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Abstract: Compressed sensing is well known for its superior compression performance, in existing
schemes, in lossy compression. Conventional research aims to reach a larger compression ratio at
the encoder, with acceptable quality reconstructed images at the decoder. This implies looking for
compression performance with error-free transmission between the encoder and the decoder. Besides
looking at compression performance, we applied block compressed sensing to digital images for robust
transmission. For transmission over lossy channels, error propagation or data loss can be expected,
and protection mechanisms for compressed sensing signals are required for guaranteed quality
of the reconstructed images. We propose transmitting compressed sensing signals over multiple
independent channels for robust transmission. By introducing correlations with multiple-description
coding, which is an effective means for error resilient coding, errors induced in the lossy channels can
effectively be alleviated. Simulation results presented the applicability and superiority of performance,
depicting the effectiveness of protection of compressed sensing signals.
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1. Introduction

Data compression has long been an important topic in the field of signal processing. With the
broad use of smartphone and tablet cameras, vast amounts of multimedia content, mostly images, have
accumulated. Thus, how a mechanism for efficiently performing data compression on the multimedia
contents is urgent. There have been successful and popular standards for image compression including
the well-known JPEG, which employs discrete cosine transform (DCT), and JPEG2000, which applies
discrete wavelet transform (DWT), to still images. With the evolution of new techniques, advancements
in data compression can also be expected, and compressed sensing techniques present new and
novel concepts.

Compressed sensing (CS) is one recently developed technique of lossy data compression research
and applications [1–4]. In addition to international standards in multimedia compression, such as
JPEG [5] or JPEG2000 [6], it would be constructive to explore new innovative compression techniques.
The major research looking at JPEG, JPEG2000, and CS focuses on compression performance by
balancing the amount of compressed data and the reconstructed quality. In CS, this requires a sampling
rate that is far less than the Nyquist rate and has the ability to reconstruct the original signal of
lossy compression. The primary goal in compressed sensing research is the compression capability.
Therefore, a method for effectively decoding the extremely small amount of compressed signals and
comparing this to counterparts in JPEG or JPEG2000 would be of great interest and is currently a major
challenge [7–9]. In this paper, in addition to looking at compression performance, we consider practical
scenarios of robust transmission of compressed sensing signals using block compressed sensing
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(BCS) [10–12]. We transmitted compressed signals over lossy channels to observe the effect of packet
losses. To reduce quality degradation of robust transmission [13–15], we employed the transmission
of BCS signals over multiple independent channels. Multiple description coding (MDC) [16,17] was
employed to protect and reconstruct the BCS signals. To better explore the performance of BCS, we
used adaptive sampling [18,19]. This way, the enhanced quality of the reconstructed image can be
observed for error controlled transmission. Therefore, the novelty of this paper is the error resilient
transmission of BCS with MDC. We observed enhanced performance using our algorithm.

This paper is organized as follows. In Section 2 we briefly describe the fundamentals and
mathematical representations of BCS. In Section 3 we present the proposed method for error resilient
transmission of compressed sensing signals over multiple independent and lossy channels. The
simulation results are demonstrated in Section 4. Here we point out the vulnerability of compressively
sensed signals transmitted over a single channel and how our algorithm for multiple-channel
transmission for grey-level and color images reduced image quality degradation. Finally, we address
the conclusion of this paper in Section 5.

2. Fundamental Concepts of Block Compressed Sensing

The field of compressed sensing aims to look for new sampling schemes that go against conventional
sampling theorems or the well-known Nyquist-Shannon theorem. With compressed sensing a rate much
smaller than twice the maximal bandwidth can be achieved to meet perfect reconstruction recovery.

Compressed sensing, based on the representations in [1,2], is composed of the sparsity principle,
and the incoherence principle. Based on the concepts of compressed sensing depicted in Figure 1, we
divided the original image X with the size of M×N into a set of small blocks Xk. Each block Xk has
the size B× B, and the subscript k denoted the index of the block corresponding to the original image,
1 ≤ k ≤ M

B ×
M
B . With the partition of X into Xk, we performed the below operations block by block to

turn compressed sensing into BCS [10].

• The sparsity principle implies the information rate in data compression. In BCS this was expected
to use a much smaller sampling rate than conventionally required, and it can be represented via
Ψ, Ψ ∈ CB2

×B2
, where C denotes the complex number in the B2

× B2 matrix. Ψ was the basis to
reach sparsity with a k-sparse coefficient vector Xk, Xk ∈ CB2

×1, with the condition that

fk = ΨXk (1)

where fk denotes the reconstruction corresponding to the original signal, Xk.
• The incoherence principle extends the duality between time and frequency. The measurement basis

Φ, Φ ∈ Cm×B2
, which acts like noiselet, was employed to sense the signal fk, with the condition that

Yk = Φfk (2)

where Yk denotes the measurement vector, as depicted in Figure 1a. We noted that Equation (2)
was an underdetermined system.

For the reconstruction from BCS signals at the decoder, several methods can be employed.
Considering Equations (1) and (2), by minimizing the L1-norm of Xk, i.e., min‖Xk‖1 subject to
Yk = ΦΨXk, compressed sensing guarantees perfect recovery with a probability close to 1.0. Both
the ‘equality constraint’ and the ‘inequality quadratic constraint’ are widely employed conditions for
minimization [20,21]. The equality constraint means that

min‖Xk‖1 subject to Yk = ΦΨXk (3)

where, ‖·‖1 denotes the L1-norm. The inequality quadratic constraint implies that

‖minXk‖1 subject to ‖ΦΨXk −Yk‖2 ≤ ε (4)
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where, ‖·‖2 denotes the L2-norm. Thus, the inequality quadratic constraint leaves some tolerance for
minimization.

When an image X is represented by a BCS scheme, it focuses on the local characteristics of the
image. X was divided into a set of blocks, Xk. Therefore, it might be inefficient to assign the same
number of measurement dimension to each sampled vector corresponding to the different image block.
Due to the local characteristics, one block in the image had significantly different sparsity than the
other. With adaptive sampling in BCS, the entropy of a block may be used to evaluate the included
information. It was expected to have better reconstruction quality with error-free transmission from
adaptive sampling. Regarding adaptive sampling (AS) [18], the normalized DCT coefficient c′k can be
calculated by

c′k =
ck − ck,min

ck,max − ck,min
(5)

where ck,max and ck,min denote the maximal and minimal DCT coefficients in block Xk. Then, the
entropy in Xk can be calculated by

Hk = −

1∫
0

p
(
c′k
)
· log p

(
c′k
)
dc′k (6)

With the aid of adaptive sampling, better performances can be observed for error-free transmission.
We will explore the use of adaptive sampling for lossy compression of BCS signals.

3. Proposed Algorithm

For the effective delivery of compressed sensing signals, and considering the robust transmission
depicted in [14], we employed the use of transmission over multiple mutually independent lossy
channels. Figure 1 describes the block diagram of our system.
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Figure 1. Block diagrams for transmission with block compressed sensing (BCS) and multiple 
description coding (MDC): (a) BCS encoder and protection with MDC; (b) Lossy transmission over 
two channels with ୣ݌,ଵ and ୣ݌,ଶ	; (c) MDC and BCS decoder for protection and reconstruction. 

Figure 1. Block diagrams for transmission with block compressed sensing (BCS) and multiple
description coding (MDC): (a) BCS encoder and protection with MDC; (b) Lossy transmission over two
channels with pe,1 and pe,2; (c) MDC and BCS decoder for protection and reconstruction.
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In Figure 1a, the input image X is divided into Xk. It is then compressed with BCS and the
compressed sensing signal is denoted by Yk. With the notations described in Section 2, we denoted
Yk = {Yk,1, Yk,2, · · · , Yk,m} and set m to an even number for application with multiple description
coding. To enable easy separation of BCS coefficients, we chose the odd numbered indices to form
Ck1 = {Yk,1, Yk,3, · · · , Yk,m−1}, and the even numbered ones to form Ck2 = {Yk,2, Yk,4, · · · , Yk,m}. For
ease of representation, we rearranged the notations to be

Ck1 =
{
Yk,1, Yk,3, · · · , Yk,m−1

}
=

{
Ck1,1, Ck1,2, · · · , Ck1, m

2

}
(7)

and
Ck2 =

{
Yk,2, Yk,4, · · · , Yk,m

}
=

{
Ck2,1, Ck2,2, · · · , Ck2, m

2

}
(8)

After that, we employed multiple description transform coding (MDTC) [15] in MDC to form the
elements in the two descriptions of Dk1 and Dk2 in Equation (9):[

Dk1,i
Dk2,i

]
=

[
r2 cosθ2 −r2 sinθ2

−r1 cosθ1 r1 sinθ1

][
Ck1,i
Ck2,i

]
, (9)

where i = 1, 2, · · · , m
2 . The 2 × 2 matrix in Equation (9) has the condition that r1r2 sin(θ1 − θ2) = 1,

leading to the determinant of one. The resulting elements in Equation (9) form the two descriptions
Dk1 =

{
Dk1,1, Dk1,2, · · · , Dk1, m

2

}
and Dk2 =

{
Dk2,1, Dk2,2, · · · , Dk2, m

2

}
.

Next, descriptions Dk1 and Dk2 were transmitted over two independent lossy channels, with
the loss probability of pe,1 and pe,1 for Channels 1 and 2, as depicted in Figure 1b. The received

descriptions may become D′k1 =
{
D′k1,1, D′k1,2, · · · , D′k1, m

2

}
and D′k2 =

{
D′k2,1, D′k2,2, · · · , D′k2, m

2

}
due to

the possibility of induced errors. Note that D′k1 and D′k2 may not be identical to their counterparts Dk1
and Dk2, respectively.

At the decoder, as shown in Figure 1c by employing [16], compensation should be applied

between received descriptions. Compensated descriptions D′′

k1 =
{
D′′k1,1, D′′k1,2, · · · , D′′k1, m

2

}
and

D′′

k2 =
{
D′′k2,1, D′′k2,2, · · · , D′′k2, m

2

}
was calculated first. The elements in the descriptions D′′k1,i and D′′k2,i,

i = 1, 2, · · · , m
2 were compensated as follows:

D′′k1,i =

 r1 cosθ1 cosθ2σ2
1 + r1 sinθ1 sinθ2σ2

2

− cosθ2σ2
1 + sinθ2σ2

2

D′k1,i; (10)

D′′k2,i =

 r2 cosθ1 cosθ2σ2
1 + r2 sinθ1 sinθ2σ2

2

cosθ2σ2
1 − sinθ2σ2

2

D′k1,i. (11)

By taking the inverse operations of Equation (9), compensated BCS coefficients were obtained in
Equation (12):  C′′k1,i

C′′k2,i

 = [
r2 cosθ2 −r2 sinθ2

−r1 cosθ1 r1 sinθ1

]−1 D′′k1,i
D′′k2,i

. (12)

By gathering all the elements together, C′′k1 and C′′k2 were formed from the compensated descriptions in
Equation (12). Here we denote

C′′k1 =
{
C′′k1,1, C′′k1,2, · · · , C′′k1, m

2

}
=

{
Y′′k,1, Y′′k,3, · · · , Y′′k,m−1

}
(13)

and
C′′k2 =

{
C′′k2,1, C′′k2,2, · · · , C′′k2, m

2

}
=

{
Y′′k,2, Y′′k,4, · · · , Y′′k,m

}
(14)
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After the combination of the even and odd indexed components in Equations (13) and (14) and Figure 1c,
we obtained Y′′k . Finally, using BCS we reconstructed block X′′k . After completing the reconstruction of
all the blocks, we composed the reconstructed image X”.

4. Simulation Results

In our simulations we provided three sets of experiments based on three test images. The first
was cameraman grey-level test image with a size of 256 × 256. The second was the ducks color image,
taken by the authors, with a size of 1024 × 1024. The third was the Pasadena-houses color image with
a size of 1760 × 1168 [22]. These three images were employed in the experiments.

Here we start the first set of experiments with the test image cameraman. In Figure 2, we present
the use of entropy for adaptive sampling. Considering the practical implementation of adaptive
sampling, we applied quantization to the entropy values with a step size of 0.1. Figure 2a presents
the original test image, cameraman. The relationship between the number of blocks and entropy is
depicted in Figure 2b. Smaller entropy values imply smoother blocks.
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entropy distribution.

Figure 3 presents the error-free transmission of BCS for cameraman. Considering the practical
applications, we chose B = 8 in BCS in Equation (1). The measurement rate was set to 12

64 = 0.1875,
meaning that m = 12 compressed sensing coefficients were selected per block on the average. The
reconstructed images were assessed with the peak signal-to-noise ratio (PSNR) and the structural
similarity (SSIM) [23]. Figure 3a shows only the reconstruction for equality constraint (EQ). Because
adaptive sampling was not applied, it is implied that every block was reconstructed with 12 BCS
coefficients. Figure 3b presents the reconstruction for equality constraint (EQ) with adaptive sampling
(AS) [10]. Here we use the abbreviation EQ + AS for the results in Figure 3b. Because adaptive sampling
was applied, the number of BCS coefficients varied from one block to another. Blocks with larger
entropies were designated a higher number of BCS coefficients, and vice versa. The average number
of BCS coefficients for all the blocks was 12. Via adaptive sampling, we easily observed enhanced
performances. Figure 3c,d led to the results for quadratic constraint (QC) and quadratic constraint with
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adaptive sampling (QC + AS), respectively. Again, with adaptive sampling, better performances were
observed. We also compared the results of Figure 3a,c. With the quadratic constraint in Equation (4) it
performed slightly better than its counterpart, equality constraint, in Equation (3). Similar phenomena
can also be found by comparing Figure 3b,d.Appl. Sci. 2019, 9, x 6 of 18 
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Figure 3. Reconstruction of BCS coefficients: (a) equality constraint only (EQ); (b) equality constraint
and adaptive sampling (EQ + AS); (c) quadratic constraint only (QC); and (d) quadratic constraint and
adaptive sampling (QC + AS).

In Figure 4 we present the lossy transmission for block compressed sensing with adaptive sampling.
In Figure 4a,b, when the BCS coefficients were transmitted over the two independent and lossy channels
in Figure 1b, we set pe,1 = pe,2 = 0.1. Here we employed the equality constraint (EQ) for reconstruction.
Constructing the received BCS coefficients directly led to the result in Figure 4a, meaning that some
protection may be required. In Figure 4b, we applied multiple description coding from Equation (9)
for protection. The parameters were chosen to be θ1 = π

3 , θ2 = −π
4 , and r2 = 3, and this led to

r1 = 1
r2 sin(θ1−θ2)

= 0.3451, from calculations using Equation (9). With the compensation techniques
of MDC from Equation (9), we observed that the reconstructed quality was greatly improved. In
addition, for the evaluation of reconstruction under severely lost channels we set pe,1 = pe,2 = 0.5,
with the results shown in Figure 4c,d. Severe degradation was easily visible in Figure 4c, as was the
improvement of reconstructed quality after protection in Figure 4d.
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Figure 4. Reconstruction of BCS coefficients with equality constraint over lossy channels.

In Figure 5 we applied adaptive sampling and quadratic constraint with different selections of
the value ε in Equation (4) for experiments. We chose ε = 250 for Figure 5a,c,e, and ε = 320 for
Figure 5b,d,f. In Figure 5a,b, we applied error-free transmission, or pe,1 = pe,2 = 0.0, over the two
independent and lossy channels. We observed that Figure 5a, or the one with ε = 250, performed
slightly better. In Figure 5c,d, we set pe,1 = 0.1 and pe,2 = 0.0, meaning that Channel 1 was lossy, and
Channel 2 was error-free. Here we noticed that Figure 5d, or the one with ε = 320, had better PSNR
and SSIM values. We also noted that even though the PSNR value in Figure 5d was larger than that of
Figure 5c, the SSIM value was not. SSIM considers the local characteristics of the images, and PSNR
takes the error of the whole image into account. Thus, there may sometimes be mismatches between
the two measures. Finally, in Figure 5e,f, we set pe,1 = pe,2 = 0.1. Due to data loss in both channels,
reconstructions in Figure 5e,f depict inferior results to their counterparts in Figure 5c,d. Here, Figure 5f,
or the one with ε = 320, performed better than Figure 5e. Based the performances depicted in Figure 5,
we may conclude that with the careful selection of the tolerance value or, in this case, ε = 320, a better
quality reconstructed image can be acquired.
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Figure 5. Reconstruction of BCS coefficients with quadratic constraint (QC) over lossy channels
with protection.

In Figure 6 we present the evaluations of the reconstructed image quality over a range of lossy
probabilities between 0 and 0.5, with a measurement rate of 0.1. We observed that the increase of
loss tended toward inferior quality reconstructed images, as was expected. In addition, protection
with multiple description coding alleviated the effect caused by data loss, which led to better quality
reconstructed images. Finally, we found that with the careful selection of the ε value, quadratic
constraint performed slightly better than equality constraint in terms of reconstructed image quality.
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In Figures 7–11 we demonstrate the second set of experiments for the color image ducks with a
size of 1024 × 1024. The color image is composed of three color planes, namely, red, green, and blue.
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Figure 8 presents the error-free transmission of BCS for ducks. The measurement rate was set to
12
64 = 0.1875 for each color plane, and reconstructed images can be assessed with the PSNR and SSIM
measures. Note that the abbreviations in the captions of Figure 8 are identical to their counterparts in
Figure 3. Figure 8a,b show only the reconstruction for equality constraint (EQ) and quadratic constraint
(QC), respectively. The PSNR and SSIM values are also shown. Figure 8c,d present the reconstruction
for EQ + AS and QC + AS, respectively.
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Figure 8. Reconstruction of BCS coefficients for the three color planes: (a) EQ only; (b) EQ + AS; (c) QC
only; and (d) QC + AS.

With adaptive sampling, better PSNR and SSIM performance can be observed. In addition, the
performance with QC was slightly better than that with Equation (9). This observation for the color
image of ducks in Figure 8 is similar to that for the grey-level image of cameraman in Figure 3.

In Figure 9, we apply the multiple description coding of Equation (9) to protect the BCS coefficients
with EQ or QC constraints. Regarding the demonstrations of performance of the proposed method, for
the BCS coefficients in the red and green planes we set pe,1 = pe,2 = 0.2, and the BCS coefficients in the
blue plane were treated as error-free transmissions or pe,1 = pe,2 = 0.0. In Figure 9a,c, because the BCS
coefficients could be lost during transmission, the degradation of the reconstructed image was affected
whether or not the EQ or QC constraints were applied. In Figure 9b,d, due to high correlation between
color planes and protection with multiple description coding, the reconstructed image quality was
significantly improved.
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with MDC; (c) QC + AS; and (d) QC + AS with MDC.

In Figure 10, we provide three sets of angles θ1 and θ2 in MDC with r1 = r2 = 1 from Equation (9).
First, we chose θ1 = π

6 and θ2 = −π
6 , which led to opposite signs between angles. Second, we choose

θ1 = π
3 and θ2 = −π

6 , meaning that the two angles were orthogonal. Third, by combining the first two
selections, we chose θ1 = π

4 and θ1 = −π
4 . For Figure 10a,c,e, reconstruction was based on the equality

constraint, while for Figure 10b,d,f, reconstruction was based on the quadratic constraint. Comparing
the three selections, the orthogonal angles may lead to better performance to combat channel errors
in reconstruction.
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In Figure 11, we display the evaluations of reconstructed image qualities over the range of lossy 
probabilities between the range of 0 and 0.5, with a measurement rate of 0.1. We observed that with 
increased loss rates the inferior quality of the reconstructed images could be monitored. In addition, 
protection with multiple description coding, or the three curves at the upper portion, alleviated the 
effect caused by data loss, which led to better quality reconstructed images. Finally, we found that 
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better than the equality constraint in reconstructed image quality. 

Figure 10. Demonstration of angle selection in multiple description coding with equality and quadratic
constraints. BCS coefficients experienced a lossy rate of pe,1 = pe,2 = 0.1 in three planes.

In Figure 11, we display the evaluations of reconstructed image qualities over the range of lossy
probabilities between the range of 0 and 0.5, with a measurement rate of 0.1. We observed that with
increased loss rates the inferior quality of the reconstructed images could be monitored. In addition,
protection with multiple description coding, or the three curves at the upper portion, alleviated the
effect caused by data loss, which led to better quality reconstructed images. Finally, we found that
with the careful selection of the ε value from Equation (4), quadratic constraint performed slightly
better than the equality constraint in reconstructed image quality.
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Figure 11. Reconstructions for EQ and QC constraints for ducks with different lossy probabilities:
(a) PSNR curves and (b) SSIM curves.

In Figures 12–16 we demonstrated the results of the third set of experiments for the color image
Pasadena-houses with the size of 1760 × 1168. Unlike the test image cameraman in Figure 3a and
ducks in Figure 7a, which are square-shared images, Figure 12a was a rectangular-shaped image. The
color image was composed of three color planes, namely red, green, and blue. Figure 12a depicts the
color image Pasadena-houses, and Figure 12b–d displays the entropy distributions of the three color
planes for adaptive sampling (AS).

Figure 13 presents the error-free transmission of BCS for Pasadena-houses. The measurement rate
was set to 12

64 = 0.1875 for each color plane whether AS was applied or not. The reconstructed images
were assessed with PSNR and SSIM. Figure 13a,b show the reconstruction for equality constraint (EQ)
and quadratic constraint (QC), respectively, and the PSNR and SSIM values are also shown. Figure 13c,d
present the reconstruction for EQ + AS and QC + AS, respectively. With adaptive sampling, better
PSNR and SSIM performances were observed due to the local characteristics in entropy distribution.
Again, QC performed slightly better than EQ. This observation fit for the color images Pasadena-houses
in Figure 12, ducks in Figure 8, and the grey-level image cameraman in Figure 3.Appl. Sci. 2019, 9, x 15 of 20 
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In Figure 14 we applied multiple description coding from Equation (9) to protect the BCS 
coefficients with EQ or QC constraints. By following the scenarios in Figure 9 for the BCS coefficients 
in the red and green planes, we set ݌௘,ଵ = ௘,ଶ݌ = 0.2	. The BCS coefficients in the blue plane were 
treated as error-free transmissions, or ݌௘,ଵ = ௘,ଶ݌ = 0.0	. In Figure 14(a) and 14(c), because the BCS 
coefficients could be lost during transmission, the degradation of the reconstructed image was 

Figure 13. Reconstruction of BCS coefficients for the three color planes: (a) EQ only; (b) EQ + AS;
(c) QC only; and (d) QC + AS.

In Figure 14 we applied multiple description coding from Equation (9) to protect the BCS
coefficients with EQ or QC constraints. By following the scenarios in Figure 9 for the BCS coefficients
in the red and green planes, we set pe,1 = pe,2 = 0.2. The BCS coefficients in the blue plane were
treated as error-free transmissions, or pe,1 = pe,2 = 0.0. In Figure 14a,c, because the BCS coefficients
could be lost during transmission, the degradation of the reconstructed image was affected whether
or not the EQ or QC constraints were applied. In Figure 14b,d, due to the high correlation between
color planes and the protection with multiple description coding, the reconstructed image quality was
significantly improved.
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Figure 14. Demonstration of lossy transmission in the red and green planes: (a) EQ + AS; (b) EQ + AS
with MDC; (c) QC + AS; and (d) QC + AS with MDC.

In Figure 15, by following the same parameter settings used in Figure 10, we provided three
sets of selections of angles θ1 and θ2 in MDC with r1 = r2 = 1 in Equation (9). First, we chose
θ1 = π

6 and θ2 = −π
6 , which led to opposite signs between angles. Second, we chose θ1 = π

3 and
θ2 = −π

6 , meaning that the two angles were orthogonal. Third, by combining the first two selections,
we chose θ1 = π

4 and θ2 = −π
4 . For Figure 15a,c,e, reconstruction was based on the equality constraint,

while for Figure 15b,d,f, reconstruction was based on the quadratic constraint. Comparing the three
selections, angles that were orthogonal may have led to better performance combatting channel errors
in reconstruction.

In Figure 16 we demonstrated the evaluations of reconstructed image quality over a range of lossy
probabilities between 0 and 0.5, with the measurement rate of 0.1. We observed that, with increased
loss rates, inferior quality reconstructed images were seen whether or not the protection was deployed.
In addition, protection with multiple description coding, or the three curves at the upper portion in
Figure 16a,b, alleviated the effect of data loss, which led to better quality reconstructed images.
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with MDC; (c) QC + AS; and (d) QC + AS with MDC. 

In Figure 15, by following the same parameter settings used in Figure 10, we provided three sets 
of selections of angles ߠଵ and ߠଶ in MDC with ݎଵ = ଶݎ = 1 in Equation (9). First, we chose ߠଵ = ஠଺ 
and ߠଶ = ି஠଺ , which led to opposite signs between angles. Second, we chose ߠଵ = ஠ଷ and ߠଶ = ି஠଺ 	, 
meaning that the two angles were orthogonal. Third, by combining the first two selections, we chose ߠଵ = ஠ସ  and ߠଶ = ି஠ସ 	. For Figure 15(a), 15(c), and 15(e), reconstruction was based on the equality 
constraint, while for Figure 15(b), 15(d), and 15(f), reconstruction was based on the 
quadratic constraint. Comparing the three selections, angles that were orthogonal may have 
led to better per

(a) EQ, ߠଵ = ஠଺ ଶߠ , = ି஠଺
PSNR: 12.37 dB (R), 12.04 dB (G), 23.04 dB (B) 

SSIM: 0.51 (R), 0.53 (G), 0.89 (B) 

(b) QC, ߠଵ = ஠଺ ଶߠ , = ି஠଺
PSNR: 12.42 dB (R), 12.06 dB (G), 23.14 dB (B) 

SSIM: 0.52 (R), 0.53 (G), 0.89 (B) 

Figure 15. Cont.
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Figure 16. Reconstructions for EQ and QC constraints for Pasadena-houses with different lossy
probabilities: (a) PSNR curves and (b) SSIM curves.

From the results of the three sets of experiments, which corresponded to the three test images
presented above, cameraman, ducks, and Pasadena-houses, protection of BCS with multiple description
coding pointed to the applicability for transmitting over lossy channels. MDC worked together with
EQ or QC reconstruction methods for BCS signals. Compensation between received descriptions with
MDC helped reduce the effects of lossy channels. The alleviation of reconstructed image quality with
error resilient coding is coveted.
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5. Conclusions

In this paper, we presented the error resilient transmission scheme for block compressed sensing.
For error-free transmission, we found that adaptive sampling enhanced the reconstructed image
quality under both equality and the quadratic constraints. For lossy transmission, we observed the
vulnerability of compressively sensed information for transmission over lossy channels, and noted the
need to provide protection schemes to alleviate the effects of data loss. We proposed our algorithm
to transmit compressed information over multiple independent and lossy channels, and to work
with multiple description coding for protection and reconstruction. For grey-level images, multiple
description coding demonstrated effective protection. For color images, high correlations between
the color planes can further aid better quality of reconstruction. The simulation results presented
enhanced performance with multiple description coding and adaptive sampling. A wide range of lossy
probabilities were simulated to verify the effectiveness of multiple description coding for protecting
block compressed sensing. In future, we intend to look for other effective means and the ways to
choose the parameter values to ensure error resilient transmission for compressed sensing of images.
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