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Abstract: Fires in underground spaces are especially relevant due to their potential mortality.
However, there is not much research in real-scale spaces done so far. In this study, several fire
scenarios were analyzed in an underground drift, taking into account the main environmental
variables: airflow, temperature, oxygen, and pollutants. The behavior before and after the fire load
was determined, as well as the evolution of the fire over time throughout the drift and its cross-section,
finding important trends of the fire based on the airflow–fuel load ratio. Furthermore, the five most
representative scenarios were modeled using the fire dynamics simulator (FDS). Results obtained in
the simulations, with the adjusted parameters, display a good correlation between simulated and
experimental values, being able to extrapolate these values to know the performance of potential
fires in other underground spaces or mines. The outcomes could also be a very useful tool to
study the effectiveness of possible emergency measures or the potential impact of a fire in this type
of environments.
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1. Introduction

Fires are one of the most serious hazards in underground mining. Despite the efforts made to
improve the working conditions and the research focused on mine fires over the last decades [1], there
were important casualties in the recent years, and it is necessary to analyze them to find the main
causal factors [2,3]. The existence of a large number of flammable materials in a mine (such as conveyor
belts, electrical cables, wood, internal combustion machines, tires, or oils) makes crucial the availability
of proper control systems against potential undesirable situations [4]. This is especially important in
coal mining due to its intrinsic characteristics and mining methods commonly used, where the mineral
itself together with other flammable materials provide a large potential fire [5,6]. Many materials
used in mines are not flame propagators, reducing the virulence of the fire, but it does not impede
its development, as found in various incidents produced over the years [7]. The main issue of a fire
in underground drifts is the generation of highly toxic gases and combustion products, which run
through the entire ventilation return circuit of the mine or even through the intake circuit, being able to
affect large areas of the ventilation network [8,9].

There is an important line of research focused on coal mining including the following topics:
detecting a fire in an early stage [10], reducing the potential fire or explosion using dynamic seals
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with inert gas [11], or analyzing the rock characteristics and its relationship with coal spontaneous
combustion [12], with a special approach in the protection of workers, firefighting equipment,
and facilities such as rescue chambers to guarantee safe conditions for a certain number of workers
trapped by fire or high concentrations of pollutants [13] and know the best escape route in different
scenarios [14]. However, there is still a long way ahead to increase the safety conditions and knowledge
of full-scale fires in underground mines. In this regard, knowing the behavior of the fire and the
environmental conditions that can generate becomes relevant.

Fires may be subjected to diverse conditions within a mine, either due to random location of the
potential fire [12] or because the ventilation of the mine can have a dynamic behavior [15], and it is
necessary to have proper tools for its study. Computational fluid dynamics (CFD) modeling is an
option widely used to determine the ventilation conditions in underground spaces. The study done
by Diego et al. [16] is good guidance for CFD analysis and details the order of magnitude between
modeled and traditional calculations. Guo and Zhang [17] studied the fire behavior in a physical
tunnel and compared the analytical data with the CFD, but in a very narrow tunnel. On the other
hand, Du et al. [18] determined the backlayering in a full-scale tunnel, achieving good results with
considerable dimensions of the grid cell. Despite the specialized code (FDS) developed by the National
Institute of Standards and Technology (NIST) being commonly used, there are still some uncertainties
to solve in large-scale fires [19]. Moreover, it is very difficult to find real-scale CFD analysis compared
to experimental data, where studies mostly focused only on simulating the fire [20]. In recent years,
small-scale tunnels were used to combine experimental data and simulations. Sun et al. [21] exposed
a detailed layout of the experiment that can be extrapolated to full-scale tests, while results from
Tong et al. [22] indicated that FDS simulations agreed well with small-scale experiments. However,
there is a lack of research in real-scale underground mines applying and comparing experimental data
and simulations [23].

The aim of this study is to determine the ventilation behavior due to the development of a fire in
an underground mine, varying the parameters that characterize the fire in a set of several monitored
scenarios in a full-scale laboratory drift, as well as to obtain a model adjusted to the reality with FDS.

2. Materials and Methods

2.1. Experimental Set-Up

The real-scale fire experiments were carried out in a drift from the Bierzo School Mine, belonging
to the Santa Barbara Foundation, in La Ribera de Folgoso, León (Spain). This facility is equipped to
carry out different kinds of tests in underground mine or tunnel conditions and record data from
the experiments.

The underground facilities correspond to a typical structure from a mountain mine, configured in
several extraction levels. The mine has the main access drift on Level-0, 910 m above the sea, and the
main exit on Level-5, 1050 m above. There is a network of drifts with variable geometry regarding
length and section, with the possibility to set up distinct types of ventilation circuits based on the needs
of the planned experiments (Figure 1). The installation has a 110 kW axial forcing fan, which can work
under a variable speed regime, together with two adjustable doors.

A total of 18 tests were carried out with diesel fuel and different configurations of theoretical
fire power and ventilation flow, since it is known that the generation of a fire can create important
distortions in the airflow quantity [9].

The Fire Dynamics Simulator (FDS), v5.3, was used to define the mesh and boundary conditions,
as well as solve the equations, while the Smoke View (SMV), v5.3, was used to visualize the results.
Both software were developed by the National Institute of Standards and Technology (NIST),
Gaithersburg, MD, U.S.A., 2009. As the experiments were performed during several years, the same
version was used over time to preserve compatibility and comparability with all the tests, using a
well-tried and stable version [24].
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2.2. Drift Geometry and Instrumentation

The trials took place in a straight drift with a length of 115 m and a variable section, between
9 and 15.75 m2. The fan was provided with a mechanical adjustment of the vanes and a frequency
inverter with remote control and a working range of the engine from 300 to 1450 rpm. The airflow in
the ventilation circuit was regulated by doors.

An intermediate section of the drift was chosen to locate the fire. This section was located at a
distance of 35 m from the access door (P-09). There were nine control sections of the fire parameters
along the drift, measuring temperatures at three heights (0.5, 1, and 2 m vertically with respect to the
ceiling), air velocity, and airflow. The characteristics and references of the drift are included in Figure 2.

Fire control sensors were installed upstream and downstream of the fire load in order to control
the gases and fumes generated (O2, CO, CO2, NO, NO2, SO2) with the same heights as the temperature
sensors, obtaining real-time data every minute. Figure 3 shows a section of the drift with all the
installation used, while Table 1 details the instrumentation used.

2.3. Initil Analysis

Before the experimental phase, an initial study of the ventilation circuit was carried out to know
its behavior when there is variation in the door opening and the influence of natural ventilation,
as well as the humidity and temperature average initial conditions. Five scenarios, gathered in Table 2,
were considered as representative for the subsequent tests, taking into account the door opening
and fire load. Experimental values correspond to the airflow and velocity measured just before the
performance of the specific test, while FDS data were the mean values based on the door opening in
the 18 scenarios studied.



Appl. Sci. 2020, 10, 3380 4 of 14

The ventilation conditions correspond to three positions of the door opening: 100%, 17%, and 0%.
Other variants of door opening were analyzed, but only these three were taken into account due to
their representativeness as different fire environments.

A total of 18 distinct situations were used to determine the behavior of gases and discriminate
which are the most relevant, 10 carried out in summer and eight in winter seasons, considering the
different outdoor environmental conditions.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 15 
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Table 1. Characteristics of the sensors.

Equipment Type and model

Thermocouple TC Ltd. Type K
Anemometer Trolex. Vortex TX 12233 Mk

Barometer Wika. FBA30WB2-900Y
Manometer Testo GmbH&Co. 520 D0E10

ENVIRO Multisensor Trolex. TX6522.01.51
Data acquisition system Advantech. ADAM 5000
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Table 2. Values used in the different scenarios. FDS—fire dynamics simulator.

Scenarios
Experimental Data FDS Data

Fire Load (MW)Airflow (m3/s) Velocity (m/s) Airflow (m3/s) Velocity (m/s)

1 (Door 0%) 1.93 0.21 1.90 0.21 4.73
2 (Door 17%) 5.10 0.57 5.30 0.59 4.73

3 (Door 100%) 10.45 1.16 12.50 1.39 4.73
4 (Door 100%) 11.05 1.23 12.50 1.39 9.46
5 (Door 100%) 13.38 1.49 12.50 1.39 14.20

2.4. Fire Load

The position of the vessel with the fuel was located at 35 m of the drift, Figures 2 and 3. The vessel
was formed by a square base, 1.5 m wide and 0.40 m high, with an iron plate of 4 mm thickness.
The fuel used was a type of diesel with a density of 0.86 g/cm3 at 15 ◦C, a specific heat of 82.2 Cal/mol·K
at 20 ◦C, a heat of combustion of 45.5 kJ/g, and a thermal conductivity of 0.1 kcal/hm·K at 20 ◦C.

The fuel was also analyzed in each fire test to determine the following characteristics: cetane
number, flash point, water and sediment, ashes, high calorific value, low calorific value, sulfur, carbon,
hydrogen, and nitrogen. All these fuel characteristics were used in the adjustment of the FDS model.

2.5. Model Formulation

The large eddy simulation (LES) model was used, which allows the resolution of turbulent models
in a computational calculation time shorter than other options by filtering the Navier–Stokes equations.
It is a system widely used in the resolution of combustion models [17,21,23].

The initial rate of heat release for the FDS was based on the equations expressed by Zalosh [25],
where parameters ∆H, x, ma, and k are characteristic of the type of fuel used.

Q = m·∆H·x·S, (1)

m = ma·
(
1− e−kD

)
, (2)

where Q is the fire power (kW), m is the mass of fuel burning (g/s·m2), H is the lower calorific value
of the fuel (kJ/g), x is the combustion efficiency (%), S is the combustion free surface (m2), ma is
the asymptotic mass for large fires (kJ/g), k is the effective absorption coefficient (m−1), and D is the
equivalent diameter of the exposed surface (m).

As the equivalent diameter was greater than 1 m, flames were considered fully turbulent and
the burn rate was independent of the diameter [26]. Table 3 shows the simulation details, while the
meshing is detailed in Figure 4. The calculation volume was 3159 m3, with a cell size of 0.6 × 0.6 × 0.6 m,
obtaining a total of 14,625 cells, which is similar to other previous studies [18]. A preliminary analysis
of partial areas of the mesh with smaller grid cells was done, achieving similar results; therefore,
the grid was considered as adequate for the purpose of the study.

The control points of the parameters in the three orthogonal axes were marked on this mesh, with
symmetry conditions, taking into account the sensors applied in the experimental tests for the contour
conditions. The vertical exhaust rise, which communicates with the ramp, was located in the last
meters of the drift (Figure 1).
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Table 3. Modeling features.

Stage Features Value

Modeling design
Cell size 0.6 × 0.6 × 0.6 m

Cell size rate 1 × 1 × 1
Number of cells 14,625

Combustion parameters

Surface type BURNER
HRR (heat release rate) 2.220 kW/m2

Vessel dimensions 1.8 × 1.2 m
Material of the vessel Steel Sheet

Initial conditions
Air temperature 10 ◦C

Humidity 80%
Fan airflow 30 m3/s

Simulation
Type of simulation LES (large eddy simulation)

Total time 4800 s
Output data frames 4800
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3. Results and Discussion

3.1. Experimental Data

Table 4 details the mean and maximum values of the pollutants and the maximum and minimum
values of oxygen, based on data recorded downstream of the drift every minute for the five tests studied.
CO2 values below 1% were not detected due to the sensitivity of the measuring equipment used.

Results from the previous table show almost constant oxygen levels in all cases, except when
there was a very small opening of the air inlet door or it was closed, between 0% and 4%, lowering
the oxygen level to 16% in these cases. Furthermore, it coincided with the highest levels of CO, NOx,
and SO2. Based on the experiments, it can be seen that an abrupt reduction in the air supply had
a much greater impact on the variation of pollutant concentration than an increase in the fuel load.
The CO2 measurements only give an indicative value, since the sensor used was not entirely suitable
for the kind of test performed due to a lack of sensitivity of the device, in the lower range.

As mentioned in Section 2.3, the most representative fire scenarios are displayed in Figures 5–9,
detailing the evolution of the pollutants, temperature, airflow, and pressure as a function of time and
for each of the five main scenarios analyzed.
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Table 4. Average values of the combustion pollutants.

Conditions
O2 (%) CO (ppm) NOx (ppm) SO2 (ppm) CO2 (%)

Max. Min. Mean Max. Mean Max. Mean Max. Mean Max.

0%, 180 L 21 16 958 1063 6 16 79 102 - 3

17%, 180 L 20 21 234 362 2 5 24 64 1 2

100%, 180 L 20 21 67 91 2 4 19 26 1 1

100%, 360 L 20 21 132 233 2 3 23 25 1 2

100%, 540 L 20 21 219 284 4 5 19 21 1 2
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The dry temperature did not present any change with respect to the outside temperature except
in Scenario 5, the test with the biggest fire load, having a small variation over time. On the other hand,
the airflow was significantly affected by the fire evolution over time when the door was fully open.
There was a variation between 12.5 m3/s and 20 m3/s for a load of 180 L of fuel, while, for loads of 360
and 540 L, the flow increased to 30 m3/s, representing a 60% increase for E3 scenario and between 150
and 200% for E4 and E5. This variation occurred after 960 s from the beginning of the fire in E3, while it
happened at 450 and 420 s for E4 and E5, respectively. This phenomenon is due to a natural pull of the
ventilation in the same direction of the flow due to a temperature increase once the fire reaches its
maximum development. Then, as the fire loses power, the additional airflow is gradually reduced
until it reaches the initial situation. In addition, it was also observed that it acted as a resistance during
a brief period of time at an early stage of the fire, reducing the airflow.

In the case of pollutants generated by the fire, scenarios E1 and E2 followed a similar trend, while
scenarios E3 to E5 had a different common pattern. In the first case, there was a reduction in oxygen
as a consequence of a very important increase in the concentrations of CO, NOx, SO2, and CO2 900
and 1650 s after the start of the fire for trials E1 and E2, respectively. This difference is mainly given
by the airflow variation in the intake. In the E1 test, the airflow was very low, 1.93 m3/s, increasing
the pollutants due to incomplete combustion in an earlier stage. In the case of E2, as the airflow was
higher, 5.1 m3/s, the incomplete combustion phenomenon appeared once the fire was fully developed.

On the other hand, trials E3, E4, and E5 showed a common behavior, increasing the concentration
of pollutants once the fire reached its maximum power, with a stable emission period and finally
decreasing the concentration as the fire faded. The only difference between scenarios was the pollutant
concentration, showing a direct relationship with the fuel load, and the time to reach the maximum
level of emissions (1080, 480, and 450 s, respectively).
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Three differentiated fire phases can be defined based on the experiments: (1) growth, with a small
generation of pollutants, which increased over time; (2) maximum power of the fire, with a plateau
with a variable duration depending on each test, with high concentration of pollutants; (3) decrease
and end of the fire, with a progressive reduction of the pollutants concentration over time.

The temperature evolution throughout the drift is shown below as a function of time for the five
scenarios analyzed. Figures 10–14 gather these scenarios, distinguishing the lower and upper parts of
the drift at 0.5 and 2 m, respectively.
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The temperature evolution displayed a similar trend: a rise in temperature followed by a stable
period of maximum temperature and then a progressive decrease as the fire faded. However, there was
an important divergence if it was compared the period from which the temperature increased because
of the fire. The temperature increase was recorded earlier than pollutants in E1 and E2, while, in E3
and E4, the opposite occurred and E5 showed an almost identical start for temperature and pollutants.

On the other hand, a phenomenon already mentioned in the previous figures was observed
upon analyzing the behavior of the flow. Shortly after reaching the maximum fire power, there was a
decrease in the temperature until it reached a stable level. This was due to the fire acting as a resistance
in the ventilation circuit at the beginning, as can be seen in the sensors close to the fire: S2, S3, and S4.
This phenomenon indicates that there was an advance of the fumes in the opposite direction of the
flow during this period, i.e., a roll-back [8], being more pronounced in the case of lower initial airflow.
Regarding the maximum temperatures reached, there was a notable difference between lower and
upper parts of the drift, showing a 60–320% difference in temperature for the same cross-section.

The outcomes obtained are very important to know potential hazardous scenarios in drifts from
the production level, with similar sections and airflows, and where an important quantity of equipment
is placed. The knowledge of temperatures and pollutant concentration over time can be used to apply
safety and corrective measures.

3.2. FDS Results

Results obtained in the experiments and the FDS model are detailed and compared below. The five
scenarios depending on the fuel load and door opening are gathered in Tables 5 and 6. As previously
mentioned, there were three temperature control points at different heights in each section (P1: 2 m, P2:
1 m, P3: 0.5 m).
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Table 5. Experimental values from the tests.

Section Control Point
Temperature (◦C)

E1 E2 E3 E4 E5

P1 139 78 16 19 23
S1 (−30 m) P2 109 44 16 19 22

P3 63 27 16 19 20

P1 255 241 32 26 27
S2 (−10 m) P2 213 193 20 25 25

P3 113 42 16 20 22

P1 290 268 63 45 64
S3 (−5 m) P2 233 218 34 31 63

P3 144 64 22 16 49

P1 355 264 212 502 593
S4 (5 m) P2 244 181 184 503 590

P3 117 100 127 332 378

P1 251 216 133 260 368
S5 (10 m) P2 185 172 102 188 284

P3 106 97 87 105 185

P1 229 200 122 231 329
S6 (15 m) P2 197 178 109 201 290

P3 104 98 78 119 176

P1 186 168 112 198 283
S7 (25 m) P2 165 147 99 167 256

P3 99 95 69 103 166

P1 143 134 97 163 238
S8 (40 m) P2 126 118 88 144 214

P3 96 91 61 98 163

P1 113 109 85 138 199
S9 (60 m) P2 101 100 81 127 182

P3 49 62 52 83 140

Table 6. FDS values for the same scenarios.

Section Control Point
Temperature (◦C)

E1 E2 E3 E4 E5

P1 157 92 22 28 34
S1 (−30 m) P2 145 68 23 30 35

P3 94 40 25 31 29

P1 276 195 26 31 35
S2 (−10 m) P2 203 128 25 31 38

P3 98 51 20 25 32

P1 344 260 45 35 45
S3 (−5 m) P2 237 175 30 38 51

P3 107 55 20 23 62

P1 402 336 181 412 508
S4 (5 m) P2 311 291 141 404 499

P3 163 165 142 296 326

P1 334 296 158 257 388
S5 (10 m) P2 283 268 141 208 326

P3 150 144 108 126 200

P1 289 261 149 248 350
S6 (15 m) P2 254 241 142 227 328

P3 149 139 89 163 224

P1 235 218 139 224 313
S7 (25 m) P2 216 205 140 223 303

P3 140 127 83 136 196

P1 182 184 120 186 258
S8 (40 m) P2 173 169 121 185 258

P3 121 130 88 136 184

P1 136 145 103 158 213
S9 (60 m) P2 132 134 107 164 220

P3 64 71 86 129 172
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The mean percentage deviations between experimental and simulated values were as follows: E1,
27%; E2, 35%; E3, 24%; E4, 22%; E5, 20%. An accuracy was reached similar to other studies using CFD
software to analyze the ventilation behavior in full-scale underground mine conditions [16]. The FDS
simulation presented more adjustment problems with the actual values when the airflow was very low
(E1 and E2). The correlation of the mean values by section between experimental data and simulations
is shown in Figures 15 and 16.
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The FDS adjustment showed similar patterns between E1 and E2 and between E3, E4, and E5.
In the first case, it showed a good experimental–FDS fit in the pre-fire zone, while the simulated values
exceeded the fire temperatures in the zone after the fuel load, with a tendency to converge when the
fire faded. On the other hand, trials E3, E4, and E5 showed a very good fit up to the area just after the
fire, where the temperature was underestimated (S4 at 5 m) and then slightly overestimated (S5 at 10
m), following the same trend throughout the drift. Overall, the correlation between the experimental
and simulated mean values was better when there was more airflow and higher firepower.

Further research stated some variations in the results with newer FDS versions [27], but consistent
with experimental data in both cases [27]. Moreover, the performance and accuracy of the FDS version
used in the study was validated in previous studies comparing simulations and experimental data [25],
which is in accordance with the outcomes achieved in this study. Results are adequate to study fire
situations in underground mining, but further research should be done to be fully applicable for
tunneling and other large closed spaces, specifically increasing the accuracy of the simulations with a
smaller grid cell and examining the immediate area around the fire.
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4. Conclusions

The performance of the fire, as a function of time, was defined in a monitored real-scale space
and subjected to distinct fire scenarios that can be extrapolated to possible fires in a mine, varying
the airflow, fuel load, and door opening. These scenarios were set in terms of combustion pollutant
emission, airflow fluctuation, and temperatures throughout the entire drift, either in length or at
different heights, as well as the interaction of these parameters over time.

The experiments proved that an abrupt reduction in the air supply had a much greater impact on
the variation of the gas concentration than an increase in the fuel load. Despite the fires following
the theoretical principles, the airflow–fuel load ratio considerably varied the fire behavior over
time in terms of temperature, pollutants emitted, airflow variation, and the development of the
roll-back phenomenon.

In addition, several fire simulations were performed, adapting the FDS code for the five most
relevant scenarios, comparing the results with the actual tests and obtaining a good correlation between
simulated and experimental values. The average of the maximum deviations in all the sections was
24%, obtaining the smallest deviations in the areas near the focus of the fire and in the upper part of
the drift (around 10%).

The adjusted parameters in the model can be used for future analysis of fires in other mining
activities or underground spaces, especially regarding the airflow behavior and temperatures reached.
Furthermore, it can be very useful to analyze and define the most efficient emergency measures or the
potential impact that a fire could generate in the critical areas of the mine.
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