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Abstract: Background: Elucidation of the highly forward scattering of photons in random media
such as biological tissue is crucial for further developments of optical imaging using photon transport
models. We evaluated length and time scales of the photon scattering in three-dimensional media.
Methods: We employed analytical solutions of the time-dependent radiative transfer, M-th order
delta-Eddington, and photon diffusion equations (RTE, dEM, and PDE). We calculated the fluence
rates at different source-detector distances and optical properties. Results: We found that the zeroth
order dEM and PDE, which approximate the highly forward scattering to the isotropic scattering,
are valid in longer length and time scales than approximately 10/µ′t and 40/µ′tv, respectively, where
µ′t is the reduced transport coefficient and v the speed of light in a medium. The first and second
order dEM, which approximate the highly forward-peaked phase function by the first two and three
Legendre moments, are valid in the longer scales than approximately 4.0/µ′t and 6.3/µ′tv; 2.8/µ′t
and 3.5/µ′tv, respectively. The boundary conditions less influence the length scales, while they
reduce the times scales from those for bulk at the longer length scale than approximately 4.0/µ′t.
Conclusion: Our findings are useful for constructions of accurate and efficient photon transport
models. We evaluated length and time scales of the highly forward scattering of photons in various
kinds of three-dimensional random media by analytical solutions of the radiative transfer, M-th order
delta-Eddington, and photon diffusion equations.

Keywords: radiative transfer equation; highly forward scattering of photons; diffusion and
delta-Eddington approximations; characteristic length and time scales of photon transport

1. Introduction

Elucidation of the photon scattering and transport in random media such as biological tissue
volumes is crucial for biomedical optical imaging using the near-infrared light in the wavelength
range from 700 to 1100 nm such as diffuse optical tomography [1–3], because the imaging technique
uses light scattered by the media. There are mainly three kinds of systems of the imaging techniques:
time-domain, steady-state, and frequency-domain systems. Among them, the time-domain system has
several advantages over steady-state and frequency-domain systems thanks to the richest information
of the time-domain measurement data [4]. Time-dependent photon transport is basically classified
into the two kinds of characteristic regimes (length and time scales): the ballistic and diffusive
regimes corresponding to short and long source-detector (SD) distances and times after light incidence,
respectively [5]. In the ballistic regime, photon is little scattered and almost goes straight. In the
diffusive regime, photon is diffusive due to multiple scattering of photons, and the scattering process
can be approximated as isotropic. Between the ballistic and diffusive regimes, photon undergoes a few
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scattering events in the highly forward direction and travels along the zig-zag paths while changing the
direction [6,7]. In this paper, we call this few-scattering-event regime between the ballistic and diffusive
regimes as the scattering regime, so that we consider the three kinds of characteristic regimes for photon
transport. The radiative transfer equation (RTE), which is the linear Boltzmann equation, can describe
photon transport for random media in the three characteristic regimes because the phase function in
the RTE can treat the highly forward scattering of photons. However, the numerical calculations of
the RTE require high computational loads (times and memories) especially for three-dimensional (3D)
random media because the RTE is an integro-differential equation with respect to the light intensity
as a function of position vector, unit angular direction vector, and time. To reduce the computational
loads, many researches have employed the photon diffusion equation (PDE), which is obtained by
the diffusion approximation to the RTE and omits the angular direction. However, the PDE is valid
only in the diffusive regime. A coupling model using the RTE and PDE has been constructed [8,9].
For the coupling model, the RTE is calculated in the ballistic and scattering regimes, while the PDE
is calculated in the diffusive regime. For constructions of the coupling model or appropriate uses
of the PDE, many researches have devoted their work to evaluations of the crossover length and
time from the scattering to diffusive regimes [9–15]. For example, a comparison study [10] between
actual light measurements and the PDE-results for slab media showed that the crossover length is
evaluated as approximately 10/µ′t, where the reduced transport coefficient µ′t is a sum of reduced
scattering coefficient and absorption coefficient. A numerical study [9] using the time-dependent
RTE and PDE for 2D media evaluated the crossover length the same as the above study [10], and in
addition, evaluated the crossover time as approximately 20/µ′tv, where v is the speed of light in the
medium. Although the coupling model can provide accurate and efficient results, a further efficiency
improvement of the photon transport model is necessary because the RTE-calculations in the scattering
regime still require high computational loads. For modeling the highly forward scattering of photons,
the phase function in the RTE is highly forward-peaked and changes exponentially with respect to the
scattering angle. Basically, accurate numerical treatments of the highly forward-peaked phase function
require a large number of discrete angular directions, resulting in high computational loads of the
RTE-calculations. To overcome the difficulty, one needs to investigate the highly forward scattering
of photons and influences of the highly forward-peaked phase function on the RTE-results in the
scattering regime. For this purpose, in this paper, we employ the M-th order delta-Eddington equation
(dEM), which is obtained by the delta-Eddington approximation (dEA) to the RTE.

The dEA decomposes the highly forward-peaked phase function into purely forward-peaked
and other components [16,17]. The purely forward-peaked component is given by the delta-function
and contributes to a modification of the scattering length scale. The other components are expanded
by finite series of Legendre polynomials and used as the phase function in the dEM. The dEM has
been widely employed in the field of biomedical optics since Klose and coworkers have introduced
from the field of astrophysics [18–22]. It has been shown that the numerical solutions of the dEM agree
with those of the RTE while the number of the discrete angular directions is reduced to approximately
one-sixth of the required number for the RTE-calculations. Nevertheless, a validity of the dEM is still
unclear; Klose and coworkers showed that the second order dEM can provide the accurate results the
same as the RTE [21], while Jia and coworkers stated that the zeroth order dEM is sufficient [22], and
Boulet and coworkers employed the zeroth and first order dEM [20]. These differences probably come
from the fact that the validity of the dEM depends on the SD distances, times after light incidence, and
the optical properties, like the validity of the PDE.

Our objective is to examine photon transport especially in the scattering regime for various
kinds of random media by using the time-dependent RTE, dEM, and PDE, and to evaluate a regime
(length and time scales) for the dEM to be valid as a function of µ′t and µ′tv. We employed the
analytical solutions instead of the numerical solutions because the analytical solutions are attained
much faster than the numerical solutions and allow us to investigate a wide range of the SD distances
and optical properties. In addition, we can focus the modification of the scattering coefficient and the
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approximation of the phase function by the dEA without a discussion of numerical errors induced
by the numerical discretization. To the best of our knowledge, no studies have reported to evaluate
the regime for the dEM. In this paper, we investigate photon transport for infinite and semi-infinite
3D homogeneous media as a first step of investigations for realistic heterogeneous biological tissue
volumes. The investigations for infinite and semi-infinite 3D homogeneous media have been widely
discussed for the diffuse optics community [4]. The analytical solutions have been employed for
evaluations of the optical properties of various kinds of random media such as biological tissue
volumes, colloidal suspensions [23], and agricultural products [24]. The following section describes
the three kinds of the photon transport models for 3D random media: the time-dependent RTE, dEM,
and PDE; and analytical solutions of the three models for the temporal profiles of the fluence rate.
Section 3 investigates the results of the analytical solutions and evaluates the regime for the dEM.
Finally, conclusions are described.

2. Materials and Methods

2.1. Time-Domain Photon Transport Models

2.1.1. Radiative Transfer Equation (RTE)

We consider photon transport in the length and time scales of the mean free path and mean
time of flight. Then, photon transport can be described by the RTE [25]. For 3D random media, the
time-dependent RTE is given by[

∂

v∂t
+ Ω · ∇+ µa(r) + µs(r)

]
I(r, Ω, t) = µs(r)

∫
S2

dΩ′p(Ω, Ω′)I(r, Ω′, t) + q(r, Ω, t), (1)

where, I(r, Ω, t) in W cm−2 sr−1 represents the light intensity as a function of spatial position vector
r = (x, y, z) ∈ R3 in cm; angular direction (unit direction vector) Ω = (Ωx, Ωy, Ωz) ∈ S2 in sr; and
time t in ps. µa(r) and µs(r) in cm−1 are the absorption and scattering coefficients, respectively; v is
the speed of light in the medium; p(Ω, Ω′) in sr−1 is the phase function with Ω and Ω′ denoting the
scattered-out and -in directions, respectively; and q(r, Ω, t) in W cm−3 sr−1 is a source function.

2.1.2. Henyey-Greenstein Phase Function and Anisotropy Factor

For a formulation of p(Ω, Ω′), the Henyey-Greenstein (HG) phase function [26] is widely
employed in biomedical optics to model the forward scattering of photons:

pHG(Ω ·Ω′) =
1

4π

1− g2

(1 + g2 − 2gΩ ·Ω′)3/2 , (2)

where g ∈[−1, 1] is the anisotropy factor, defined by
∫
S2 dΩ′(Ω ·Ω′)p(Ω, Ω′). Mostly, g-values of

biological tissue volumes are larger than 0.8 [27], meaning the highly forward scattering. For examples,
the g-value of muscle or bone is considered as 0.9; and the g-values of the human liver and of blood
vessels are 0.955 [28] and 0.992 [29], respectively. Meanwhile, there are void regions in the human
body such as the trachea in the human neck, whose g-value is almost zero, meaning the isotropic
scattering. Figure 1 shows the HG phase function (Equation (2)) as a function of Ω ·Ω′ ∈ [−1, 1] in
a logarithmic scale. At g = 0.0 (isotropic scattering), the phase function is constant over the whole
region of Ω ·Ω′. Meanwhile, as the g-value approaches to unity from zero (enhancement of the highly
forward scattering), the exponential change of pHG with respect to Ω ·Ω′ becomes large and the peak
of pHG around Ω ·Ω′ = 1.0 becomes sharp.
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Figure 1. Henyey-Greenstein phase function as a function of Ω ·Ω′ for isotropic scattering (g = 0.0),
moderately forward scattering (g = 0.6), and highly forward scattering (g = 0.9 and 0.95), in a
logarithmic scale.

The HG phase function is expanded in the infinite series of (unassociated) Legendre polynomials
Pl (l = 0, 1, · · · , ∞):

pHG(Ω ·Ω′) =
∞

∑
l=0

2l + 1
4π

gl Pl(Ω ·Ω′), (3)

where gl is the l-th order expansion coefficient.

2.1.3. M-th Order Delta-Eddington Equation (dEM)

The dEA decomposes the highly forward-peaked phase function into a purely forward-peaked
component expressed by the delta function and the other components [16,17]:

pM
δ (Ω ·Ω′) = 1

2π
hδ(1−Ω ·Ω′) + (1− h)pM

δ2(Ω ·Ω
′), (4)

where h is a coefficient of the decomposition. pM
δ2 is a phase function excluding the delta-function

component and expanded in the finite series of Legendre polynomials up to the order of M:

pM
δ2(Ω ·Ω

′) =
M

∑
l=0

2l + 1
4π

σdEl Pl(Ω ·Ω′). (5)

In the case of the HG phase function, the expansion coefficient σdEl and the decomposition
coefficient h are determined so as to satisfy the moment conditions up to the order of M + 1:

σdEl :=
∫
S2

dΩ′pM
δ2(Ω ·Ω

′)Pl(Ω ·Ω′) =
gl − h
1− h

, h = gM+1. (6)

The case of l = 0 in Equation (6) corresponds to the normalization condition of pM
δ2 :
∫
S2 dΩ′pM

δ2(Ω ·
Ω′) = 1. By using pM

δ (Equation (4)), the RTE (Equation (1)) is approximated to[
∂

v∂t
+ Ω · ∇+ µa(r) + µM

s (r)
]

I(r, Ω, t) = µM
s (r)

∫
S2

dΩ′pM
δ2(Ω ·Ω

′)I(r, Ω′, t) + q(r, Ω, t), (7)

where µM
s (r) = (1− h)µs(r) = (1− gM+1)µs(r). In this paper, Equation (7) is called as the M-th order

delta-Eddington equation (dEM). Comparing the RTE (Equation (1)) with the dEM, µs is modified
to µM

s and p is approximated to pM
δ2 . The modification of µs to µM

s means a change of the scattering
length scale. Figure 2a,b plot a scattering length ratio of µM

s /µs and a relative error EM
phase of the phase

functions between the HG function (Equation (2)) and the M-th order dEA (Equation (5)) at different
g-values of 0.3, 0.6, 0.9, and 0.95. Here, the error EM

phase is defined by

EM
phase =

∫ 1

−1
dµ

∣∣∣∣∣ pM
δ2(µ)− pHG(µ)

pHG(µ)

∣∣∣∣∣ , µ = Ω ·Ω′. (8)
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As the expansion order M increases, the ratio µM
s /µs approaches to unity and the error EM

phase
decreases, meaning the scattering length scale and the phase function for the dEM converge to those
for the RTE. At g = 0.9 and 0.95 (highly forward scattering), the convergences are slower than the
cases of g = 0.3 and 0.6 (moderate forward scattering).
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Figure 2. (a) Ratios µM
s /µs and (b) relative errors EM

phase of the phase functions between the HG function
(Equation (2)) and the M-th order dEA (Equation (5)) at different g-values of 0.3, 0.6, 0.9 and 0.95. The
error EM

phase is defined by Equation (8).

2.1.4. Photon Diffusion Equation (PDE)

The PDE is obtained by the diffusion approximation to the RTE [30]:[
∂

v∂t
−∇ · D(r)∇+ µa(r)

]
Φ(r, t) = qDE(r, t), (9)

where the fluence rate Φ(r, t) is defined by
∫
S2 dΩI(r, Ω, t); the diffusion coefficient D(r) is by [3(1−

g)µs(r))]−1; and the isotropic source qDE(r, t) is by
∫
S2 dΩq(r, Ω, t).

2.2. Analytical Solutions (AS) of the Time-Domain Photon Transport Models

2.2.1. 3D Infinite Homogeneous Media

In this paper, we mainly employed the analytical solutions of the time-dependent RTE, dEM, and
PDE for 3D infinite homogeneous media to calculate the temporal profiles of the fluence rate Φ(r, t)
when an isotropic point source is incident at the initial time and at the origin of the xyz-coordinate
as shown in Figure 3a. Then, the source-detector (SD) distance rsd is given by r = |r|. The analytical
form of the fluence rate for the RTE ΦRTE(r, t) with an arbitrary g-value is derived by Liemert and
Kienle [31]:

ΦRTE(r, t) = ΦLK(r, t; µa, µs, σHG, n), (10)

where ΦLK represents the analytical form by Liemert and Kienle; σHG the vector of the expansion
coefficients for the HG phase function up to a maximum order of N: [1, g, g2, g3, · · · , gN ]; the N-value
is determined so as to attain sufficient convergence of the results; and n is the refractive index of the
medium. The verifications of ΦRTE(r, t) were confirmed by several independent works [23,32]. Using
ΦLK, we can obtain the analytical form for the dEM ΦdEM(r, t):

ΦdEM(r, t) = ΦLK(r, t; µa, µM
s , σM , n), (11)

where σM represents the vector of the expansion coefficients for pM
δ2 (Equation (6)) up to N(> M):

[1, σdE1, σdE2, · · · σdEM, σdEM+1 = 0, · · · , σdEN = 0]. We confirmed the verification of ΦdEM(r, t) by
comparing with the numerical solutions in Appendix A. The analytical solution for the dE0 (M = 0)
by Liemert and Kienle is largely oscillated and unstable for several cases such as short SD distances,
short times after light incidence, and the low scattering coefficient. In those cases, we employed
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the analytical solution for the dE0 derived by Paasschens [33] instead. It is noted that Martelli and
coworkers employed a heuristic approach to obtain the approximate solution of the RTE for highly
forward scattering [34] from the exact solution of the RTE for isotropic scattering by Paasschens [33].
Their approach is identical to the zeroth order dEA, so that the Φ(r, t)-result using their approach
coincides with the result of ΦdE0(r, t). The analytical form for the PDE ΦPDE(r, t) is given as [35]

ΦPDE(r, t) =
1

(4πDt)3/2 exp
[
−µavt− r2

4Dvt

]
. (12)

Source Detector

 [cm]

(a)

 ! = (0,0,"#$ " 2#%)

 & = (0,0, #$)
Source Detector '

# [cm]

*+ " -./13 4
' [cm]

Detector z

(b)

56

Figure 3. Source and detector positions in 3D (a) infinite and (b) semi-infinite homogeneous media.

2.2.2. 3D Semi-Infinite Homogeneous Media

To investigate influences of the boundary conditions on the temporal profiles of the fluence rate,
we employed the approximate solutions of the RTE, dEM, and PDE for 3D semi-infinite homogeneous
media under the diffusive refractive-index mismatched boundary condition:

Φ(r, t) + Dγ(n)ez ·∇Φ(r, t) = 0, (13)

where ez represents the outward normal unit vector at the xy-plane in Figure 3b, the coefficient
γ(n) is give by 2(1 + R f )/(1− R f ) with R f = −1.44n−2 + 0.71n−1 + 0.69 + 0.064n [36]. Using the
extrapolation method for the boundary condition (Equation (13)) [37], the analytical solutions of the
RTE, dEM, and PDE for semi-infinite homogeneous media are obtained:

Φsemi(r, t; z0, zb) = Φin f (|r− r+|, t)−Φin f (|r− r−|, t), (14)

where r = (ρ, z), ρ = (x, y), a real source position of r+ = (0, 0, z0) with z0 = 1/µ′s, an imaginary
source position of r− = (0, 0,−2zb − z0) with zb = γ(n)D, and Φin f = {ΦRTE, ΦdEM, ΦPDE}
(Equations (10)–(12)). Then, the SD distance rsd is given by |r − r+|. As a preliminary study, we
compared the Φsemi(r, t)-results for the RTE with those by another diffusion approximation method
for the boundary condition [38], and confirmed that both results are almost the same to each other.
The verification of the approximate solutions of the RTE has been confirmed by a comparative study
with Monte-Carlo simulations [38].

2.3. Optical Properties, Source-Detector (SD) Distances, and Computations of the Analytical Solutions

We investigated photon transport in various kinds of random media at different SD distances.
Table 1 lists parameter sets of the optical properties for the media and the SD distances, where the
optical properties are in the wavelength range of the near-infrared light. At each parameter set, four
parameters are fixed and one parameter is varied, e.g., at the parameter set A, µa, µs, g, and n are fixed
and rsd is varied from 0.15 to 10.0 cm. The optical properties at the parameter set A are often used in
the research field of biomedical optics [34,38], and the properties at the parameter set B correspond to
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those of SiO2 with epoxy resin [39]. Investigations at the parameter sets C, D, E and F allow us to find
the dependence of the analytical results for the fluence rate on µa, µs, and g, respectively.

Table 1. Optical properties: µa[cm−1], µs[cm−1], g[−], and n[−]; and SD distance rsd[cm]. Corresponding
colors are used in Figures 5, 6 and 8–11.

Parameter Sets: [µa, µs, g, n, rsd] Range Color

Set A: [0.10, 100, 0.90, 1.40, rsd] rsd: 0.15–10.0 Black
Set B: [0.35, 58.0, 0.80, 1.56, rsd] rsd: 0.15–10.0 Blue
Set C: [µa, 100, 0.90, 1.40, 0.60] µa: 0.10–1.00 Red
Set D: [0.10, µs, 0.90, 1.40, 0.60] µs: 30.0–200 Green
Set E: [0.10, 100, g, 1.40, 0.60] g: 0.10–0.95 Yellow
Set F: [0.10, 50.0, g, 1.40, 0.60] g: 0.10–0.95 Purple

For the numerical calculations of the analytical solutions of the RTE, dEM, and PDE, we employed
MATLAB codes. For the calculation of ΦLK, we modified an open source by Liemert and Kienle [31].
The computational times for analytical solution of the RTE and dEM are less than 30 s when the optical
properties and SD distance are given. It is noted that the calculations of the numerical solutions of
the RTE and dEM require much higher computational loads than those of the analytical solutions.
For example, the computational times to obtain the numerical solutions of the dEM discussed in
Appendix A are roughly 26 h, although the parallel computing was carried out.

3. Results

3.1. Classification of the Length and Time Scales of Photon Transport

In this subsection, we investigated the temporal profiles of the fluence rate Φ(r, t) using the
analytical solutions of the RTE (Equation (10)), dE0 (Equation (11) with M = 0), and PDE (Equation (12))
for 3D infinite homogeneous media. Also, we investigated the peak time of Φ(r, t), tpeak, because
it is one of characteristic times of photon transport, and a difference in Φ(r, t) is correlated with a
difference in tpeak. Based on results of tpeak at different SD distances rsd = r, we classify length and
time scales of photon transport into following three kinds of characteristic regimes; (1) ballistic regime:
tpeak ∼ tball

peak, (2) scattering regime (few-scattering-event regime): tpeak � tball
peak, tdi f f

peak, and (3) diffusive

regime: tpeak ∼ tdi f f
peak, where tball

peak and tdi f f
peak are defined by

tball
peak =

r
v

, tdi f f
peak =

−3 + 2
√

9
4 + r2µa

D

4µav
. (15)

tball
peak represents the arriving time of photons to the detector position without scattering, and tdi f f

peak the
peak time for the diffusive photons calculated from the PDE (Equation (12)), respectively. Figure 4
show examples of the temporal profiles of Φ(r, t) at the three characteristic length regimes. Here, we
used the analytical solutions with the optical properties for the parameter set A as listed in Table 1
corresponding to the highly forward scattering of photons. While the RTE can appropriately treat the
highly forward scattering, the dE0 and PDE approximate the highly forward scattering to the isotropic
scattering. As shown in Figure 4a corresponding to the ballistic regime, the Φ-profiles using the RTE
and dE0 are sharp, although both profiles are different from each other. The sharp profiles mean
that photons are little scattered and travel almost straight. The peak times tpeak for the RTE and dE0
are almost the same as the arriving time tball

peak, whose value is approximately 8.4 ps. Meanwhile, the
broad profile of Φ using the PDE is observed, indicating the unphysical multiple scattering of photons.
In addition, the tpeak-value for the PDE is shorter than the tball

peak-value, meaning the violation of the
causality in the PDE. As shown in Figure 4b corresponding to the scattering regime, the profiles using
all the equations have smooth peaks. These peaks are formed by scattering of photons, so that these
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peak times are longer than tball
peak, in other words, the paths of photons are longer than the SD distance.

In Figure 4b, the peak times for the dE0 and PDE are different from that for the RTE, indicating that the
forward scattering of photons is not approximated to the isotropic scattering in this regime. As shown
in Figure 4c corresponding to the diffusive regime, all the profiles are almost the same to each other,
meaning the photon scattering becomes diffusive and the isotropic scattering approximation holds.
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Figure 4. Analytical solutions of the RTE (Equation (10)), dE0 (Equation (11) with M = 0), and PDE
(Equation (12)) at the three characteristic length regimes of photon transport: (a) ballistic regime at the
SD distance of r = 0.18 cm (log10 rµ′t = 0.26), (b) scattering regime at r = 0.40 cm (log10 rµ′t = 0.60),
and (c) diffusive regime at r = 1.60 cm (log10 rµ′t = 1.20). The optical properties at the parameter set A
are used, which are listed in Table 1.

We evaluated crossover lengths and times from the ballistic to scattering regimes, and from
the scattering to diffusive regimes, respectively, by investigating tpeak for the RTE, dE0, and PDE.
Then, we normalized the SD distance r by µ′t and the peak time tpeak by µ′tv, respectively, with the
reduced transport coefficient of µ′t = µs(1− g) + µa. The inverses of µ′t and µ′tv correspond to the
characteristic length and time for the dE0 and PDE where photons experience single scattering and
absorbing processes. The normalizations allow us to investigate general features of photon transport in
various kinds of random media. Figure 5 shows the results of the normalized peak times as a function
of the normalized SD distances for the parameter sets A to F listed in Table 1 in a regime of short
length and time scales. Here, the colors of the figures correspond to the parameter sets, e.g., the black
colored pluses, circles, and squares correspond to the results for the parameter set A. In the regime of
log10 rµ′t . 0.35 and log10 tpeakµ′tv . 0.35, the tpeak-results for the RTE and dE0 are linearly related to r,
while the results for the PDE are not. This result suggests that the regime of the length and time scales
correspond to the ballistic regime; and the crossover length and time from the ballistic to scattering
regimes are evaluated as approximately 100.35/µ′t ∼ 2.2/µ′t and 100.35/µ′tv ∼ 2.2/µ′tv, respectively.

Figure 6a shows the tpeak-results in a regime of longer length and time scales than the ballistic
regime. In the case of the same parameter set (the same colored figures), the tpeak-results for the
dE0 and PDE deviate from those for the RTE in the regime of 0.35 . log10 rµ′t . 1.0 and 0.35 .
log10 tpeakµ′tv . 1.6, while the results for all the equations are almost the same to each other in the
regime of 1.0 . log10 rµ′t and 1.6 . log10 tpeakµ′tv. For the further investigation of tpeak, we evaluated
the relative errors Epeak of tpeak against the RTE, defined by

Epeak =

∣∣∣∣∣ tpeak − tpeak,RTE

tpeak,RTE

∣∣∣∣∣× 100, tpeak = {tpeak,dE0, tpeak,PDE}. (16)

Although we calculated Epeak for all the parameter sets, we showed the results only for the
parameter set A in Figure 6b because the results for the other parameter sets behave similarly to the
results for the parameter set A. As shown in Figure 6b, the Epeak-values for the dE0 and PDE are
larger than 2% in the regime of 0.35 . log10 rµ′t . 1.0. Here the Epeak-value of 2% is considered as a
thresh to determine whether the dE0 and PDE are valid or not. The large Epeak-values indicate the
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strong influence of modeling the forward scattering on the Φ-results in this regime. Meanwhile, the
Epeak-values for the dE0 and PDE are less than 2% in the regime of 1.0 . log10 rµ′t, meaning the isotropic
scattering approximation holds. From these results, the crossover length and time from the scattering to
diffusive regimes are evaluated as approximately 101/µ′t = 10/µ′t and 101.6/µ′tv ∼ 40/µ′tv, respectively.
The crossover length from the scattering to diffusive regimes has been extensively discussed so far, and
our evaluation is consistent with the previous studies such as a comparative study of the measurement
data and the PDE-results for 3D slab media [10], and a comparative study of the numerical results
using the RTE and PDE for 2D square media [9]. This consistency implies that boundary conditions
less influence the crossover length because the previous studies consider the finite media, while this
study the infinite media. Meanwhile, the crossover time from the scattering to diffusive regimes is
longer than that evaluated by the previous study [9], which is approximately 20/µ′tv. The difference
probably comes from the dimension of the medium and boundary effects; the previous study considers
2D finite media, while this study the 3D infinite media.
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Figure 5. Normalized peak times tpeak by µ′tv as a function of the normalized SD distances r by µ′t
for the RTE, dE0, and PDE in the ballistic and scattering regimes. µ′t = µs(1− g) + µa represents the
reduced transport coefficient and v the speed of light in a medium, respectively. Colors of the figures
correspond to the results for the parameter sets A to F listed in Table 1 or in the legend at the right-side
of the figure. The dashed line represents the linear relation between tpeak and r. The yellow colored
area corresponds to the scattering regime.
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Figure 6. (a) Normalized peak times and (b) relative errors Epeak (Equation (16)) for the dE0 and PDE
as a function of the normalized SD distances in the scattering and diffusive regimes. The other details
are the same as Figure 5.

The dependence of the tpeak-results on the parameter sets is observed in the diffusive regime as
shown in Figure 6a. This is because that in the diffusive regime, the normalizations of tpeak by µav

and of r2 by µa/D are appropriate, which are suggested from the form of tdi f f
peak (Equation (15)). As a

preliminary study, we confirmed that when the above normalizations are employed, the tpeak-results
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for all the parameter sets are collapsed on a single curve in the diffusive regime. However, for
the evaluation of the crossover length and time from the scattering to diffusive regimes, the above
normalizations are not appropriate because the length regime, where the Epeak-values are larger than
2%, depends on the parameter sets, so that we can not evaluate the crossover length uniquely for all
the parameter sets.

3.2. Length and Time Scales for the dEM to Be Valid in the Scattering Regime

In this subsection, we investigated the temporal profiles of the fluence rate Φ(r, t) and their peak
times tpeak for the RTE and dEM in the scattering regime for the purpose of evaluations of the length
and time scales for the dEM to be valid. As mentioned in Section 2.1.3, for the dEM, the scattering
length scale is modified to the inverse of µM

s from the inverse of µs, and the highly forward scattering
of photons described by pHG is approximated to pM

δ2 . These modifications influence the results of
Φ(r, t).

Firstly, we calculated Φ(r, t) and tpeak for the dEM at different g-values of 0.3, 0.6, 0.9, and 0.95
in the scattering length regime, and investigated the dependence of the results of Φ(r, t) and tpeak
on the expansion order M and on the g-value. The optical properties and SD distance are set as
µa = 0.10 cm−1, µ′s = µs(1− g) = 10.0 cm−1, n = 1.40, and r = 0.32 cm, where the normalized SD
distance is constant as ∼ 100.5/µ′t. Figure 7a shows the temporal profiles of Φ(r, t) for the RTE and
dEM with M = 0, 1, and 2 (dE0, dE1, and dE2) at g = 0.9, corresponding to the highly forward
scattering. While the Φ-profile for the dE0 largely deviates from that for the RTE, the profiles for the
dE1 and dE2 are similar to that for the RTE. Moreover, we investigated the relative error EM

peak of the
peak time for the dEM:

EM
peak =

∣∣∣∣∣ tpeak,dEM − tpeak,RTE

tpeak,RTE

∣∣∣∣∣× 100, (17)

where tpeak,dEM represents the peak time of Φ(r, t) for the dEM. As shown in Figure 7b, the EM
peak-values

are quite small when the expansion order M is larger than 2 at all the g-values. This result means that
the dEM with M > 2 can provide the same accuracy as the RTE, almost independently of the g-values.
Meanwhile, as shown in Figure 2, the g-dependences are observed in the ratios of µM

s /µs and the errors
of the phase function EM

phase. These results suggest that for the accurate calculations of Φ(r, t) using the
RTE and dEM, it is sufficient to satisfy a few orders moment conditions of the phase function and the
exact agreement of the profiles of the phase functions is not required. It is noted that the analytical
results of the small EM

peak-values with M > 2 are quite different from the numerical calculations. The
numerical results for the dEM are usually accurate within a finite range of M, and when the M-value
is larger than the maximum value of the finite range, the numerical results for the dEM largely deviate
from those for the RTE because of the numerical errors induced by angular discretization.

On the above discussion, we investigated EM
peak for the dEM at the constant normalized SD

distance. Next, we investigated EM
peak for the dE0, dE1, and dE2 at the normalized SD distances varied

from the scattering to diffusive regimes. Then, we evaluated the crossover lengths for the dE0, dE1,
and dE2; in a regime of a smaller length scale than the crossover length, the EM

peak-values are larger than
2%, corresponding to the invalidity of the dEM, while in a regime of a longer length scale, the errors
are smaller than 2%, corresponding to the validity of the dEM. Figure 8a–c show the EM

peak-values as
a function of the normalized SD distances at the parameter sets A to F listed in Table 1. While the
max value of EM

peak for the dE0 is over 20%, the max values for the dE1 and dE2 are around 10% and

4%, respectively. The length regime for the dE2 where the EM
peak-values are larger than 2% is shorter

than those for the dE0 and dE1. From the results in the figures (a), (b), and (c), we evaluated the
crossover lengths for the dE0, dE1, and dE2 as approximately 101/µ′t = 10/µ′t, 100.6/µ′t ∼ 4.0/µ′t,
and 100.45/µ′t ∼ 2.8/µ′t, respectively. These results mean that the scattering regime is classified into
the three kinds of regimes by the two kinds of the crossover lengths for the dE1 and dE2. Here, we
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evaluated the crossover lengths for the dE0, dE1, and dE2 as a function of µ′t for the purpose of the
classifications of the scattering regime. As an alternative, we can consider the normalization of the
SD distances by µM

t = µM
s + µa because for the dEM, the inverse of µM

t is the characteristic length
of single scattering and absorption processes. Figure 8d shows EM

peak for the dE0, dE1, and dE2 as a

function of the SD distances by µM
t . The crossover lengths for the dEM with M = 0, 1, and 2 are within

the regime of 0.9 . log10 rµM
t . 1.0, less dependently on the expansion order M. It is noted that the

crossover length from the scattering and diffusive regimes depends on the expansion order M in the
normalization by µM

t , so that we cannot evaluate the regime for the dEM to be valid uniquely in the
normalization. The rough evaluation of the crossover length for the dEM as 10/µM

t means that after
ten times scattering and absorption processes for the dEM, the M-th order dEA holds.

Figure 9 shows the normalized peak times for the RTE, dE0, dE1, and dE2 as a function of the
normalized SD distances by µ′t. From the figure and the results for the crossover lengths based on
µ′t, we evaluated the crossover times for the dE0, dE1, and dE2 as approximately 101.6/µ′tv ∼ 40/µ′tv,
100.8/µ′tv ∼ 6.3/µ′tv, and 100.55/µ′tv ∼ 3.5/µ′tv, respectively. Here, the evaluations of the crossover
times are based on the tpeak-results for the RTE (dashed line in Figure 9 at the parameter set A) because
the RTE is the most accurate photon transport model.

3.3. Influence of the Boundary Conditions on the Crossover Lengths and Times

In this subsection, we investigated the boundary effects on the fluence rate Φ(r, t) and on the
crossover lengths and times for the dEM with M = 0, 1, and 2 by comparing the analytical solutions
for the semi-infinite media with those for the infinite media. We considered the parameter sets A and
B listed in Table 1, and varied the SD distances, denoted by rsi = |r − r+|, in the two directions: the
z-direction with r = (0, 0, z) and ρ-direction with r = (ρ, 0) as shown in Figure 3b. For the case of the
detector position in the z-direction, as the z-value increases, the detector position becomes far from the
boundary, so that the boundary effects probably become weak. Meanwhile, for the case of the detector
position in the ρ-direction, a distance between the detector and the boundary is unchanged, so that the
boundary effects are also unchanged. Figure 10a–c show the relative errors EM

peak for the dE0, dE1, and
dE2 in the semi-infinite media as a function of the normalized SD distance by µ′t. The crossover lengths
for the dEM in the semi-infinite media are almost the same as those in the infinite media, meaning less
influences of the boundary conditions on the crossover lengths.
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Figure 7. (a) Temporal profiles of Φ(r, t) using the RTE, dE0, dE1, and dE2 at g = 0.9. (b) Relative
errors EM

peak of the peak time of Φ(r, t) (Equation (17) as a function of the expansion order M at different

g-values of 0.3, 0.6, 0.9, and 0.95. The optical properties and SD distance are set as µa = 0.10 cm−1,
µ′s = µs(1− g) = 10.0 cm−1, n = 1.40, and r = 0.32 cm.
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Figure 11 shows the normalized peak times for the RTE in the infinite and semi-infinite media as
a function of the SD distances rsd for the parameter sets A and B. Here, the SD distances rsd are given
by r in infinite media, and by rsi in semi-infinite media, respectively. The tpeak-results in the infinite
media and semi-infinite media at the z-direction behave similarly to each other on the whole regime.
Meanwhile, the tpeak-results in the semi-infinite media at the ρ-direction (dotted line in Figure 11 for
the results at the parameter set A) are smaller than those in the other two cases (dashed line) especially
on the regime of the longer length scale than approximately 100.6/µ′t ∼ 4.0/µ′t, which is almost the
same as the crossover length for the dE1. These results suggest that the boundary conditions influence
the crossover time for the dE0, while they have less influence the times for the dE1 and dE2.
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4. Conclusions

We investigated the temporal profiles of the fluence rate Φ(r, t) and their peak times tpeak for
various kinds of random media at different SD distances by analytical solutions of the RTE, dE0, and
PDE for 3D infinite homogeneous media. We evaluated the crossover lengths and times from the
ballistic to scattering (few-scattering-event) regimes, and from the scattering to diffusive regimes as
approximately 2.2/µ′t and 2.2/µ′tv; 10/µ′t and 40/µ′tv, respectively.

Next, we investigated Φ(r, t) and tpeak for the dEM mainly in the scattering regime. We found
that the results for the dE0 are quite similar to the results for the PDE because the dE0 and PDE
approximate the forward scattering of photons as the isotropic scattering. We also found that at the
expansion order of M larger than 2, the results for the dEM are almost the same as those for the RTE in
the scattering and diffusive regimes, meaning the validity of the dEM with M > 2 in the regimes. We
evaluated the crossover lengths and times for the dE1 and dE2 as approximately 4.0/µ′t and 6.3/µ′tv;
2.8/µ′t and 3.5/µ′tv, respectively.

Finally, we investigated the boundary effects on the characteristic length and time scales of photon
transport by comparing the results for the infinite media with those for the semi-infinite media. We
found that the boundary conditions less influence on the crossover lengths for the dE0, dE1, and dE2,
while the boundary conditions reduce the tpeak-values from those for bulk in the regime of the longer
length scale than 4.0/µ′t, which is the same as the crossover length for the dE1. Hence, the crossover
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times for the dE1 and dE2 are less influenced by the boundary conditions. Our findings are useful for
constructions of accurate and efficient photon transport models especially in the scattering regime.
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Appendix A. Verification of the Analytical Solutions of the dEM for 3D Infinite
Homogeneous Media

We verified the analytical solutions of the dEM with M = 0, 1, and 2 for 3D infinite homogeneous
media (Equation (11)) by comparing with the numerical solutions for 3D homogeneous cubic media
under the refractive-index mismatched boundary condition. We numerically solved the dEM and
calculated the temporal profiles of the fluence rate Φ(r, t) based on the finite-difference and discrete
ordinates methods. For spatial and temporal discretization, we employed the 3rd order weighted
essentially non oscillatory and the 3rd order total variation diminishing-Runge-Kutta methods,
respectively. For accurate treatments of the HG phase function and dE phase functions in a case
of the highly forward scattering, we employed the Galerkin quadrature method. Source and detector
positions are set inside the medium to suppress the boundary effects because we compare the analytical
solutions for infinite media with the numerical solutions for finite media. For the details for the
numerical calculations, refer to [32,40]. The optical properties of the medium are set as µa = 0.20 cm−1,
µs = 100 cm−1, g = 0.90, and n = 1.40; and the SD distance is set as r = 0.40 cm, corresponding to the
scattering regime.

Figure A1 compare the analytical and numerical solutions of the dEM with M = 0, 1, and 2 for
Φ(r, t). We found good agreements between the analytical and numerical solutions for all the cases,
meaning the verification of the analytical solutions of the dEM.
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Figure A1. Comparisons of the analytical and numerical solutions of the dEM with (a) M = 0,
(b) M = 1, and (c) M = 2 for the fluence rate Φ(r, t). The optical properties of the medium are set as
µa = 0.20 cm−1, µs = 100 cm−1, g = 0.90, and n = 1.40; and the SD distance is set as r = 0.40 cm,
corresponding to the scattering regime.
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