraacetic acid (EGTA)-functionalized chitosan–silica parti-
cles and 732 resins were able to selectively adsorb scandium over iron [110]. 732 resins were
used in a two-step adsorption system where the resin had an affinity for scandium, iron and
aluminum. In the first stage, eluent containing Fe3+ is reduced in the presence of ascorbic
acid and then scandium is complexed with EDTA. Since the resin had an affinity for iron
(Fe2+) and aluminum (Al3+), they are adsorbed in the second stage adsorption, with only Sc–
EDTA left in the eluent. The EGTA functionalized chitosan–silica possessed a much higher
affinity for scandium over iron (by a factor of 105) which is then selectively eluted at pH
0.5 with nitric acid. Thus, ion exchange resins can be considered as a workable separation
technique for the reclamation of metals from dilute solutions. However, they may involve
many operational challenges, such as damaged resin, fouling and high costs [12]. They are
re-usable, durable, less complex, have low maintenance costs, and are easy to operate with
adjustable selectivity [113,114]. However, elution is an important parameter as recovery of
the metal is the primary goal, which is often compromised. Therefore, more attention is
needed towards developing a complete, optimized process of adsorption and desorption.

6.4. Immobilized Extractants

This is a new technique consisting of the immobilization of liquid extractants on
different substrates. It involves the exchange of ions with chelating agents or solvents
impregnated on resins. It is a simple and effective tool to selectively separate metal ions
from aqueous solutions and effluents. Chelating resins and solvent impregnated resins can
show an explicit affinity for certain metals due to the functional group(s) assimilated to
the support matrix that possesses the advantages of both extraction and adsorption [115].
For the solvent to work effectively, proper sorption of the extractant by the polymeric sup-
port is very important. This is generally achieved through hydrophobic interactions and,
sometimes, partly through polar or electrostatic forces. Using solvent-impregnated resin,
scandium can be recovered with high selectivity from low concentration solutions contain-
ing high amounts of impurities [115–117]. When treating feeds with scandium and other
REEs, solvent-impregnated resin effectively adsorbed scandium, which was successfully
eluted to recover scandium metal [118]. When treating feeds from bauxite- and laterite-
processed ores with high concentrations of iron and aluminum, which heavily interferes
with selective scandium adsorption, solvent-impregnated resins have shown selectivity in
the order scandium > iron > aluminum [116,119]. However, the elution of scandium was dif-
ficult as most of the studies have either not reported about elution [115,119,120] or claimed
it to be challenging and problematic [115]. However, in a study done with XAD-7HP
resin impregnated with extractants 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester
(PC-88A) and neodecanoic acid (Versatic 10), scandium could be selectively recovered in
presence of impurities such as iron, aluminum, zinc, etc. without undergoing any scrubbing
or reduction of iron ions. Scandium could also be substantially eluted from the system with
2 M sulfuric acid [117]. Solvent-impregnated resin is an alternative separation method that
is environmentally friendly, faster and relatively easy to handle, having tunable selectivity
towards any ion compared to ion exchange and solvent extraction methods alone. However,
the disadvantages of the process are the loss of impregnated solvent over the course of time
due to its solubility in the aqueous phase and the challenging elution process of the metal
ion for successful recovery.
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6.5. Biosorption

Biosorption is the process by which biological agents such as bacteria, fungi, etc. act as
absorbents (bio-sorbents) to accumulate heavy metal in their cells either via metabolic path-
ways or physico-chemical methods. Amino, carboxyl, hydroxyl, sulfhydryl and phosphate
groups of polysaccharides, lipids and glycoproteins present on the microbial surface serve
as the binding site for metals [121]. Biosorbents can be altered chemically or genetically to
improve adsorption. In chemical modification, binding sites are either enhanced or they
are impregnated on matrixes which enhance adsorption capacity and the selectivity of the
adsorbent towards the metal ion [122–125]. The biosorbents shown in Table 6 are capable
of selectively adsorbing scandium from low concentration solutions the in presence of low
concentration of impurities. When the concentration of impurities increases, the sorbent
fails to selectively separate scandium from feed sources, like acid mine drainage or leachate
of red mud [123–125]. However, a study by G.I. Karavaiko claimed to selectively recover
scandium from diluted red mud leachate using biomass S. cerevisiae as the biosorbent [126].
To avoid co-precipitation of scandium along with iron, aluminum and titanium, pH 0.6 was
maintained in the system. The biosorbent showed exceptional selectivity towards scandium
and after four cycles of adsorption and desorption, 98.9% of scandium was extracted [126].
The process of biosorption has many advantages, such as easy operations, no chemical
sludge is produced and it is environmentally friendly. The biosorbents discussed were
able to successfully recover scandium from diluted streams with low impurity. However,
further work needs to be done on enhancing its selectivity from feeds with high amounts
of contaminating metals with similar chemical properties as scandium.
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Table 6. Summary of different kinds of adsorbent used for recovery of scandium.

S. No. Sample Adsorbent Resin Extractant/
Microbe Adsorption Conditions Desorption Removal

Percentage (%)
Isotherm
Kinetics Mechanism Reference

1
HNO3 leachate of

Greek bauxite
residue

EGTA-functionalized
chitosan–silica - -

pH 1.25, Adsorbent dose
25.0 mg, 10.0 mL, initial
conc. 0.50 mM, time 4 h

HNO3 at pH 0.50 80% Langmuir ion exchange [40]

2

Sc, Y, La, Ce, Lu,
Nd, Sm, Eu, Tb,
Dy, Ho, Er, Gd
Tm, Yb and Pr

Sol-gel processed silica
doped with a novel
bifunctional ionic

liquid, trioctylmethy-
lammonium 1-phenyl-

3-methyl-4-
benzoylpyrazol-5-

onate

- - 0.05 M HNO3,
V/m = 200 mL/g, 10 min 2 M HNO3 -

Langmuir
pseudo-second-

order
chemisorption [96]

3 Model aqueous
phase of scandium

Fe3O4@SiO2 coupling
agent APTES as a and

ligand (EDTA)
- -

initial conc. 50 mg/L,
pH 5, 50 mg adsorbent,

5 h, 25 ◦C
- 95%

Langmuir
pseudo-second

order kinetic

exchange or
sharing of
electrons

[97]

4 Sc, Fe, Al - TP 260 & TP 209 -

50 mg resin, 50 mL 1 M
Na2SO4 solution, pH 2

initial conc. 50 mg-Sc/L,
70 ◦C, 36 h

- - Langmuir
isotherm

intraparticle
diffusion [98]

5 Sc, V, Ti - Dowex 1 - 0.1 M oxalic acid 0.1 M oxalic acid and
0.1 M HCl - - - [99]

6 Th, Zr, Fe, Ti, Al
and Ca -

Diaion SK 1, a
styrene-base

strong acid type
resin

- 1 mL per min,
10 g of dry resin.

1 M NH4SCN and
0.5 M HCl 100% - - [100]

7 Yt, La, Ce, Sm, Er,
and Yb - AG 50W-X8

resin - 20 g resin, flow rate of
3.0 mL/min 2 N sulfuric acid 100% - - [101]

8
Sc, Yb, Eu, Ce, Sr,

Na,
and C

-
cation-exchange

resin
Dowex 50

-

95% (CH2)4O, 5%, 6 M
HCl, 0.1 M TOPO, 1 g

resin, flow rate:
0.5 mL/min

- - - - [102]

9 Raffinate copper
leach solution - Purolite C100Na - 0.1 g of washed and dried

resin, pH-1.5, 25 ◦C, 24 h 1.7 M/L Na2CO3 - Langmuir
isotherm - [105]

10 REE mixture - Dowex 1X4 and
Amberlite CG-400, - -

10% 7 M HNO3 (90%
methanol) mixture was

prepared in 10 mL

scandium
was not adsorbed
to an appreciable

extent

- - [106]

11 Zr-raffinate with
REE -

Anion-exchange
resin Dowex 1X8,

and cation
exchange resins,

Dowex 50X8

- 0.1 M HNO3

anion-exchanger in 2.5%
7 M HNO3–CH3OH

mixture cation-exchanger
5% 1.2 M HCl-(CH3)2CO

mixture, 91%

- - - [107]
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Table 6. Cont.

S. No. Sample Adsorbent Resin Extractant/
Microbe Adsorption Conditions Desorption Removal

Percentage (%)
Isotherm
Kinetics Mechanism Reference

12 Uranium leachate - Tulsion CH 93 -

0.1 g sample of air-dried
resin 50 mL of solution,

shaken,
24 h, 20–23 ◦C

180 g/L Na2CO3, Sc and
Th were 94.1 and

98.9%,
respectively

(NH4)2SO4 (50 g/L)
a mixture of 30%

(NH4)2CO3 + 70%
NH4HCO3 (ACBM)

- - - [108]

13 Red mud - AFI-21 and AFI-22 - sulfuric acid media pH
0.9–4.9 NaOH, 20–30 g/L 50% - - [109]

14 Sc, Ti, Fe(III), Ca,
Al, Zr, Si -

732-type acid
cation exchange

resin
-

pH 2.5, 200 r/
min, 0.55 g EDTA and

0.16 g ascorbic acid, pH
2.5, 180 min, 25 ◦C

- 84.2% - - [110]

15 Al, Ti, Fe, Y, La, Ce -

porous
silica-polymer

based
TRPO/SiO2-P

-

pH 2 H2SO4
s/L: 1.0 g/50 mL, initial
conc. 10 mM, 2 h, room

temperature

0.01 M
EDTA 100

Langmuir
adsorption
isotherm

electron sharing [111]

16 Sc, Fe, Al - TP 272 Cyanex 272

50 mg resin, 50 mL 1 M
Na2SO4 solution at

pH 2.5
with initial concentration

of 50 mg-Sc/L, 22 ◦C,
12 h

- -

Langmuir
isotherm

pseudo-second-
order
model

intraparticle
diffusion [113]

17 Coal, fly ash
leachate - VP OC 1026, TP

272
D2EHPA,

Cyanex 272

S/L ratio of 1/100
(wt./vol.) 40 ◦C 150 rpm,

pH 2.33

2 M NH4F, 40 ◦C 6 M
H2SO4, 18 h

91%
85% -

adsorbed via
proton

exchange with the
phosphate groups

[114]

18

La, Dy, Ce, Pr, Nd,
Eu,

Sm, Gd, Tb, Ho,
Er, Yb, Lu, Y, Tm,

and Sc

-

Amberchrom
CG-71c nonionic

macroporous
sorbent

P,N-containing
podands

5 M HClO4, ratio of the
aq. sol. vol. to the

sorbent weight: 100:1
- - -

complexation by
enhanced

protonation
[115]

19

Al3+, Fe3+,

Zr4+, Mn2+, Co2+,
Cu2+, Ni2+, and

Zn2+

- XAD-7HP resin
extractants

PC-88A and
Versatic 10

50 mg resin, 5 mL
aqueous solution, and 1 h

shaking at room
temperature

2 M sulfuric acid -

Langmuir
isotherm and
second-order

kinetics

- [115]

20 Sc, Al, Fe -
polymer support

fabric
(PP-g-PGMA)

phenylphosphinic
acid (PPI)

1 ppm Sc, pH 2, 24 h at
room temperature - 98% Langmuir

solvation
mechanism of

adsorption
between Sc and

PPI

[116]

21 REE -
DIAION HP2MG

(methacrylate
resin)

Cyanex 272
1-octanol as

modifier

20 mL of REE 1 mM
solution, 20 mg of SIRs,

constant shaking, 24 min,
298 K

5 M HCl - Langmuir - [118]
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Table 6. Cont.

S. No. Sample Adsorbent Resin Extractant/
Microbe Adsorption Conditions Desorption Removal

Percentage (%)
Isotherm
Kinetics Mechanism Reference

22 Sc, Tm, Yb and Lu - Modified
Merrifield Resins Cyanex 923,

5 mL of Sc solution,
200 mg of impregnated
resins, constant stirring,

30 min, 25 ◦C

- - -

extraction of
neutral complex

and cation
exchange

[119]

23 Sc solution - TVEX

TBP, di-isooctyl
methyl

phosphonate
(DIOMP) and

phosphine oxide
with different
alkyl groups

(POR)

organic to aquas-phase
ratio of 1:20, 25 ◦C, 24 h,

>4 M HCl
-

TVEX-DIOMP as
[ScCl

(DIOMP)2
(H2O)3]2−complx

from 4 M HCl

[120]

24 Coal byproduct -

microbe-
encapsulated silica

gel (MESG)
biosorbent

cell loading of
1.0 g/mL, pH 3.0,
1 bed vol. 2 mL
feedstock sol.

pH-6, 0.050 M sodium
citrate - - - - [122]

25 Red mud -

Quaternized
Algal/

Polyethyleneimine
beads (Q-APEI)
with dry algal

biomass

pH > 4 SD: 0.6
g/L; 20 ◦C;40 rpm;

30 h

0.5 M HCl/CaCl2
solutions 88.1% - - Langmuir

complexation of
the Sc with amine

groups
[123]

26 Red mud -

Laminaria digitata
algal biomass/

polyethyleneimine
beads, ALPEI

pH 1–5, 1 mmol/L.
SD: 2 g/L; T:
22 ◦C, 48 h;

170 rpm

acidic CaCl3, 99% - - Langmuir
equation

ion exchange and
chelation on

protonated amine
groups, sulfonic

groups and
carboxylate

groups

[124]

27 AMD and
seawater -

Posidonia oceanica
with

1-(2-pyridylazo)-2-
naphthol (PAN)
grafted on algal

biomass
(2-algae-P)

Adsorbent dosage
1 g/L. pH 5

(AMD), pH 6
(Seawater),

REE = ~2 ppm,
45 ◦C, 1 h

- - -
Langmuir and
pseudo-second
order kinetics

binding by
coordination

mechanism with
the ligand of PAN

[125]

28 Red mud - -

biomass of
Saccharomyces
cerevisiae and

Aspergillus terreus

pH 0.6 fungi (0.2 g/L, dry
wt) and yeasts (0.5 g/L,
dry wt), 20 mL aliquots,
220 rpm, 20–25 ◦C, 1 h

with 20 mL of 10% w/v
Na2CO3, 99.5% S. cerevisiae 98.8% Langmuir

equation - [126]

29
Sc, Ce, La and Al

(monazite
processing liquor)

- glycol amic acid
embedded resin - 24 h, pH 1, 0.1 g resin in

100 mL
2.0 M HCl solution at

80 ◦C, 45% - - [127]

30 Sc and Nu Biochar of wood dust - - absorbent conc. 1–10 g/L,
24 h, 25 ◦C, 350 rpm - 52% and 78%,

respectively - - [128]
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Table 6. Cont.

S. No. Sample Adsorbent Resin Extractant/
Microbe Adsorption Conditions Desorption Removal

Percentage (%)
Isotherm
Kinetics Mechanism Reference

31 Bauxite residue
leachate

α-ZrP (α-zirconium
phosphate) - -

0.05 g of ion exchanger,
20 mL feed solution,

pH-1.5, 300 rpm, 18 h, at
room temp in HCl media

2 M/L HCl, two-step
elution 99.9%

Langmuir
pseudo-second-

order
kinetics

chemical reaction
at the surface [129]

32 Tomtor Deposit
leachate -

Purolite
D5041(Phosphorus)
and Purolite C115

(carboxyl)

-

volume ratio ion
exchanger: solution =

1:300 (for
phosphorus) and 1:150
(carboxyl), contact time

of 24 h

(NH4)HS
(100 g/L) 2 h, 70–80 ◦C,

78.9%
(phosphorus)

1 M
HNO3 solution was able

to remove
REEs

99.8–99.9% - - [130]

33 Red mud - AFI-21 ampholyte - -

Na2CO3 conc of
150 g/Ldm3

scandium desorption of
96%

76% - - [130]

34 REEs(III)

macro-porous silica
based polymer (SiO2-P)
based di(2-ethylhexyl)

phosphonate
adsorbent (HDEHP/

SiO2-P)

- -
m/V = 0.1 g/

5 mL, 120 rpm, 30 min,
H2SO4 5 M

- - Langmuir ion exchange [131]

35 Sc, Pd, Pt & Au carboxymethylchitin
(CMCht) hydrogel - -

pH 3.9, at initial conc.
100 ppb, adsorbent
weight 50 mg, 2 h

- 35% - - [132]
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7. Purification Processes
7.1. Nanofiltration

Nanofiltration is a pressure-driven filtration-membrane process. Based on separation
by size, nanofiltration is the upper end of reverse osmosis and lower end of ultra-filtration.
The general pore size of the membrane varies between 1–10 nanometers. The transport
across the membrane occurs due to both fluxes as well as trans-membrane pressure differ-
ences. The separation happens by diffusion of the molecules of the solvent through the mass
of the membrane, controlled primarily by high trans-membrane pressure. It is a process by
which part of the feed passes through semi-permeable membrane. For scandium retrieval,
a pre-enrichment of scandium is needed to obtain higher concentrations for the subsequent
selective extraction [133]. Here, nanofiltration can offer two vital advantages. First, it
offers selectivity and secondly, it may reduce the volume to be extracted downstream,
reducing the environmental impact caused by solvent extraction steps [134]. However, a
major limitation of nanofiltration is that in high ionic strength solutions, adequate fluxes
can only be accomplished via high operational pressures, which surges operational costs.
Furthermore, there are limited numbers of commercial membranes that can withstand such
highly acidic conditions. Remmen et al. [54] prepared layer-by-layer modified nanofiltra-
tion membranes that were optimized with respect to their selectivity towards scandium as
well as acid resistance. The synthetic solutions consisted of scandium, iron and HCl. In
this solution, under optimized conditions, the membrane retained a maximum of up to
64% scandium, efficiently eliminating iron (the major impurity). In real titanium dioxide
pigment wastewater, the proposed membrane showed higher retention of scandium 60%
compared to available commercial acid resistant membranes that showed only 50%.

7.2. Polymer Inclusion Membranes

Polymer inclusion membranes (PIMs) are membranes made up of a liquid extrac-
tant trapped in a polymer-based matrix that is typically prepared with polyvinyl chlo-
ride (PVC) or cellulose triacetate (CTA). As a separation technology, PIMs are used as
the phase transfer medium, extraction, and pre-concentration unit for several cations
and anions. In the past decades, PIMs have been extensively used for hydrometallurgi-
cal applications such as extraction and metal recovery because of their high selectivity,
stability, durability, etc. [135]. A CTA-based PIM was developed with dioctyl phtha-
late (DOP) as a plasticizer with binary carrier PC-88A and Versatic 10 (decanoic acid).
Scandium was selectively separated from a nitrate solution containing other rare earth
metal ions. However, poor elution was an issue, which was addressed by using Versa-
tic 10 along with PC-88A as carrier, thus enhancing the extraction of scandium [136]. A
comparative study was done between using the PIM containing the amic acid extrac-
tants N-[N,N-di(2-ethylhexyl) aminocarbonylmethyl]glycine (D2EHAG) or N-[N,N-di(2-
ethylhexyl)aminocarbonylmethyl]phenylalanine (D2EHAF) as carriers and the commer-
cial carriers 2-thenoyltrifluoroacetone (HTTA) or 2-ethylhexylphosphoric acid mono-2-
ethylhexyl ester (PC-88A). It was found that the PIM with the amic acid extractants
(D2EHAG) or (D2EHAF) as carriers were more efficient in extracting and stripping scan-
dium from a feed solution containing rare earth metals [137] and base metal ion solution
containing iron (III) [138]. It was found that PIM with the amic acid extractant D2EHAF was
able to successfully separate scandium in both cases. Thus, the PIM containing D2EHAF
was able to quantitatively and selectively transport scandium from 0.1 M sulfate feed solu-
tion at pH 3, containing base metal (Fe, Al, Ca, Co, Ni, Mn, Cr and Mg) ions to a solution
containing 0.5 M H2SO4 [138]. However, studies with industrial leach liquor containing
scandium have yet to be done.

7.3. Precipitation and Crystallization

Precipitation is a separation process where soluble metal ions are separated using
other salts by double displacement reactions where the targeted metal ion separates as an in-
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soluble solid. The theoretical mechanism is that the dissolved metal ions are precipitated by
chemical reagents (precipitants), resulting in the creation of metal hydroxides, carbonates,
sulfides, oxalates and phosphates that can be simply separated by filtration, sedimentation
or centrifugation. It is mostly used for removal of heavy metals from industrial effluents.
Table 7 reports the studies on the recovery of scandium through precipitation and crystal-
lization. The most practiced method of scandium recovery by precipitation is by addition
of oxalic acid resulting in scandium oxalate. Calcination of scandium oxalate at around
700 ◦C produces scandium oxide of 99.5% purity. Apart from oxalic acid, fluorides [65,139]
and phosphates have been used for scandium precipitation [140]. However, the main
problem is the presence of high concentration of iron (III) which co-precipitates along with
scandium. Therefore, for maximum recovery of scandium in pure form, multiple stages
of neutralization and precipitation have to be followed to eliminate the major impurities
with minimal scandium loss [58,60,141]. Few studies have been reported regarding crys-
tallization of scandium from red mud leachate. Two methods have been used: cooling
crystallization and anti-solvent crystallization. The former has a low recovery while the
later has a high recovery, but crystal size is very small (< 2 µm), which interferes with
separation and filtration. Therefore, better crystallization and filtration techniques must be
developed for this process. A uniform distribution of iron in the crystals as an impurity has
also been found due to its similarity with scandium with highest purity of 98.3% [142,143].
Thus, the leach liquor feeds that have scandium in the form of (NH4)3ScF6 with a low
presence of impurities can be converted to crystals of high purity. However, the use of
fluoride is of environmental concern. Therefore, further studies in this area are required.

Table 7. Summary of precipitation and crystallization methods.

S. No Sample Process Agent Condition Recovery Percentage Reference

1 Uranium leachate Multiple precipitation HF
Oxalic acid - 10% (99.5% purity) [58]

2 Scandium and titanium Neutralization
precipitation Ca(OH)2

pH-2, 3.3 g/L
titanium oxide 96.75 [60]

3 Red mud leachate Dual-stage successive
precipitation Dibasic phosphate - ScPO4 [65]

4 Synthetic scandium
solution -

sodium
fluoride,

ammonium
hexafluoroscandate
at molar ratios of F

to Sc within
1–14

- ScF3, Na3ScF6, and
Na(NH4)2ScF6

[139]

5 H2SO4 leachate of
bauxite

Triple-stage successive
precipitation

NH4OH
NH4OH

(NH4)2HPO4

pH-3.3–3.4
pH-3.6–3.7
pH-2.5–2.6

65% ScPO4 [140]

6
Strip liquor containing
0.2 wt% Sc and minute

impurities

Cooling crystallization
Anti-solvent crystallization

-
Ethanol

1 ◦C
Ethanol-to-strip

liquor volumetric
ratio of 0.8

(NH4)3ScF6 < 50%
98% [142]

7

Ammonium scandium
hexafluoride from

solvent extraction strip
liquors

Anti-solvent crystallization Ethanol

Solvent to
anti-solvent

volumetric ratio of
1:1 ethanol

conc of 8.6 mol/L

98% purities greater
than 98.3% [143]

8 Nickle leachate Neutralization and sulfide
precipitation - pH > 4 - [144]

9 Tungstenic slag Extraction H2SO4 - 94% ScCl3 [145]
10 Tungsten slag precipitation Oxalic acid - 85.2% [146]

8. Recent Scandium Case Studies

After discussing the unit operations for scandium recovery, we will discuss some
recent case studies on scandium recovery (Table 8). There are a number of projects dealing
with scandium recovery: the SCALE project, EU; the Nyngan project in New South Wales,
Australia; the polymetallic Elk Creek project in Nebraska; the polymetallic Owendale
Project in New South Wales; the polymetallic Sunrise Project in New South Wales; the
polymetallic SCONI project, Queensland; the Taganito high-pressure acid-leach nickel
operation, Japan; byproduct of alumina refining in the Ural Mountains, Russia; and devel-
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opment of scandium recovery as a byproduct of uranium production, in Dalur, Kurgan
region, Russia.

Table 8. Status of projects on scandium recovery.

S. No. Country Name of Project Primary Resource Status

1. Australia Nyngan scandium
project

Typical tertiary laterite
composed of limonites

and saprolites

The feasibility study concludes that the project
has the potential to produce an average of

37,690 kg of scandium oxide per year, at grades
of 98.0–99.9%

2. Nebraska, US EIK Creek Niobium
project Carbonatite rocks

The mine is expected to produce 168,861 t of
niobium in the form of ferroniobium, 3410 t of

scandium oxide and 415,841 t of titanium dioxide
over its operating life of 36 years

3. New South Wales,
Australia

Owendale scandium
project Platina resources

Stage one will produce 20 tons per annum (tpa)
of scandium oxide during the initial five years of
operation, while stage two will double the annual
production capacity to 40 t with the processing

plant upgrade

9. Environmental Risk Assessment

Extraction of REEs from their primary sources has led to severe environmental hazards.
Presently, scandium is mainly recovered as a byproduct from the processing of other metals
such as titanium dioxide, REEs and aluminum [12]. This makes the retrieval of scandium
technically challenging [12] and environmentally hazardous [91]. The Mountain Pass mine
in California, which controlled the global REE market for decades, was closed down in
2002 because of the pollution and environmental hazard it generated [146–148]. Similarly,
the REE sources in China have now raised serious health and environmental concerns, such
as emission of hazardous gases like H2S, HF and H2SO4 [149]. It also causes heavy metal
leakage to land groundwater as well as exposure to radioactive metals around the mining
sites [150]. Moreover, prolonged mining leaves fine dust particles suspended in the air,
long time inhalation of which gives rise to pneumoconiosis (black lung) [151]. The City of
Baotou, located near the Bayan Obo mine, had many pollution issues caused by mining and
nearby processing of REEs. The Chinese government has therefore closed many facilities
as well as limited production based on the environmental damage [152].

LCA is a source-to-grave and, sometimes, especially with recycling units, source-to-
source investigation techniques to evaluate environmental impacts accompanying all the
stages of a product’s life from raw materials to its distribution or recycling. It can assist
decision makers to implement the means needed to improve the sustainability performance
of the unit [152]. In short, LCA provides a complete outlook of the environmental effects
caused over the entire life cycle of the product. It starts from raw material extraction
and attainment, followed by manufacturing, transportation, supply, maintenance, reuse
and recycling, and disposal and waste management [153]. Major features of LCA are
that it avoids shifting environmental consequences from one geographical area, source
and stage to another. The four main stages of LCA are shown below in Figure 2 that
depicts the stages followed for life cycle assessment of any product. The first stage of
LCA analysis defines what part of the product’s life cycle will be used for analysis, thus
defining the boundary for the assessment. The second stage provides information about
the mass and energy flow across the set boundary in relation to raw materials consumed in
these processes. In this stage, details about the environmental impact in terms of energy
consumption, emission and interactions are also given. It serves as an inventory for impact
assessment in the next stage. In the third stage, the inventory formed in the previous stage
is analyzed in detail. Results in terms of indicators such as Human toxicity non-cancer
(HTNC), Global Warming Air (GWA), Eutrophication, Toxicity and others are studied in
detail for all impact categories. Every impact category is assessed in detail by weighing
and normalizing in the third stage. Once the assessment is over, interpretation of the
assessment is done in the fourth and final stage of LCA. It involves critically reviewing
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the data, understanding the sensitivity of the assessment and representation of the results.
Thus, with LCA, a map can be drawn between the environment burdens such as pollutants
and waste generated after each stage and the consumption of energy and raw material
for those stages individually. This will help in assessing the effect of the input and output
parameters associated with the particular product and the accompanying pathway for
the long-term sustainability of energy sources, human health, climate, biodiversity and
many more. Thus, LCA helps in identifying the most suitable pathway for a particular
product with the lowest environment burden. It generates a scope to identify the steps
and their alternative approaches to reduce the negative impacts on the environment. The
critical and specific nature of REEs, including scandium, demands an LCA to provide
proper guidance for industries to adopt more eco-friendly approaches for downstream of
the REEs. Many LCA studies have been done for accessing the environmental effects of
REEs [152,154–156]. However, the environmental effects of scandium have been specifically
studied only by Wang et al. [27]. From their study, it was concluded that HTNC and
GWA are the top two significant challenges of Sc2O3 production. Steam and oxalic acid
are the top two inputs with the greatest impacts on HTNC and GWA caused indirectly
during production stage. Thus, reduction in the consumption of the above two inputs
could reduce the overall impact associated with scandium mining. Moreover, use of
alternative reagents with lower environmental impact or reduction of the dosage could
be done to reduce the impact, were some of the suggestions provided. As scandium is
predominantly recovered from bauxite residues, LCA can provide a better outlook towards
its environmental effect. A recent LCA study was done by Joyce and Björklund [27] to
understand the environmental effect of recovering valuable metals from bauxite residue
with the primary goal of “Zero-Waste Valorization”. Few observations were made by
the authors, one of them was that the merging of technologies proved to be beneficial.
For instance, combination of valorization with pretreatment can lead to environmental
benefits. Moreover, modification and utilization of pathway residues for other purpose like
construction would also decrease environmental impacts. Another important parameter
pointed out was the incorporation of recycle and re-use of pathway reagents [156]. Thus,
the key of LCA analysis is the acknowledgement that simple parameters of the pathway
that may seem environmentally harmless in isolation can have major environmental impact
indirectly when used in the processing stages. Therefore, this analysis gives us a close
understanding of the process, different parameters and their effects on the environment.

However, since LCA analysis cannot be transferred to other sources or geographical
locations, it is very important to assess the environmental effect of other primary and
secondary sources as well. Moreover, process pathways associated with recycling and reuse
must be assessed to understand the effect on the ecology. The recycling source pathways
have many added advantages over virgin primary sources such as elimination of a number
of processes, which has been seen to significantly contribute to the environmental impacts
like ore mining, leaching etc. It also avoids undesirable byproducts which are fundamental
to mining from primary sources [157]. Despite all the benefits associated with recycling
as a source, it has not been explored properly for LCA to understand the environmental
impacts. As the burden of mining has caused enough environmental damage to date, it
is important to at least develop a Life Cycle Thinking (LCT) approach, with the initial
source being recycling of valuable and critical metals. It will provide better understanding
of the pathways and even give scope for the development of processes with a focus on
environmental benefits. This will help decision and policy makers to make the appropriate
decisions. It will further help to shift the burden of mining of major metal ores to valuable
and critical metals, improve the associated global economic market of these metals, reduce
the accompanying environmental effects, and provide a scope for more technological
advancements in that arena.
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10. Conclusions

New technologies involving the use of scandium is emerging with time. Over
the decades, the two main applications of scandium were in solid oxide fuel cells and
aluminum–scandium alloys. However, due to its unique physico-chemical properties,
scandium has sufficiently heightened its market demand with new applications in future
aircraft and automotive manufacturing. Globally, scandium is found across many nations
in the ores of other metals such as aluminum, uranium, tantalum and others. However,
the largest contributor of scandium is the reserve of Nb–REE–Fe in Bayan Obo, Inner
Mongolia, China, where it is generated from the REEs tailings as depicted in Figure 1. In
addition, scandium is largely recovered from aluminum ore (bauxite) processing waste
as a secondary source. However, due to the presence of other metals with similar geo-
chemistry as scandium, efficient recovery of the metal becomes quite challenging. Many
other sources have been identified but have not been explored, like electrical and municipal
waste. Hence, exploration of urban mining as a viable source for scandium recovery is
needed. Commercial recovery of scandium takes place following a number of different
types of hydrometallurgical processes. These hydrometallurgical processes add to the envi-
ronmental burden in the form of high energy consumption, utilization of toxic chemicals,
production of secondary toxic waste, etc. Hence, this review outlines the technological
advances over the decades across various hydrometallurgical separation processes stating
their pros and cons as well as advantages of one process over another. An attempt has
been made to identify some suitable advances based on their reduction in environmental
damage and high scandium recovery efficiency. Since there are few discussions of the envi-
ronmental impact of the technical advances in literature, it is hard to analyze and state their
overall impact on the environment when applied for commercial recovery. As reported and
discussed, there has been very limited studies on the environmental impact of commercial
scandium recovery but they clearly shows that, the beneficiation and hydrometallurgy
steps in the process contributes major burdens on the environment primarily because of low
concentrations of scandium and the presence of high concentrations and numbers of impu-
rities. Hence, it is important to identify and explore alternate sources as well as alternate
hydrometallurgical processes that can lead to the reduction of the burden and impact on the
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environment. Moreover, there is a huge gap and lack of attention towards the analysis of the
environmental impact of scandium production from different available sources following
different pathways. This could help in getting a clearer comparison and understanding of
the relationship between the processes and the environmental burdens generated by them
so that further studies could be done to reduce the environmental burden.

11. Understanding and Future Direction

The review presented here has been prepared with a goal of giving readers an un-
derstanding of the roots of the environmental burden caused by scandium production.
There are few studies that discuss the environmental impact of scandium recovery from
different sources. The authors have tried to summarize that information that is available.
It is very well understood that scandium is associated with REEs and other metals when
it is recovered from primary, secondary or tertiary sources; and, since the percentage of
scandium is very low compared to other metals, its recovery has become expensive, chal-
lenging and environmentally hazardous. Thus, the removal of other metals along with
efficient recovery of scandium is most important parameter that can help in reduction
of environmental burden. There have been many technological advances. The authors
have outlined the advancements made over years in different areas of technology with a
focus on the enhancement of recovery efficiency of scandium. Each process discussed has
been outlined with the associated benefits and limitations for the readers to understand
and take up research in the unexplored areas that can benefit both the economy and the
environment. For example, few studies have been done on the recovery of scandium from
electronic waste. This source can be explored, as it will promote recycling as well as reduce
the mining burden to some extent. Moreover, more exploration of bioleaching, biosorption,
solid extractants and other methods with the aim of high selectivity for scandium needs
to be done. Additionally, the unavailability of many studies on the life cycle assessment
of scandium from different types of sources, very well reflects the lack of environmental
awareness linked with scandium recovery. Therefore, more research needs to be done in
this area to truly understand the role of the source and the processing pathway followed for
scandium recovery. Thus, we will have a better idea of the direction to work in to achieve
the goal of eco-friendly processes and sustainability.
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