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Abstract: In order to meet the increasing capacity requirements, network operators are extending
their optical infrastructure closer to the end-user while making more efficient use of the
resources. In this context, long reach passive optical networks (LR-PONs) are attracting increasing
attention.Coherent LR-PONs based on high speed digital signal processors represent a high potential
alternative because, alongside with the inherent mixing gain and the possibility of amplitude and
phase diversity formats, they pave the way to compensate linear impairments in a more efficient
way than in traditional direct detection systems. The performance of coherent LR-PONs is then
limited by the combined effect of noise and nonlinear distortion. The noise is particularly critical in
single channel systems where, in addition to the the elevated fibre loss, the splitting losses should be
considered. In such systems, Kerr induced self-phase modulation emerges as the main limitation
to the maximum capacity. In this work, we propose a novel clustering algorithm, denominated
histogram based clustering (HBC), that employs the spatial density of the points of a 2D histogram
to identify the borders of high density areas to classify nonlinearly distorted noisy constellations.
Simulation results reveal that for a 100 km long LR-PON with a 1:64 splitting ratio, at optimum power
levels, HBC presents a Q-factor 0.57 dB higher than maximum likelihood and 0.21 dB higher than
k-means. In terms of nonlinear tolerance, at a BER of 2×10−3, our method achieves a gain of ∼2.5 dB
and ∼1.25 dB over maximum likelihood and k-means, respectively. Numerical results also show that
the proposed method can operate over blocks as small as 2500 symbols.

Keywords: passive optical networks; nonlinear compensation; clustering

1. Introduction

The popularization of mobile multimedia applications and cloud computing, in combination
with the emergence of the Internet of Things, is forcing telecommunications operators to increase
the data capacity they can offer continuously. In this scenario, optical fibre infrastructures are
progressively being extended, making them arriving closer to the end-user [1,2]. Among the different
alternatives, passive optical networks (PONs) have been extensively employed due to their low
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cost [3–6]. Given the lack of amplification, however, fibre loss usually limits the bandwidth length
product of these systems, especially when dispersion is compensated by predistortion techniques [7].
In order to extend the range of PON networks and, consequently, enable the resource concentration
and cost reduction, two main approaches are commonly considered. On the one hand is the use of
active splitting nodes that compensate the combined loss of fibre transmission and splitting [3,4].
This approach, nevertheless, makes the distribution network architecture more complicated and
hinders its maintenance, particularly in long reach (LR) PONs where the splitting node may be far
from urbanized areas. On the other hand, the advent of high speed digital signal processors (DSPs) has
enabled the implementation of cost efficient digital coherent receivers [6], which dramatically changed
the way about which high capacity links are thought. This inflexion point is not only due to the mixing
gain they offer, but also because they permit simultaneous phase and amplitude modulation and open
the possibility to compensate system impairments in a completely new and efficient way [8].

With linear impairments such as dispersion, phase noise, polarization fluctuation,
and polarization-mode dispersion elegantly compensated in the baseband electrical domain,
the interplay between nonlinear distortion and noise emerges as the main capacity limitation [9].
In single channel systems where the transmitted signal is broadcast to several users, the received power
is reduced compared to wavelength division multiplexed (WDM) systems where demultiplexers are
used and, consequently, the impact of the receiver noise is more critical. In regards to nonlinear
distortion, the Kerr effect is widely claimed as the dominant nonlinear effect in digital coherent
systems [10,11]. It is well known that the Kerr effect further leads to self-phase modulation
(SPM), cross-phase modulation (XPM), and four wave mixing (FWM) processes [12]. In the case
of multi-wavelength PON systems, it is expected that XPM and FWM will be the main nonlinear
degradation mechanisms, but for those systems operating with a single channel, the nonlinear
distortion is solely governed by SPM. SPM is particularly harmful in modulation formats with
non-uniform amplitude, for instance 16 quadrature amplitude modulation (16-QAM) [13]. Since SPM
causes a phase rotation that is proportional to the power of the symbol (φNL ≈ −γPLe f f , where γ is
the nonlinear coefficient, P is the symbol power, and Le f f is the effective fibre length), for moderate
and elevated launch optical power levels, the constellation points with higher amplitude suffer a
larger phase rotation than those with lower amplitude, leading to a characteristic spiral-like shape
constellation [14]. This rotation, nevertheless, cannot be completely corrected by a simple nonlinear
phase rotation because, even in a low dispersion regime, and the interplay of SPM and chromatic
dispersion leads to more complex distortion. This complex distortion can be understood by noting that
the pulse broadening caused by the chromatic distortion leads to word dependent behaviour through
intersymbol interference (ISI). Even if ISI can be efficiently compensated in the baseband domain by
DSP processing, the different superposed pulses are nonlinearly mixed through SPM. In addition,
the interaction between the linear and nonlinear impairments varies as the signal propagates through
the fibre. Thus, in the initial part of the fibre, the Kerr effect is significant, whereas the effect of the
ISI created by the chromatic dispersion can be neglected. At the end of the fibre, on the other hand,
the accumulated dispersion is high, leading to a significant ISI, but given the high transmission
loss, the Kerr effect is reduced. Both scenarios can be modelled relatively easily, the initial part by a
memoryless nonlinear phase rotation and the last part of the link by a linear time invariant system.
The intermediate part of the link, however, should consider the interaction between the two effects,
and therefore, it is complicated to model analytically.

Several nonlinear mitigation techniques have been proposed in recent years to overcome this
issue. Optical techniques, for instance mid-span nonlinear compensation [15], lack flexibility and
require a careful design of the distribution network, which is not possible in PON networks. In these
networks, electrical compensation techniques are preferable for their higher flexibility and adaptability.
Unfortunately, simple deterministic approaches based on non-uniform phase rotation cannot efficiently
compensate signal distortion as they neglect the effect of chromatic dispersion and the subsequent ISI.
More complex techniques, such as digital back-propagation (DBP) [16,17] and inverse Volterra series
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transfer function (IVSTF) based nonlinear equalization [18,19], were then studied to invert the dynamic
nonlinear time invariant behaviour of the fibre link. These techniques are capable of mitigating the
effect of the interplay between dispersion and nonlinear distortion, but suffer from a prohibitively
high computational cost, making real-time operation if not unfeasible, at least extremely challenging
and power consuming. In this scenario, machine learning emerges as a high potential set of tools to
analyse and process complex systems where analytical modelling is unfeasible or the computational
cost to solve it is excessively high [20]. Thus, several groups have proposed different machine learning
based approaches to overcome the degrading effect of nonlinear distortion in fibre communication
systems [21–24]. In [25–27], artificial neural networks were employed, whereas in [28] and in
[29,30], support vector machines (SVMs) were proposed. These approaches present a good nonlinear
compensation performance, but are all supervised and, consequently, require the transmission of
a training sequence that reduces the effective data throughput. Unsupervised machine learning,
for instance clustering, on the other hand, does not require any training sequence, but learns
from the received dataset. Among the proposed clustering algorithms, k-means is by far the most
popular due to its simplicity, its convergence speed, and robustness [31–34]. In k-means, however,
each cluster is represented by a centroid, and the decision regions are limited by straight boundaries,
which may not be optimal for constellations strongly affected by SPM. In order to find decision
regions adapted to arbitrarily shaped clusters, other clustering algorithms have been proposed: In [35],
clustering based on affinity propagation was reported. Density based spatial clustering of applications
with noise (DBSCAN) has also been applied successfully to improve the performance of systems
affected by the combined effect of noise and nonlinear distortion [36]. In [37], classification based on
expectation maximization was successfully employed to combat the effect of nonlinear phase noise.
These algorithms, however, suffer from heavy computational cost, and their performance strongly
depends on the tuning parameters. In DBSCAN, for example, it is necessary to set the values of the
parameters ε and kmin that correspond to the radius of the area and the minimum number of points in
this area, respectively.

In this paper, we present a novel clustering algorithm denominated histogram based clustering
(HBC) that partially mitigates the effect of nonlinear phase noise caused by SPM. The proposed
approach is a density based clustering algorithm that assigns to a received symbol the class of the
closest high point-density region. This is different from other clustering algorithms as k-means,
which neglects any density information, or expectation maximization, which estimates the point
distribution as a mixture of Gaussian distributions. Compared to the main density based clustering
algorithm, DBSCAN, it does not require the setting of ε and kmin; it is able to find the best point
density value automatically to have the desired number of clusters. In addition, the adopted solution
is not iterative and leads to deterministic complexity. The rest of the paper is organized as follows:
Section 2 explains the proposed clustering algorithm. In Section 3, the simulation setup is described,
while in Section 4, the results of applying HBC to an LR-PON network are presented and discussed,
paying attention not only to its performance, but also to the required block size. Section 4, finally,
concludes the paper.

2. Histogram Based Clustering

Figure 1 shows the flow diagram of the proposed HBC algorithm. For the sake of illustration,
we employed 10,000 16-QAM symbols that were obtained by applying an amplitude dependent
nonlinear phase rotation (∆φ[n] = 3A2[n], where A[n] is the amplitude of the symbol) and including
complex additive noise with a signal-to-noise ratio (SNR) of 20 dB. It is worth noting that this
simple model was employed only for demonstration purposes because by neglecting the intersymbol
interference, the model did not accurately represent the system. In the next section, we will describe
the model used to consider simultaneously nonlinear and linear effects that result in more complex
symbol distributions. The resultant constellation is shown in Figure 1a. The histogram of the
unlabelled symbols was calculated, in this case, using 40 bins in the in-phase and quadrature directions,
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resulting in the contour plot presented in Figure 1b, where the 16 clusters can be clearly identified.
Once the histogram was calculated, the lowest value contour line led to the desired number of clusters,
16 in the case of 16-QAM. The value of this contour line represents the optimal point density. A lower
point density does not allow the correct recovery of all the clusters, while a larger value results in a too
conservative criterion that leads to poorer performance, as the decision regions are not well matched
to the data. This optimal density searching mechanism is, indeed, one of the main advantages over
other density based clustering algorithms, such as DBSCAN. In fact, DBSCAN is intended for data
clustering where the number of clusters is a priori unknown and the minimum density of clusters is
fixed through the values of ε and kmin. This was not our case, where the number of clusters was known
and the minimum density was dependent on the distortion and, therefore, also on the launch power
level. The determined cluster borders are superimposed on the histogram in Figure 1c, showing that,
especially the constellation points with stronger distortion, those in the periphery, the boundaries of
the different clusters were closer to each other. After finding the cluster boundaries, each cluster was
identified by the points that formed its boundary instead of a centroid as in k-means. Figure 1d shows
the boundaries of the different clusters on top of the received constellation, where it can be clearly
seen that the obtained cluster boundaries encompassed most of the points of their respective clusters.
Once the boundary points for each cluster were found, the distance from each received symbol to
them was calculated, and the class of the boundary point with the shortest distance was assigned to
the symbol. The classified constellation is shown in Figure 1e.
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Figure 1. Flow diagram of the proposed clustering algorithm. (a) Distorted input 16-QAM
constellation. (b) Calculated 2D histogram. (c) Optimum boundaries superimposed on the 2D
histogram. (d) Boundaries for each cluster on top of the received distorted constellation. (e) Classified
constellation.

In a systematic way, the proposed HBC algorithm consisted of the following four steps:

1. Calculation of the 2D histogram of the in-phase and quadrature components of the NS received
distorted symbols.

2. Find the lowest contour line in the histogram that results in M isolated islands, M being the
number of clusters to be identified.

3. Assign a class ID to the values of the boundary for each island.
4. For each received symbol, find the closest boundary point and associate it with its class ID.
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3. Simulation Setup

The performance of the proposed HBC algorithm was assessed employing the simulation setup
presented in Figure 2, where the electrical modulation and demodulation tasks were implemented in
MATLAB, while the conversion between the electrical and optical domain, as well as the transmission
through the passive distribution network were carried out in VPI Transmission Maker.

On the transmitter side, a 1 mW power continuous wave (CW) laser diode (LD1) operating
at 1550 nm was externally modulated using a dual parallel Mach–Zehnder modulator (DP-MZM)
driven by the in-phase and quadrature components of a 56 Gbps 16-QAM signal filtered by a fourth
order Bessel filter with a bandwidth of 10.5 GHz. The modulated optical signal was then amplified
by an erbium doped fibre amplifier (EDFA), and a variable optical attenuator was used to vary the
launch optical power between 2 and 12 mW. Since the output power of the EDFA was fixed, the noise
amplified spontaneous emission (ASE) noise added by the amplifier remained constant. Furthermore,
given the relatively low gain of the amplifier, the signal-ASE beating at the output of the receiver was
negligible compared to the receiver noise.

The distribution network was simulated using a first span of standard single mode fibre (SSMF)
that had a length of 80 km, a one-to-64 splitter (emulated by an 18 dB attenuator), and a second SSMF
span with a 20 km length.

The coherent receiver was formed by an optical front-end where the state of polarization of the
received signal was first controlled using a dynamic polarization tracker (DPT), which made the
signal polarization match that of the local oscillator. The signal was then combined in a 90◦-hybrid
network with a 1 mW power CW laser (LD_2). The combined signals were photodetected and
filtered before being differentially amplified. Analogue-to-digital conversion (ADC) was emulated
by downsampling the signal to four samples per symbol, after which frequency domain chromatic
dispersion (CD) compensation was performed. Afterwards, the synchronization of the signal was
performed by the cross-correlation maximization method using an alternated synchronization sequence
of 64 symbols. In order to reduce the overhead, this synchronization sequence was also employed for
amplitude scaling and initial phase synchronization. After CD mitigation, synchronization, and scaling,
the signal underwent a second downsampling process in order to get a single sample per symbol.
Phase noise correction was performed by blind phase search operating on 32 symbol blocks [38].
In our simulations, we did not consider polarization mode dispersion (PMD) because, in contrast to
CD, it does not significantly interact with nonlinear distortion and could be satisfactorily compensated
in variable envelope modulations using, for example, the multiple modulus algorithm (MMA) [39].
The distorted constellations were then processed using the proposed HBC algorithm. For comparison
purposes, we also present results considering maximum likelihood, as well as k-means, which are
considered as benchmarks for linear and clustered detection, respectively.

Regarding the performance metric, we adopted the bit error rate (BER), which taking into
account the lack of Gaussianity of the constellation point distribution, had to be estimated by error
counting. In addition, we calculated the equivalent Q-factor derived from the BER according to:
Q =

√
2 · er f c−1(2BER), where er f c−1 denotes the inverse complementary error function.

Table 1 lists the most important simulation parameters.
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DAC: digital-to-analogue converter. LD: laser diode. DP-MZM: dual parallel Mach–Zehnder modulator.
EDFA: erbium doped fibre amplifier. VOA: variable optical attenuator. SSMF: standard single mode
fibre. DPT: Dynamic polarization tracker. LPF: low pass filter. ADC: analogue-to-digital converter.



Appl. Sci. 2020, 10, 152 6 of 14

Table 1. Parameters used in the simulation.

System Parameters
Laser linewidth 0.5 MHz Fibre lengths (L1,L2) 80 km, 0–20 km
Laser power 1 mW Fibre attenuation 0.2 dB
MZM insertion loss 6 dB Fibre chromatic dispersion 16 ps/nm/km
Amplifier gain 20 dB Fibre PMD 3.16 fs/

√
km

Amplifier noise figure 4 dB Nonlinear coefficient (γ) 1.3·W−1·km−1

Attenuator 20 dB Fibre effective area 80 µm2

PD thermal noise density 10 pA/
√

Hz Electrical filter bandwidth 10.5 GHz
PD responsivity 1 W/A Electrical RX filter order 4

Signal parameters
Modulation format 16-QAM No. of synchronization symbols 64
Electrical TX filter 4th-order Bessel Bit rate 56 Gbps

Simulation parameters
Number of simulated symbols 16,384 Sampling rate 8.96× 1011 s−1

4. Results and Discussion

4.1. Performance Analysis

In order to analyse the performance of the proposed HBC algorithm, in Figure 3a,b, we show the
BER and the corresponding Q-factor at launch optical powers ranging from 2 to 12 mW for the three
different approaches: maximum likelihood detection, clustering using k-means, and the novel HBC
algorithm. At low power levels, the performance of all three techniques improved (BER reduced and
Q-factor increased) as the launch optical power was increased, which made sense since the additive
noise of the photodetectors was dominant.

For high power levels, on the other hand, Kerr induced SPM was the main physical impairment,
and consequently, increasing power led to higher BER and a lower Q-factor. Comparing the
performance of maximum likelihood with k-means and HBC, it was clear that all of them converged
for a low power level, while the latter two presented improved performances for high power levels.
This was an indicator that k-means and HBC were indeed compensating nonlinear distortion and not
any linear impairment such as residual phase noise or chromatic dispersion. These two clustering
algorithms, however, showed different performances, for both medium and high power levels. It can be
clearly observed that HBC outperformed k-means for launch optical powers above 5 mW, revealing that
HBC could mitigate nonlinear distortion more efficiently than the traditional k-means clustering. As a
result, the best achievable BER was reduced from 1.1× 10−3 when using maximum likelihood and
0.8× 10−3 when employing k-means to 0.6× 10−3 in the case of HBC (orange polygon of Figure 3a).
Regarding the Q-factor, numerical results showed an improvement of 0.53 dB with respect to the
optimum performance of maximum likelihood and 0.23 dB when contrasted with the optimum of
k-means (orange polygon of Figure 3b). The Q-factor enhancement was higher if, instead of comparing
optimum performances, we looked at a fixed power level in the nonlinear regime. Thus, for 10 mW,
HBC outperformed k-means by 0.51 dB and maximum likelihood by 1.22 dB (purple polygon of
Figure 3b). Additionally, the optimum launch optical power where the trade-off between noise and
SPM was held shifted towards a higher power level, from 5 mW in maximum likelihood to 6 and
7 mW for k-means and HBC, respectively.
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Figure 3. Performance of the proposed. HBC compared to that of maximum likelihood and k-means in
terms of (a) BER and (b) effective Q-factor derived from BER. (c,d,e) Classified constellations using
maximum likelihood, k-means, and HBC, respectively, for a launch optical power of 3 mW. Classified
constellations at optimum launch optical powers for the different detection schemes: (f) 5 mW for
maximum likelihood, (g) 6 mW for k-means, and (h) 7 mW for HBC. (i,j,k) Classified constellations
at elevated launched optical power (10 mW) for maximum likelihood detection, k-means, and HBC,
respectively.
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A better understanding of the performance enhancement can be achieved by analysing the
classified constellations (after undergoing maximum likelihood, k-means, or HBC) for different
power levels. In particular, Figure 3c–e represents the classified constellations when using maximum
likelihood, k-means, or HBC, respectively, for a launch optical power of 3 mW (green rectangle).
Figure 3f–h shows the constellation for the optimum power levels, that is 5 mW for maximum
likelihood, 6 mW for k-means, and 7 mW for HBC (orange polygon). The constellation degradation
and classification for a relatively large power level, 10 mW, can be observed in Figure 3i–k (purple
rectangle). Looking at the point dispersion for different power levels, e.g., 3, 5, and 10 mW, shown in the
upper row, it can be seen that whereas for a low power level, the constellation shape remained, as the
launch power increased, SPM distorted the constellation leading to non-rectangular constellations.
The inner symbols seemed to be rotated clockwise, in contrast to the symbols in the periphery that
were rotated counter-clockwise. In fact, all the symbols were rotated counter-clockwise by the Kerr
effect, but the phase noise compensation stage in the DSP inverted the average rotation, resulting in
some points (those with smaller rotation corresponding to lower power) being rotated in the opposite
direction. Another feature to be noted is that the noise variance at low power levels looked higher than
for moderate power levels, but since the main noise mechanisms were the thermal and shot noises of
the photodetectors, the noise level was virtually the same for the three power levels. This is typical in
power limited coherent systems because the optical power arriving at the photodetectors is mainly that
of the local oscillator laser. The apparently lower noise was then a consequence of the higher signal
power and of the power normalization performed before clustering was carried out. Comparing the
performance of maximum likelihood, k-means, and HBC, the reader can observe that for low power
levels, the classifications obtained by the three methods were essentially identical, which agreed with
the fact that same BER and Q-factor values were yielded. This made sense because, in the absence
of non linear distortion, maximum likelihood was the optimum detection scheme [40]. As the power
level increased, so did the SNR, but SPM led to the aforementioned symbol rotation. Is in this case,
the rectangular decision regions of maximum likelihood were not optimum any more, and clustering
with non-rectangular boundaries fit the distorted data better. At even higher power levels, SPM led to
more complicated cluster sizes where decision regions with linear boundaries, as those obtained using
k-means, may result in sub-optimal classification.

The differences between the resultant decision regions using maximum likelihood, k-means,
and HBC can be better observed in Figure 4, where to make the contrast more clear, data for a
launch optical power of 10 mW were employed. First of all, we show the histogram of the received
constellation in Figure 4a to demonstrate how the distortion especially affected the symbols with
higher amplitude. A detailed view of two of the constellation points that were critically affected by
SPM (identified by a white rectangle) can be seen under the constellation plot. As can be observed,
the two clusters presented a complex shape, and therefore, an intricate border was necessary to
classify them. Figure 4b shows the constellation of the received data superimposed on the decision
regions calculated using maximum likelihood. As expected, the rectangular grid led to multiple
constellation point to invade adjacent regions even for low power symbols. The zoom-in figure clearly
reveals that the decision boundary was not optimal for the symbol distribution. When employing
k-means clustering, more sophisticated regions were calculated, as shown in Figure 4c, and the low
power constellation points were then correctly classified. For symbols in the constellation periphery,
the straight boundaries of k-means, however, were not optimal. This point can be appreciated in
the zoom-in. Finally, if we applied HBC, we obtained the decision regions represented in Figure 4d.
At first glance, the decision regions were similar to those using k-means. For low power symbols,
where SPM did not significantly affect the shape, but caused only a rotation (this can be corroborated
in the histogram of Figure 4a), the boundaries were still straight lines. For higher power symbols, in
contrast, the boundaries found by HBC were not straight lines any more. We can see a clear example
of the curved boundaries in the detailed view, appreciating that the curved line matched better the
cluster boundary expected from the histogram.
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(a) Histogram (b) Maximum likelihood (c) k-means (d) HBC

Figure 4. Analysis of the decision regions (data are for a launch optical power of 10 mW). (a) Histogram
of the received constellation. (b) Rectangular shaped decision regions obtained using maximum
likelihood. (c) Linear decision regions after k-means clustering and (d) after HBC. In (b–d), the received
constellations are superimposed on the decision regions. In addition, for all cases, we included a
detailed section of the lower left constellation, corresponding to the white rectangle in (a).

4.2. Block Size and Complexity Analysis

The proposed HBC algorithm, as already mentioned, can be regarded as a non-iterative density
based clustering algorithm. The fact of not requiring iteration was of particular importance for real-time
operation since, in principle, it implies a fixed processing time. The performance of the algorithm,
however, depended on the block size employed to estimate the histogram. To evaluate the minimum
block size requirement, Figure 5 shows the BER in terms of the block size. As can be seen after a short
erratic initial stage, the BER decreased, getting a relatively stable value for block sizes longer than
13,000. The evaluation of the performance for small block sizes was especially difficult because of the
high variance consequence of the stochastic nature of the method. We observed that the variance of
the BER reduced as the block size increased, as was expected for unbiased statistics. For this reason,
to achieve a trade-off between accuracy and processing time, the data shown in Figure 5 were obtained
by averaging results for a variable number of runs, up to 100 for 1000 symbol block size and five for
16,000 symbol blocks. In fact, we perceived that when applying HBC for short block sizes, for certain
sets of data, the algorithm did not converge to a reasonable partition. In order to quantify this effect,
for each block size, we counted the number of runs that failed, and we calculated the efficiency as the
percentage of runs that led to an acceptable classification. This region of forbidden block size that,
according to Figure 5, spanned up to 2250, should then be avoided to get an acceptable performance.
In fact, for applications requiring low latency, we can choose the minimum size of 2250, whereas when
latency is not so critical, a higher number of symbols can be employed.

Another important point to discuss is the complexity of the proposed algorithm. In order to
evaluate it, we can split the algorithm into two main steps: on the one hand, a first stage when the 2D
histogram was built and the high density points were found and, on the other hand, the stage when
each point was associated with a certain cluster. The histogram can be built in different ways, so it was
expected to be machine dependent. A possible solution was, for instance, to find the indexes of the
bins for each symbol and, then, update the value of the corresponding bin. That is, assuming that we
had Nb bins and that the maximum and the minimum of the histogram were M and m, the indexes
corresponding to the kth complex symbol s[k] = si[k] + j · sq[k] were:

indi[k] =
Nb + 1
M−m

· (si[k]−m) and indq[k] =
Nb + 1
M−m

·
(
sq[k]−m

)
. (1)

Once the indexes were found, the count of the bin indicated by indi and indq, nk−1
count was

updated. Hence:
nk

count(indi, indq) = nk−1
count(indi, indq) + 1. (2)
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Therefore, in this first stage, the processing of each symbol required five floating-point operations
(two to calculate indi, two to calculate indq, and another one to update the bin count). In order to
build the histogram of a block of Nsym symbols, the total number of FLOPs was then 5 · Nsym, and in
conclusion, its complexity was O(Nsym). The finding of the high density points required the sorting of
the values of all bins, that is the sorting of N2

b points. Sorting algorithms, such as block based or binary
tree, present a complexity of O(N2

b log N2
b ). Therefore, the complexity will depend on the number

of symbols and employed bins. In our case, we employed 100,000 symbols and 40 bins, and as a
consequence, the histogram building process was the dominant term. The complexity of the second
stage, that is finding the closest high density point to a given symbol, depends on the number of
high density points. Furthermore, this number will vary depending on the shape of the clusters.
In particular, the noisier the clusters are, the larger the areas of relative high density and the number
of points with high density are. If we assume that we have a set of Shd of Nhd points of high density,
then for each symbol, we need to calculate Nhd distances (indeed, it is possible to calculate the square
of the distance):

D = d2[k] = (si[k]− ui[m])2 + (sq[k]− uq[m])2, where u[m] = ui[m] + j · uq[m] ∈ Shd. (3)

This distance required five real valued operations, as we needed to calculate 2 subtractions,
2 multiplications, and 1 addition. The complexity of this stage was thenO(Ns · Nhd), which was higher
than that of k-means, where the number of distances to be calculated corresponded to the number of
clusters. However, it should be noted that this comparison only considered the distance calculation
and not the number of operation to find the centroids. The complexity of HBC was also higher than
that of simple nonlinear rotation, which was as small as two real valued operations.
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Figure 5. BER in terms of the processed block size alongside with the efficiency of HBC for a power
level of 7 mW at which optimum performance is achieved for HBC. For comparison purposes, the BER
obtained using maximum likelihood is also included.

4.3. Discussion

In this paper, we tested the proposed HBC algorithm in a single channel coherent LR-PON,
where the transmitted signal was distorted by the combination of SPM and the noise added by the
receiver. As can be appreciated in the constellations of Figure 3c–k, the obtained symbols showed the
characteristic spiral-like constellations that were prone to be clustered. The high distribution losses,
which included the fibre and the splitting losses, however, made the constellations to have noise and
the cluster borders to appear blurred. This was not the case of WDM systems, where the lack of
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splitters leads to higher received power and the subsequent reduction of the receiver noise impact.
Indeed, for the configuration considered in this work, the launch optical power had to be increased
well above the optimum power in order for the XPM and FWM to cause a distortion comparable to
the excess splitting loss. In regards to dual polarization operation, the proposed algorithm could be
modified to account for both polarizations simultaneously. This dimensionality increase, however,
would lead to more complicated processing.

The proposed algorithm aimed to compensate the distortion in simple LR-PON systems without
requiring high computational cost and a training sequence. In this sense, HBC can be considered as
a trade-off between performance and complexity. Indeed, we can note that HBC outperformed
the nonlinear phase rotation at the cost of higher complexity and latency. On the other hand,
HBC presented a slightly worse tolerance to nonlinear distortion than other more sophisticated
algorithms (for example, 2.5 dB of HBC vs. 3 dB of EM [37]), but without requiring initialization and
the iterative process.

Another point to be considered is the employed filters, in our simulations fourth order Bessel filters.
These filters emulate the bandwidth limitation of both the transmitter electronics and PD response and
remove part of the out-of-band noise. It is envisaged that the adoption of more sophisticated filters,
Nyquist filtering in particular, could improve the performance, as they increase the SNR, thus making
the clusters easier to discriminate.

5. Conclusions

In this paper, we proposed a novel clustering algorithm based on histograms, which we
denominated histogram based clustering. The algorithm successfully compensated the distortion
caused by Kerr mediated SPM in coherent LR-PONs with a transmission distance of 100 km and
a splitting ratio of 64. The numerical results obtained using VPI Transmission Maker-MATLAB
co-simulation showed that HBC improved the Q-factor with respect to maximum likelihood and
k-means clustering by 0.53 dB and 0.23 dB, respectively. We also showed that the proposed algorithm
could operate on blocks of 2500 symbols, but that optimum performance was obtained for blocks of
12,000 symbols.
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Abbreviations

The following abbreviations are used in this manuscript:

PON Passive optical network
LR Long reach
DSP Digital signal processor
SPM Self-phase modulation
XPM Cross-phase modulation
FWM Four wave mixing
QAM Quadrature amplitude modulation
DBP Digital back-propagation
IVSTF Inverse Volterra series transfer function
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SVM Support vector machine
DBSCAN Density based spatial clustering of applications with noise
HBC Histogram based clustering
LD Laser diode
CW Continuous-wave
DP-MZM Dual parallel Mach–Zehnder modulator
EDFA Erbium doped fibre amplifier
ASE Amplified spontaneous emission
DAC Digital to analogue converter
SSMF Standard single mode fibre
DPT Dynamic polarization tracker
ADC Analogue-to-digital converter
BER Bit error rate
SNR Signal-to-noise ratio
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