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Abstract: The soil organic carbon (SOC) depth profile provides information for many applications,
including monitoring climate change, carbon sequestration, reforestation, and land erosion. Models
of the SOC profile support data interpolation, trend analysis, and carbon mapping, and can be used
in larger pedometric models in support of carbon farming. Model errors may be due to statistical
variability in discrete data and the limited sample size available for model calibration. Uncertainties
in the model can arise from a process of iterative parameter adjustment and can be estimated by
gradient-based methods or probabilistic methods. A comparison between Frequentist and Bayesian
approaches to the construction of regression-based models revealed that the results were very similar
when used for calibrating a model for the SOC profile. The model was applied to four representative
regional sites in Victoria.

Keywords: climate change; carbon sequestration; environmental monitoring; uncertainty; regression
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1. Introduction

Soil organic carbon (SOC) is an important property of soil that generally decreases
with depth. Understanding the nature of SOC stores in the soil and the changes over time
is a subject gaining increasing attention in the contexts of sustainability, climate change,
carbon sequestration, and landscape management [1]. The estimation of SOC profiles is
relevant to monitoring soil condition and land use change over space and time, and for
monitoring climate change and the design of sequestration strategies, as soils are both a
source and sink of CO2. Recent research has revealed that soils may release more CO2
than originally expected as deeper soil layers are affected by global warming, leading to
increasing estimates of emissions by as much as 34 to 37 percent over non-warmed soil [2].
The Victorian Government website lists 70 links to references on soil carbon and emissions
(https://agriculture.vic.gov.au/climate-and-weather, accessed on 25 October 2022).

In the context of the modelling and simulation of the SOC profile depth, errors in a
model can be due to parameter uncertainty, but also includes model structure adequacy,
measurement errors, and a variety of epistemic uncertainties that have been identified [3,4].
Statistical uncertainty is not just due to measurement error recorded from in situ exper-
imental replications, but also includes limited sample size and variability in the model
inputs and parameters. Error propagation may be important in large and complex systems
as represented by soil attribute models, and ecosystems [5–10].

The aim of this pilot study was (a) to compare Frequentist and Bayesian approaches
when applied to a simple power law model for the SOC depth profile using representative
field data from regional Victoria, and (b) to fit the power law model to SOC profiles to four
regional locations with different soil types to evaluate performance.
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2. Materials and Methods
2.1. Bayesian Regression

In model calibration, the coefficients of an arbitrary non-linear model are adjusted in
order to minimise the difference between model predictions and experimental measure-
ments, i.e., to minimise the objective function, S(θ1,θ2), which is the sum-of-squared errors
between model predictions, fi (θ1,θ2), and experimental values, yi, as follows,

S(θ1, θ2) =
n

∑
i=1

(yi − fi(θ1, θ2))
2 (1)

Probabilistic methods for calibration offer an alternative to deterministic error minimi-
sation procedures based on gradient (calculus) approaches, mainly because they incorporate
more detailed treatment of uncertainty.

The Bayesian Inference approach combines Bayes Law with Monte Carlo simulation
in a process known as Markov Chain Monte Carlo (MCMC) simulation, where sampling is
carried out iteratively from probability distributions [11,12].

The prior information provided for the parameters or inputs may be realistic estimates
of lower and upper bounds, or the nature and shape of the probability distribution, or both,
insofar as this information aids in defining the feasible parameter space θ ∈ <n [13].

The Bayesian approach is described by the following brief review of the defining
equations. Using the formalism of [14], given p model parameters, θ :

(
θ1, . . . , θp

)
with

prior information, and a set of observations on the p parameters, x : (x1, . . . , xm), the
dependence of the observations on the parameters is expressed by the likelihood function,
p(x|θ), or L(θ|x), and the posterior probability distribution of the parameter, θ, given the
observed data, x, as follows [14,15],

p(θ|x ) = p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

(2)

noting that θ is a random variable representing the parameter, where the x represents the
observed data, p(θ|x) is the posterior distribution, and p(θ) is the prior distribution.

The likelihood function may have uncorrelated normally distributed residuals, with
variance σ2; i.e., the general form for the computation is along the following lines for
parameter θ,

p(x|θ) ≡ L(θ|x1, . . . , xm) =
m

∏
i=1

fx(xi|θ ) (3)

where L(θ|x1, . . . , xm) is the likelihood function, which is defined as follows,

L(θ|x1, . . . , xm) =
m

∏
i=1

1√
2πσ2

exp

[
− (xi − xi(θ))

2

σ2

]
(4)

where the Box–Cox transform is used to ensure the residuals follow the normal probability
distribution [16].

The posterior parameter distribution, p(θ|x) , is estimated by the method of Markov
Chain Monte Carlo (MCMC) simulation, using sampling schemes based on the Metropolis–
Hastings or Gibbs algorithms [11,17].

2.2. Deterministic Error Analysis

For parameter estimation in regression models, there is the problem of error propaga-
tion between inputs and outputs. The error, σ, is a classical measure of uncertainty and
for deterministic models can be estimated by differential calculus. For fixed coefficients in
a mathematical model or equation [18], the predictive model y = f (x) is a mapping in the
real domain f: <n → < for an n-dimensional input such that the inputs or parameters are
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a multi-dimensional quantity. If the function is smooth, continuous, and differentiable, the
Taylor series approximation to the function y is

y(x) ∼= y(x0) +
n

∑
i=1

[
∂ f (x0)

∂xi

]
(xi − xi0) (5)

where the variance, σ2(y), is given by

σ2(y) =
n

∑
i=1

[
∂ f (x0)

∂xi

]2
σ2(xi) (6)

The contributions to output error from the inputs are weighted by their partial deriva-
tives. A covariance term is added if there is correlation between variables [18–21].

Some disadvantages of the differential approach are that the approximation breaks
down when the function contains discontinuities, step functions, undefined points or
regions, or conditional logic branches. Furthermore, only first- and second-order moments
of the output distribution are produced, not the entire probability distribution. The normal
approximation for the error distribution is assumed.

An uncertainty metric often used is the normalised standard deviation, i.e., the coeffi-
cient of variation, CV, where the ratio is the relative or normalised error (standard deviation)
adjusted for the magnitude of input [22]. The gain factor, G, for uncertainty propagation is
the ratio of the output CV to the input CV,

G =
CVoutput

CVinput
where CV =

σ(X)

X
(7)

The gain, G, is a metric for the magnitude of error propagation through the model.

2.3. SOC Depth Profile

In pedology, assessment of soil organic carbon (SOC) stocks is important for many
reasons, including monitoring climate change and the design of sequestration strategies,
as soils are both a source and sink of CO2. Assessment of SOC stocks are also relevant to
monitoring soil condition and land use, and management of change over space and time.
Estimates of SOC are subject to uncertainty and increasingly there are efforts to quantify
errors in estimates under different conditions [23–26]. One approach is to calculate SOC
stock by a relationship such as the following,

y = f (x) =
x1x2x3(1− x4)

100
(8)

where y is the SOC stock (t C ha−1), x1 is the SOC depth profile (m), x2 is SOC concentration
(g C kg−1), x3 is bulk density (kg m−3), and x4 is proportion of large fragments (rock) and
is dimensionless [27].

Examination of empirical data collected in this study suggested that a power law model
may be an adequate model for representing the soil organic carbon depth profile, especially
in south-eastern Australia. This finding was consistent with another study that also found
that soil organic carbon levels varied according to land use, being lowest in farmland and
higher in woodland [28]. Below 60 cm, the differences between land use categories were
smaller, as the carbon content is determined mainly by the root system distribution. In each
case, the measured data in their study indicated a monotonically decreasing function with
sampling depth that could be approximated by a power law model.

Uncertainty can be quantified by first-order differential error analysis (Equation (6)),
or Monte Carlo simulation, assuming no significant correlation between the variables.
Recently, different researchers [27,29] studied the problem of correlation between variables
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and included the covariance terms in the Taylor series approximation (Equations (5) and (6).
This results in the following expression for variance in the case of Equation (8),

σ2(y) =
n

∑
i=1

[
∂ f (x0)

∂xi

]2
σ2(xi) + 2

n

∑
i=1

n

∑
j=i+1

[
∂ f (x0)

∂xi

][
∂ f (x0)

∂xj

]
Cov

(
xi, xj

)
(9)

Consistent with the notation in this paper, the sum of variances and covariances for
the SOC stock estimate [27] can now be expressed as follows,

σ2
y ≈

[
σ2

x1
x2

1
+

σ2
x2

x2
2
+

σ2
x3

x2
3
+

σ2
x4

(1−x4)
2 + 2

σx1x2
x1x2

+ 2
σx1x3
x1x3

+ 2
σx2x33
x2x3

−2
σx1(1−x4)
x1(1−x4)

− 2
σx2(1−x4)
x2(1−x4)

− 2
σx3(1−x4)
x3(1−x4)

]
y2

(10)

where the first four terms are the variances, and the remaining six terms are the covariances.
One researcher [27] noted that covariances are often not included in such assessments, with
only the simplified form of the delta rule being used [29]. In this paper, the interest is in the
SOC depth profile given by x1 in Equation (8) and we also assume negligible correlation
with the other variables.

3. Results

This section provides a concise description of the experimental results, their interpre-
tation, as well as the experimental conclusions that can be drawn.

3.1. Deterministic Regression Model

The decrease in SOC content with the soil depth variable, x1, is depicted by the
scatterplot in Figure 1. The scatterplot shows data for SOC, from samples taken in 1972 and
2011 in south-western Victoria and analysed for temporal variability using the published
Walkley–Black method [30]. From empirical studies by the authors using Victorian data on
carbon depth profiles, the relationship follows the general form of a power law (also later
supported by [28]). That is, for a specified set of conditions, one can express y as the level
of SOC at depth x1, such that

y = f (x1) = θ1x1
−θ2 (11)

Power law functions are used to model many natural processes and are distinguished
by their scale invariance, which is the reason for their central role in, for example, fractal
analysis (note that the model is described by the scale parameter θ1, and the shape parame-
ter θ2). Applying Equation (6) to Equation (11) for differential error analysis together with
algebraic manipulation results in

σy

y
= θ2

σx1

x1
(12)

or, expressed in the form of the uncertainty transfer function approach,

CVy = θ2CVx1 (13)

from which it is evident that the shape parameter θ2 alone determines the magnitude and
amplification factor for the transfer of uncertainty from input to output in the model.

With respect to the difference in the two scatterplots in Figure 1, one may assess the
significance by using the parametric paired t-test for observations with the null hypothesis
H0: µ1 − µ2 = µD [22]. A two-sided test produced borderline significance for µD (p = 0.015)
with 95% CI = [0.03648, 0.2480]. The application of the Wilcoxon non-parametric paired
test also reveals no significant difference between the two profiles for a two-sided test.
These results suggest that over the period between sampling, the statistical difference in
the profiles may not be significant.
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Figure 1. Soil organic carbon content (SOC) as a function of soil depth in 1972 and 2011 in a designated
sample site in south-western Victoria.

There may be additional uncertainty introduced when a predictive model is con-
structed based on least-squared error analysis using a scatterplot of data. The curve fits
in Figure 1 were completed using a standard spreadsheet function (Microsoft Excel 2003),
based on classical regression analysis, assuming no significant error in the independent
variable. In addition, the data was fitted a second time, more accurately, by non-linear
regression analysis using the Levenberg–Marquardt technique for error minimisation [31].

The scaling parameter was determined as θ1 = 6.925, the shape parameter as θ2 = 0.7729,
and the regression statistics as: r2 = 0.9977, d.f. adjusted r2 = 0.9969, fit s.e. = 0.0291, s.e.
(θ1) = 0.2352, s.e. (θ2) = 0.01512, and F-value = 3025.5. The analysis was repeated for
the 1972 dataset, with the scaling parameter determined as θ1 = 5.329, the shape param-
eter as θ2 = 0.7729, and the regression statistics as: r2 = 0.9786, d.f. adjusted r2 = 0.9715,
fit s.e. = 0.0701, s.e. (θ1) = 0.5663, s.e. (θ2) = 0.04734, and F-value = 320.2. (Note: d.f.
adjusted r2 = (1 – SSE × (n − 1) / SSM × (df − 1)), which follows Equation (12) in [32].)

The confidence intervals for the parameters for the 2012 data were also computed as
95% CI (θ1) = [6.367, 7.484], and 95% CI (θ2) = [0.737, 0.809], and for the 1972 data as 95%
CI (θ1) = [3.984, 6.673], and 95% CI (θ2) = [0.661, 0.885]. The experimental results reveal
that the shape parameter, θ2, has increased slightly the magnitude of error propagated,
in contrast to the use of the error-free value of θ2. This example illustrates the point that
model fitting to a scatterplot, by regression analysis, may add regression error to the total
error propagated through the model. In addition, the variability in the output (CVy) is 77%
of the variability in the input (CVx1) due to the compressive effect of the model structure
during error propagation.

Note also, from the plot in Figure 1, that the older 1972 plot is nearly a lateral translation
of the 2011 plot, indicating a lower level of carbon at the various depths in 1972 (The
exception is at the 5 cm depth for the older data, where there is a single anomalous point,
which may be an artefact—an observation supported by a visual inspection of the trend
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line and scatterplot). This result suggests that the underlying physical processes involved
in the carbon attenuation with depth have not changed significantly over time.

3.2. Comparison with Bayesian Regression

The power law fit can also be estimated within a Bayesian framework, where the
parameters are represented as probability distributions rather than point estimates [33]. In
this approach, the parameter distributions are determined using Bayes Law, combining
field measurements with prior information available on the parameters [15,34].

The Bayesian regression approach was applied to the power law, with a total of
10,000 trials for the burn-in period and 100,000 trials for the simulation. An uninformed
prior (i.e., initial uniform distribution) was used together with the Gibbs sampling scheme.
The determination of the coefficients for the power law model showed strong agreement
between the Levenberg–Marquardt (LM) error-minimisation scheme and the Bayesian
regression, as can be observed in Figure 2 and Table 1. The fit standard error for the LM
method was 0.029 (2011 SOC data) and 0.070 (1972 SOC data).
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Figure 2. Levenberg–Marquardt error-minimisation regression model vs. Bayesian regression (MCMC)
shows good agreement in SOC model predictions using the power law function.

Table 1. Comparison of Frequentist and Bayesian regression results for parameter uncertainty for
SOC depth profile (based on parameters θ1 and θ2 in the Power Law function).

Date Parameter Frequentist Bayesian Excel 2003

(Year) (Levenberg–Marquardt) (MCMC) (Transform)

2011
θ1 6.925 6.948 7.241
θ2 0.773 0.774 0.789

1972
θ1 5.329 5.518 8.435
θ2 0.773 0.787 0.936

The scatter point at a 5 cm depth for the 1972 legacy data appears to have affected
the results for the LM method. In contrast, the Bayesian posterior standard deviations for
the model output were 0.036 (2011 SOC data) and 0.032 (1972 SOC data). The Bayesian
approach is more conservative in comparison with respect to the more recent, higher
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quality, 2011 SOC data. This is explained by different definitions on uncertainty intervals
and modelling assumptions (e.g., treating the parameters as distributions rather than fixed
values and constraint relaxation with respect to the normal distribution).

Frequentist and Bayesian regression approaches produced strong agreement in the
determination of the model coefficients for the power law. The uncertainty intervals, how-
ever, in the model outputs are slightly different, being more conservative in the Bayesian
case due to different parameter definitions and assumptions in the analysis.

3.3. Application to Regional Data

The power law function represented by Equation (11) was applied to new data from
four locations in regional Victoria, each with a different soil type. The scatterplots were
fitted using the standard regression modelling function using the Excel spreadsheet option
and the results are depicted in Figure 3a–d. All four locations and soil types yielded
very good fits to the model: namely, Wimmera: Vertosol, r2 = 0.86773; Boorook: Sodosol,
r2 = 0.9913; Girringurrup: Dermosol, r2 = 0.9169; and Wangerrip: Rudosol, r2 = 0.6825.
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Figure 3. SOC models: (a) Vertosol profile (site A978) from the Wimmera; (b) Sodosol profile (site 485)
from Boorook (south-western Victoria); (c) Dermosol profile (site 488) at Girringurrup (south-western
Victoria); (d) Rudosol profile (site OTR426) from Wangerrip (Otway Ranges). Note that SOC models
are presented with axes (x and y) reversed for display purposes.
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All four results have correlation coefficients that are statistically significant relative
to the sample size (p < 0.05). Visual confirmation of all scatterplots confirmed very good
fitting performance.

4. Discussion

The level of organic carbon in soil has a significant impact on soil health and the health
of landscapes and catchments. It is now recognised that the exchange of carbon between
the atmosphere and soil is an important aspect of the global carbon cycle. Carbon levels
in the soil can be affected by bushfires, grazing animals, and large-scale deforestation.
More specifically, soil carbon content can be increased by decomposing organic matter
from plants and animals and also biochar. Declines in the historic levels of SOC have
often been caused by the mismanagement of agricultural systems, such as over-grazing
or over-harvesting, and the effects of pollution. The organic carbon present in the soil can
vary considerably, from peaty soils where organic carbon can be greater than 10%, to less
than 1% in heavily tilled dryland soils [35]. Increases in organic carbon can have important
benefits to the physical, chemical, and biological function of the medium that may extend
deeper into the profile for perennial pasture or high rainfall settings [36]. Knowledge of the
organic carbon content at depth can also be important for understanding nutrient cycling
and balances and primary productivity [37].

There is continuing research on the strategy and effectiveness of sequestration of
atmospheric carbon dioxide in soil to mitigate the effects of climate change. Soil organic
matter cycling depends on the soil type, climate, and farm management, with rainfall as an
important driver of plant growth, and the subsequent decomposition of organic matter in
the soil (see https://www.agric.wa.gov.au) (accessed on 25 October 2022). Different types
of soil organic matter (e.g., particulate, humus, resistant, or dissolved) can change at various
rates, also known as turnover time [37]. The organic matter in the soil cycles constantly
between living, decomposing, and stable proportions where various microorganisms digest
most of the organic carbon in the soil, transferring the carbon back into the atmosphere as
carbon dioxide [36].

The SOC depth profile model provides a tool and metric for the assessment of the
levels of subsoil organic carbon, over time and space, subject to different soil properties and
environmental conditions. A regression model of the SOC depth profile enables predictions
at different depths of interest for which measurements were not available and is a means of
monitoring over time to compare various mitigation strategies.

The SOC depth profile may vary at different locations subject to several factors, such as
the type and density of vegetation and various biochemical processes occurring at different
soil depths (such as at the root zone).

For the power law model, both classical regression analysis and Bayesian regression
produced coefficients and model fitting accuracy with good agreement. The uncertainty
intervals were similar in the case of the 2011 data, with the Bayesian model being slightly
more conservative. For the 1972 data, fitting accuracy was again similar, but the uncertainty
(fit standard error) was less using Bayesian regression.

The advantage of model fitting by deterministic regression is that it is in widespread
use. However, the treatment of uncertainty in estimates is more limited when compared
with Bayesian approaches [10,11,31]. Probabilistic regression using Bayesian inference
allows for incorporating uncertainty analysis in the parameter estimation and the possibility
of providing prior information, such as error distributions for the parameter’s initial
estimates [11–15].

A disadvantage of Bayesian regression is the approach is much more computationally
intensive and, in some applications, prior information based on expert opinion has been
described as subjective by frequentist statisticians. Although the differences in uncertainty
estimation were not very great for the more modern 2011 data, the Bayesian approach has
potential in that it can be developed further to include epistemic uncertainty in the inputs
in a systematic manner (using probability distributions rather than fixed values).

https://www.agric.wa.gov.au
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With respect to error propagation, the results have the following salient features:

(a) When the power law model is used with error-free coefficients, the transfer of un-
certainty (σ or CV) is entirely determined by the exponent, i.e., the coefficient θ2 as
demonstrated mathematically by differential error analysis.

(b) If a model is fitted to the scatterplot by regression, there is added uncertainty due to
errors in the estimation of the coefficients. Once again, only the shape coefficient θ2
for the power law model matters and not the scaling coefficient, θ1. In the latter case,
only a translation is involved with the scaling coefficient, θ1.

There are several insights gained from this study. First, the power law model appears
to be appropriate to characterise the SOC profile of different soil types at different locations.
Second, a classical regression approach is sufficient for the purpose of parameter estimation.
Third, a frequentist approach provides good accuracy in estimates of the SOC profile
without undue computational expense. This is an important consideration for monitoring
by soil analysts for those who may not have the knowledge or software to carry out
Bayesian analysis.

In the case of routine sampling of SOC at regional locations, the SOC profile model
may be used to estimate SOC levels at depths not conventionally measured. For example,
the power law function could be used to estimate carbon concentrations at specific depths
that are important to researchers, such as 10cm or 30cm, at a large range of locations and so
provide three-dimensional maps that can be compared over time (four-dimensional).

A future challenge is to apply the model over as many regional locations and soil
types as possible and to check for changes in the profile over time, either in magnitude or
shape. This may provide evidence associated with the stability of soil organic carbon levels
in response to management or climatic impacts. The simplicity of the model allows for the
easy incorporation into larger models supporting climate change studies. For example, the
model may be used as a tool to compare interventions that may affect soil carbon storage,
such as reforestation potential.

5. Conclusions

Modelling the soil organic carbon profile was conducted using a power law fitted to
scatterplots of field data from different regional soil types in Victoria. The model calibration
was investigated using deterministic non-linear regression (Levenberg–Marquardt gradient
approach for error minimisation) and probabilistic regression in the form of Bayesian
inference (MCMC simulation). The results of this study support the hypothesis that (a) the
power law can be used for modelling the SOC profile for different types of regional soils,
and (b) the two calibration methods used are similar in accuracy.

The power law function for SOC depth profiles can be applied to the development
of 3D maps of the carbon composition in regional areas. The SOC model can also be
recalibrated over multiple time-steps to support studies in soil carbon change over time
and the sequestration performance evaluated for comparing reforestation strategies. The
Bayesian approach has greater computational expense and complexity but can incorporate
prior error distributions from previous analysis.
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