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Abstract: The scope of our study was to analyze the impact of implant prosthetic rehabilitation,
in bilateral terminal partial edentulism with mandibular bone atrophy, and potential benefits of
mandibular bone augmentation through finite element analysis. A 3D mandible model was made
using patient-derived cone-beam computed tomography (CBCT) images, presenting a bilateral
terminal edentation and mandibular atrophy. A virtual simulation of bone augmentation was then
made. Implant-supported restorations were modeled for each edentulous area. Forces corresponding
to the pterygoid and the masseter muscles, as well as mastication conditions for each quadrant, were
applied. The resorbed mandible presented high values of strain and stress. A considerable variation
between strain values among the two implant sites in each quadrant was found. In the augmented
model, values of strain and stress showed a uniformization in both quadrants. Virtually increasing
bone mass in the resorbed areas of the mandible showed that enabling larger implants drastically
reduces strain and stress values in the implant sites. Also, although ridge height difference between
the two quadrants was kept even after bone augmentation, there is a uniformization of the strain
values between the two implant sites in each of the augmented mandible quadrants.

Keywords: finite element analysis; implant-supported restorations; bone resorption; bone
augmentation; strain

1. Introduction

Implant-prosthetic rehabilitation has become a successful and highly predictable method used
for restoring the functions of the stomatognathic system and improving the quality of the patient’s
life [1–3].

However, in the partially edentulous mandible with bone atrophy, a favorable bone volume and
density is a prerequisite for achieving a successful implant-prosthetic rehabilitation [3,4]. In such cases,
the placement of standard length implants is often prohibited by an insufficient height of the alveolar
ridge [4]. Modern alveolar bone addition techniques can lead to the successful restoration of bone
volume, creating the optimal geometry for the use of a larger dental implant [4]. Yet, in the posterior
mandible, bone augmentation has been associated with a higher rate of peri-implant marginal bone
loss, donor site morbidity, pain, increased costs, and duration of treatment [4–6].

In this case, short implants can be a viable solution in implant-prosthetic rehabilitation of the
edentulous mandible with bone atrophy [7–9]. The development of surface treatment technologies,
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high-performance materials, and design of microtopography of implants have helped to increase the
reliability of short implants [7–10].

Oral rehabilitation becomes more challenging in the context of bilateral terminal edentulism.
Further, as there are still insufficient data that could determine the optimal treatment, whether it
would be rehabilitation using short implants or bone augmentation that would allow the use of longer
implants, clinicians often face problematic situations [3]. However, some studies suggest that short
implants may be more advantageous than longer implants placement following bone augmentation
because of the reduced number of complications [7,8,11,12]. In comparison with sandwich osteotomy
and delayed implant placement, prosthetic rehabilitation of the partially edentulous atrophic mandible
with short implants has been shown to have a comparable survival rate [11]. Moreover, short implants
placed in an atrophic ridge and long implants placed after alveolar bone augmentation have been
reported to present similar short-term peri-implant alveolar bone loss, regardless of the arch [7].

While these clinical studies offer valuable information, in complex rehabilitation cases, there
is yet to be a consensus or a guideline that would offer long term success of prosthetic implant
rehabilitation. Therefore, the question is whether or not bone augmentation is necessary to enable
larger implants to be used when smaller implants may perform comparably and avoid complications
from preliminary surgical procedures in complex cases, such as bilateral terminal edentulism with
mandibular bone atrophy.

To the best of our knowledge, no previous finite element studies have yet to explore
implant-prosthetic rehabilitation in the posterior mandible with bilateral terminal edentation and
bone atrophy.

The scope of our study was to analyze the impact of implant prosthetic rehabilitation in bilateral
terminal partial edentulism with mandibular bone atrophy and potential benefits of mandibular bone
augmentation through finite element analysis (FEA).

2. Materials and Methods

A mandible 3D model was made using patient-derived cone-beam computed tomography (CBCT)
images. The clinical model used presented a bilateral edentation of class I Kennedy. The mandible
was also characterized by mandibular atrophy, bone field class II (bone height > 10 mm, bone crest
width 2.5–5 mm), by the Misch & Judy classification (1987) [13]. Ridge height in the third quadrant at
implant sites was 2.4 mm higher than the alveolar ridge in the fourth quadrant. The 3D reconstruction
of the mandible and the remaining teeth was performed using Slicer3D (http://www.slicer.org) with
further editing in Autodesk Fusion 360 (Autodesk, Inc., San Rafael, CA, USA) and Autodesk Inventor
Professional version 2017 (Autodesk, Inc., San Rafael, CA, USA), as can be seen in Figure 1. The obtained
model was then modified, simulating a bone augmentation in the posterior mandible. The height of
the mandible ridge at the implant sites was increased by 3 mm, as shown in Figure 2. Both mandible
models consisted of two macro-structures, a cortical bone layer with a 2 mm thickness, and an internal
cancellous bone, as well as gingival tissue with a thickness of 2 mm and periodontal ligaments with a
thickness of 0.2 mm (Figure 2).

http://www.slicer.org
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Figure 1. Detailed views of the 3D model of the resorbed and the virtually augmented mandible with 

implants placed in sites 3.6, 3.7, 4.5, and 4.6, and remaining dentition. (a) Perspective view of modeled 

mandible with bone resorption and bilateral posterior edentation with implants placed. (b) Front view 

of modeled mandible with bone resorption and bilateral posterior edentation with implants placed. 

(c) Top view of modeled mandible with bone resorption and bilateral posterior edentation with 

implants placed. 

Figure 1. Detailed views of the 3D model of the resorbed and the virtually augmented mandible
with implants placed in sites 3.6, 3.7, 4.5, and 4.6, and remaining dentition. (a) Perspective view of
modeled mandible with bone resorption and bilateral posterior edentation with implants placed. (b)
Front view of modeled mandible with bone resorption and bilateral posterior edentation with implants
placed. (c) Top view of modeled mandible with bone resorption and bilateral posterior edentation with
implants placed.

Implant-supported restorations were modeled for each edentulous area, consisting of implant,
abutment, abutment screw, cement layer, and splinted ceramic crowns. In the atrophied mandible,
implants measured 3.75 mm in diameter (D) and 8 mm in length (L) for implant sites 3.7, 4.5, 4.6, and
3.3 mm D with 10 mm L for implant site 3.6. These measurements were planned according to the
available alveolar bone dimensions. In the virtually augmented mandible, all implants measured
4.2 mm D and 11.5 mm L.

Simulations of physiological loading of the 3D models were performed using Simulation
Mechanical version 2017 (Autodesk, Inc., San Rafael, CA, USA). For all simulation scenarios, a static
model with linear and elastic material properties was selected. The mechanical properties of the
assigned materials are presented for each element of the 3D analysis assembly in Table 1.

The mandibular model was fixed in the simulation environment at the temporal–mandibular joint
surfaces, with rotation restrictions around the Y and Z axes, to simulate the anatomical articulation
of the structure and allow for physiological type rotation in the sagittal plane during mastication
(Figure 3). Because the study model presented bilateral terminal edentation, restrictions were set
on each one of the ceramic upper restorations at a time, simulating mastication conditions for each
quadrant. Masticatory type forces corresponding to the pterygoid muscles (P) of 145 N and the
masseter muscles (M) of 151 N were applied (Figure 3) [14].
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for each quadrant. Masticatory type forces corresponding to the pterygoid muscles (P) of 145 N and 

the masseter muscles (M) of 151 N were applied (Figure 3) [14]. 

Table 1. Material properties. 

Material Young’s Modulus (MPa) Poisson Coefficient 

Cortical bone [15–17] 13,700 0.3 

Cancellous bone [17,18] 1370 0.3 

Gingiva [19] 19.6 0.3 

Figure 2. Detailed views of the 3D model of the resorbed and the virtually augmented mandible with
modeled implant-supported restorations, remaining dentition, periodontal ligaments, gingiva, cortical,
and cancellous bone layers. (a) Front view of complete model of the resorbed mandible with placed
implant-supported restorations (b) Perspective view of complete model of the resorbed mandible with
placed implant-supported restorations. (c) Front view of complete modeled mandible with simulated
bone augmentation and placed implant-supported restorations. (d) Perspective view of complete
modeled mandible with simulated bone augmentation and placed implant-supported restorations.

Table 1. Material properties.

Material Young’s Modulus (MPa) Poisson Coefficient

Cortical bone [15–17] 13,700 0.3
Cancellous bone [17,18] 1370 0.3

Gingiva [19] 19.6 0.3
Dentina [20] 18,600 0.31

Periodontal ligament [21] 69 0.45
Ceramic [22] 140,000 0.28

Ti-6Al-4V [23] 110,000 0.35
Cement [24] 10,760 0.35
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Figure 3. Complete mandible assembly in the simulation environment with applied forces
corresponding to pterygoid muscles (P) and the masseter muscles (M) and restrictions at the
temporomandibular joint surfaces.

The failure criteria for materials are generally expressed in terms of stress or strain. The biological
response of bone tissue to loads applied depends, according to Frost’s “mechananostat” theory, on the
strain recorded in the tissue [25,26]. The octahedral shear (equivalent) strain is considered to be the
most relevant strain for this theory and to be far more conservative than other types of strain such as
maximum compression strain. According to the mechanostat theory, the recommended range of strain
is 1000–3000 µε. Bellow 1000 µε, bone tissue experiences stress shielding, leading to bone atrophy.
Above 3000 µε, the bone tissue is exposed to pathologic overload, which leads to bone damage and
absorption [27]. In the simulations of this study, the octahedral shear (equivalent) strain was tracked.

For calculation of the octahedral shear strain, strain component tensors, εxx, εyy, εzz, γxy, γyz, and
γzx, were recorded near the implant site. These strain component tensors were then used to calculate
the principal strains ( ε1, ε2, ε3), through matrix diagonalization, using a modified version of Cauchy’s
symmetric strain tensor [28] as follows:

Tε =


εxx

1
2γxy

1
2γxz

1
2γyx εyy

1
2γyz

1
2γzx

1
2γzy εzz

. (1)

The principal strains obtained, ε1, ε2, and ε3, were then used to obtain the octahedral shear
(equivalent) strain as follows:

εoct =
2
3

√
(ε1 − ε2)

2 + (ε2 − ε3)
2 + (ε3 − ε1)

2. (2)

Surface averaging of each octahedral shear strain value calculated for each point was done to
avoid numerical artifacts of local peak values.
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3. Results

In the resorbed mandible model, strain values in the bone tissue were found to be highest in
both quadrants of the mandible in comparison with the virtually bone augmented model, as shown in
Figure 4.
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Figure 4. Octahedral shear strain in the resorbed and virtually bone augmented mandible for
implant-supported restoration in the third and fourth quadrant.

There was also a considerable variation between strain values among the two implant sites in
each mandible quadrant in the resorbed mandible. Moreover, where the 3.3D/10L implant was used in
implant site 3.6, strain values obtained were the smallest, as opposed to the other implant sites where
the 3.7D/8L implants were used.

After simulation of bone augmentation, strain values decreased in all implant sites. In each
quadrant, differences in strain values between each implant site also decreased (Figure 4).

Stress was concentrated at crestal bone level in all simulated cases, as shown in Figure 5. The highest
values of stress were recorded in the resorbed mandible model. Between the two quadrants of the
resorbed model, there is still a considerable variation of stress values. In the virtually bone augmented
mandible mode, as stress and strain values decreased, the area of distribution increased as more bone
was engaged. The values of stress between the two quadrants of the augmented model were similar
(Figure 5).
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fourth (d) quadrant.

4. Discussion

The long-term survival of implant-supported restorations depends on bone quality and quantity
as well as implant dimensions [29,30]. High-stress concentration areas in addition to high strain
values owing to excessive implant loading are related to bone resorption [30–34]. Bone homeostasis
is achieved, according to Frost’s “mechanostat theory”, when bone tissue responds favorably to the
forces transferred through the implant and strain values fall between 1000 µε and 1500 µε [25,26]. Bone
remodeling occurs when strain values are in the 1500 µε–3000 µε interval, but above these values,
the risk of bone resorption or even fracture rises significantly [25,26].

The results of our study showed that, by virtually increasing bone mass and allowing for larger
implants to be used, strain values decreased in both quadrants. Although strain values for both
resorbed and bone augmented mandible were far under the lower limit of the bone homeostasis
interval, the variability of muscle forces in current literature, as well as an additional effect of other
masticatory muscles, must be taken into account [35].

Studies that have reported values above the lower limit of the homeostasis interval have used
sections of the mandible bone and applied a set value of force directly on the abutment or, in some
cases, on the ceramic upper restoration [36–39]. This is considered an oversimplification in the analysis
and, although it may show a trend of the strain values in the bone tissue, it may also lead to artifacts
or unreliable results [35–40]. Moreover, there is currently a high variability regarding the magnitude
of forces applied directly on implant-supported restorations having a large influence of the strains
exerted on the bone tissue [40].

In a study on the importance of input variables in mandible biomechanics analysis, where a
complete mandible was modeled with a full dental arch, strain values reported were similar to those
obtained in our study [35]. Our results also show that, after the simulated bone augmentation, there is
a uniformization of the strain values between the two implant sites in each of the mandible quadrants.
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Stress values in the bone augmented model exhibited the same pattern. This is because of the increase
of implant diameter and length, as well as an increase in bone volume. Besides the dimensional factor
of the implants, attention needs to be given to the virtually augmented bone dimensions. The increase
of bone volume seems to minimize the position effect of the teeth on the strain values recorded in the
bone tissue. The small differences that do exist in strain between each of the implant sites may be
because of the position that leads to a specific physiological load [41–43]. This may suggest that, in the
absence of bone augmentation, further consideration needs to be given to the placement of the implant
in atrophic ridges.

In the resorbed mandible model, higher stress values were obtained compared with the simulated
bone augmented mandible model. Increasing the implant diameter from 3.3 mm/3.75 mm to 4.2 mm
and the length from 8 mm/10 mm to 11.5 mm led to a considerable decrease in stress, as well as a
favorable distribution at the crestal level. This is in accordance with several studies that suggest that
increasing the diameter and length of the implant leads to lower stress values in the mandibular
bone [35,43,44].

In our study, the distribution of stress was found to be similar in the resorbed and bone augmented
ridge, as stress was concentrated at the crestal level. This is because of the difference between the
elastic modulus of the cortical and cancellous bone. Owing to the increased stiffness provided by a
higher elastic modulus in the cortical bone tissue, stress concentrates at the crestal bone level. These
findings are consistent with current studies, which suggest that this type of stress concentration is more
influenced by the mechanical properties of the bone tissue as well as the type of loading applied [45,46].
Moreover, as high stress and strain values are found at crestal level, which may lead to bone resorption
and implant failure, clinicians should carefully plan implant restorations in both augmented and
resorbed ridges.

Simulating a bone augmentation in a real clinical case allowed for a comprehensive assessment
of rehabilitation possibilities. This method may be further developed as a standardized method
of evaluation, allowing for individual patient FEA simulations. However, the diversity of bone
augmentation techniques may be challenging to asses in FEA studies. Moreover, from a clinical point of
view, it is difficult to evaluate the performance of any bone augmentation technique while ensuring an
increased implant success rate [4,6]. The clinical evidence of oral rehabilitation success in mandibular
bilateral terminal edentulism with bone atrophy is scarce. However, our results are in accordance with
the reported clinical studies, suggesting that bone augmentation may be beneficial to the long-term
survival of dental implants [3,30].

Another important aspect of the studied mandible is the absence of an implant restoration of
the second molar in the fourth quadrant. The need to replace the tooth with an implant-prosthetic
restoration remains a topic of debate [47,48]. However, as the decision to not restore the missing second
molar is a common practice, it was important to keep this detail to ensure input variables in the finite
element study are as close to clinical reality as possible.

5. Conclusions

Virtually increasing bone mass in the resorbed areas of a CBCT derived mandible model with
bilateral partial edentulism showed that enabling larger implants drastically reduces strain and stress
values in the implant sites. Also, although the ridge height difference between the two quadrants was
kept even after bone augmentation, there is a uniformization of the strain values between the two
implant sites in each of the augmented mandible quadrants. Stress values in the bone augmented
model exhibited the same pattern. In the resorbed mandible, values of strain varied greatly between
each implant site in the two quadrants, even where implants of the same dimensions were used. These
findings suggest that bone augmentation may favorable to the long-term survival of implant-supported
restorations. This research may be further developed to offer a comprehensive individualized method
of evaluation. This may allow clinicians to assess each patient through individual finite element
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analysis simulations. Further studies need to address complex rehabilitation cases that reflect real
clinical aspects, using patient-specific data to ensure the accuracy and validity of results.
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