iriried applied
L sciences

Article
Malicious JavaScript Detection Based on Bidirectional
LSTM Model

1,2,%

Xuyan Song 12, Chen Chen 23, Baojiang Cui and Junsong Fu 12

1 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;

sungxy@bupt.edu.cn (X.S.); fujs@bupt.edu.cn (J.F.)
2 National Engineering Laboratory for Mobile Network Security, Beijing 100876, China; chencc924@bupt.edu.cn
School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Correspondence: cuibj@bupt.edu.cn

Received: 24 April 2020; Accepted: 10 May 2020; Published: 16 May 2020 Elrll)e;:tzjsr
Abstract: JavaScript has been widely used on the Internet because of its powerful features, and almost
all the websites use it to provide dynamic functions. However, these dynamic natures also carry
potential risks. The authors of the malicious scripts started using JavaScript to launch various attacks,
such as Cross-Site Scripting (XSS), Cross-site Request Forgery (CSRF), and drive-by download attack.
Traditional malicious script detection relies on expert knowledge, but even for experts, this is
an error-prone task. To solve this problem, many learning-based methods for malicious JavaScript
detection are being explored. In this paper, we propose a novel deep learning-based method for
malicious JavaScript detection. In order to extract semantic information from JavaScript programs,
we construct the Program Dependency Graph (PDG) and generate semantic slices, which preserve rich
semantic information and are easy to transform into vectors. Then, a malicious JavaScript detection
model based on the Bidirectional Long Short-Term Memory (BLSTM) neural network is proposed.
Experimental results show that, in comparison with the other five methods, our model achieved the
best performance, with an accuracy of 97.71% and an F1-score of 98.29%.

Keywords: cyber security; malware detection; program slice; deep learning; malicious JavaScript;
Bidirectional LSTM

1. Introduction

JavaScript is a lightweight scripting language that is often included in web pages to provide additional
dynamic functionality [1]. The study of Bichhawat et al. [2] shows that more than 95% of Web sites choose
the JavaScript language for Web front-end development. However, JavaScript’s dynamic nature [3] makes it
widely abused by malware authors to attack the network users” computers and mobile devices. According
to the Internet Security Threat Report [4], in 2018, 1 in 10 analyzed URLSs were identified as being malicious,
and meanwhile 1 in 16 URLs were malicious in 2017. These malicious codes mainly employ the script
language such as JavaScript and VBScript. For example, FormJacking [5] is a JavaScript-based attack
that steals credit card details and user privacy on the checkout pages of e-commerce websites. In 2018,
an average of 4,800 websites were compromised by FormJacking attacks each month. In addition, there
are various types of attacks based on malicious JavaScript, such as the XSS, drive-by download attack [6],
and even the Distributed Denial of Service (DDoS) Attack [7].

For security researchers, finding these malicious JavaScripts is usually much more difficult than
expected. On the one hand, attackers often use obfuscation techniques to hide their malicious intent to
evade the detection of antivirus software. On the other hand, the dynamic nature and flexible syntax
of JavaScript further increase the complexity of analysis. Attackers can dynamically generate attack
instructions during script execution, which makes traditional static analysis techniques [8,9] fail to
perform well.

Appl. Sci. 2020, 10, 3440; d0i:10.3390/app10103440 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2445-1987
http://dx.doi.org/10.3390/app10103440
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/10/3440?type=check_update&version=2

Appl. Sci. 2020, 10, 3440 20f21

Traditional solutions for malicious JavaScript detection rely on expert knowledge. But even for
experts, determining whether a JavaScript file is malicious is an error-prone and time-consuming task
because of the complexity of the problem. To overcome these limitations, many new learning-based
methods are being explored. Researchers believe that these methods can better understand the complex
malicious JavaScripts and automatically detect and analyze new variants. In recent years, researchers
have employed some machine learning algorithms to model and detect JavaScript malware by different
intermediate representations. In particular, Fang et al. [10] used the V8 engine to generate JavaScript
bytecode and trained deep learning models based on features extracted from the bytecode. Similarly,
Stokes et al. [11] proposed a new deep learning model to process the byte sequence of detecting
malicious JavaScript. Moreover, Hao et al. [12] extracted API symbol features from the abstract syntax
tree and used the Naive Bayes algorithm to detect malicious JavaScript. Based on the N-grams features
extracted from the abstract syntax tree, Fass et al. [13] also proposed a fully static analysis method.
With JSAC, Liang et al. [14] exacted feature from malicious JavaScript’s abstract syntax tree (AST) and
control flow graph (CFG) and implemented tree-based convolutional neural networks (CNN) and
graph-based CNN to process the feature, respectively.

The above studies treat the program as a special natural language. There are indeed similarities
between programs and natural languages. For example, they are both in the form of sequences,
and they all conform to specific syntax rules. However, the syntax of the program is more flexible,
and the dependency relationship between statements is not determined by their distance, which means
that simply traversing the abstract syntax tree or the token sequence cannot effectively capture the
semantic information. This means that abstract representations that are more sensitive to program
characteristics make malicious JavaScript detection more accurate.

Therefore, we propose a novel abstract code representation for malicious JavaScript detection,
which preserve rich semantic information and are easy to transform into vectors. Then, a malicious
code detection model based on the Bidirectional Long Short-Term Memory (BLSTM) neural network is
proposed. In summary, the contributions made by this paper are as follows:

e We propose a new approach for detecting malicious JavaScript based on the BLSTM neural
network. In order to extract semantic information and transform code into vectors we propose the
concept of semantic slice for malicious JavaScript and leverage specific key functions as the slicing
criterion to generate program slices.

e Wesstudied the influence of obfuscation technique on neural classifier, which is one of the key steps
in data processing. Through the comparison of multiple sets of experiments, we observe that the
obfuscation can reduce the performance of the BSLTM neural network. Then we comprehensively
discuss the reasons for this situation.

e We implemented the BLSTM neural network and compared it with four other machine
learning-based detection models and a traditional antivirus software. Experimental results
show that our model achieves the best performance.

The rest of this paper is organized as follows. We introduce related work in Section 2. The abstract
code representation of JavaScript is proposed in Section 3 and the BLSTM neural network for malicious
JavaScript detection is introduced in Section 4. In Section 5, we introduce experimental designs and
experimental results. We discuss the limitations in Section 6 and the conclusion in Section 7.

2. Related Work

In addition to the previously mentioned malicious JavaScript detection algorithms, some other
methods are discussed in this section. We divide the traditional related work into two categories:
dynamic analysis and static analysis, and they are presented in the following, respectively.

Appl. Sci. 2020, 10, 3440 30f21

2.1. Dynamic Analysis of Malicious JavaScript

Dynamic analysis can capture the runtime behavior of JavaScript programs, which is important
for detecting runtime attack vectors.

Cova et al. [15] proposed a system for detecting and analyzing malicious JavaScript code,
which uses ten characteristics to describe the entire life cycle of a vulnerability attack, from the initial
request to the actual exploitation of the vulnerable component. During the detection process, the system
can identify the abnormal JavaScript code by simulating the behavior of the abnormal JavaScript code
and comparing it with the established profiles.

Simulating the behavior of JavaScript may lead to distortion, and hence some researchers used
JavaScript engines to capture dynamic features. Kyungtae et al. [16] proposed JavaScript lightweight
execution engine J-Force. When using the engine to execute and traverse code execution paths
that may hide malicious programs, the J-Force records and selects different branches to form new
paths during execution. The function call parameters, tracked objects, and Document Object Model
(DOM) node content are also used to detect malicious and DOM injection attacks. Because J1-Force
simulates all possible execution paths of JavaScript code, the detection time of a complex JavaScript
with multi-branch and multi-path increases exponentially, so the detection speed is less than that of
other methods.

Similarly, Jayasinghe et al. [17] proposed a method for dynamically monitoring web browsers
to generate byte streams, which can detect potential drive-by download attacks in the web
browser environment.

Considering the JavaScript’s support for Android, a method for detecting attacks in cross-platform
applications was proposed by Mao et al. [18]. This method extracts runtime information from the
application and uses function-level execution information to distinguish benign and malicious behavior.

In conclusion, dynamic analysis plays an important role in detecting malicious JavaScript.
However, in order to obtain higher accuracy, dynamic analysis requires more time and resources
(e.g., memory or CPU). Sometimes, dynamic analysis fails to obtain test results in an acceptable time.

2.2. Static Analysis of Malicious JavaScript

Static analysis aims to analyze the static behavior features of JavaScript programs. It usually
transforms the code into some suitable intermediate representation (e.g., token sequence, AST),
and extracts features from them. These features are modeled to determine whether the sample
is malware.

Davide et al. [19] extracted features from the JavaScript code and URL associated with the HTML
content of the web page, and then used static analysis techniques to analyze these features.

Similarly, Zozzle [20] also extracted features from the AST. Zozzle is a static JavaScript malware
detection system deployed in most commercial browsers. It uses Bayesian classification of hierarchical
features of the AST of JavaScript to identify syntax elements of highly predictive malware. Experiment
results show that Zozzle can effectively detect JavaScript malware through static code analysis.

Some researchers prefer to extract features manually. For example, Likarishet et al. [21] manually
selected 65 malicious JavaScript features through statistical analysis of a large number of samples,
and then test the effectiveness of these features. However, manual feature selection relies on expertise
and extensive experience. This means the method cannot detect new malware variant.

In addition, the authors in [22-24] use lexical analysis to extract code features, and propose
detection tools for malicious pdf and SQL injection. Some other methods [25-28] extract syntax
information from AST to detect malicious JavaScript.

Compared with dynamic analysis, static analysis requires less resources and has fast detection
speed. Through reasonable design, static analysis can also achieve high performance.

Appl. Sci. 2020, 10, 3440 40f21

3. Abstract Code Representation

Since deep learning algorithms use vectors as input, JavaScript programs need to be transformed
into vector representations. However, this transformation process is not arbitrary, because the
transformed vector needs to retain the semantic information of the program. This means that we need
a suitable abstract code representation to connect programs and vectors.

As shown in Figure 1, we first deobfuscate the raw JavaScript code to expose semantic information.
Then, the Program Dependency Graph (PDG) is generated based on the Abstract Syntax Tree (AST)
and the Control Flow Graph (CFG). The PDG can help us find the dependencies between statements
and facilitate program slicing. Finally, we obtained the semantic slices of a JavaScript program,
which preserve rich semantic information and are easy to transform into vectors.

Abstract Code Representation

] 1
] 1
: AST » CFG » PDG :
I 1
L o o o o o o e —m_ 1
e -
I } : 1
| ; Program : | .
IS I JavaScript < Program Slices | , | |Semantic
files ™| Deobfucation [7| DeP endel_lcy | Generation 1 || slices
Analysis |
1
1
1

Figure 1. A brief review of abstract code representation.
3.1. Defining Semantic Slice

In order to extract the semantic features of the program and transform it into the input vector
of the neural network, we need a reasonable abstract code representation, just as one would with
processing natural language. However, there are many differences between program code and natural
language. On the one hand, in natural language, the semantics of a word is limited to a small space,
whereas in program code, words cannot be directly mapped to a limited semantic space [11]. On the
other hand, the syntax of the program code is more flexible than natural language. In a program,
two adjacent statements may have no relationship at all, which is rare in natural languages. This means
that program code cannot be viewed as a sequence of words just like natural language. Therefore,
we propose a semantic slice as an abstract code representation, which is much finer than using words.

The semantic slice is a kind of program slice, which consists of a number of statements that have
semantical dependencies on each other, such as control dependence or data dependence. In order to
generate semantic slice, we need to introduce the key function, which refer to specific API functions in
the program. Intuitively, the key function can be seen as an indicator of code snippets implying the
existence of a malicious script. For example, malicious code must execute some instructions to achieve
their evil intent. This process requires calling specific system API functions, such as the eval function.
Therefore, we take the eval function as a key function and get all the statements that are dependent on
it. These statements are considered a semantic slice. This is inspired by the observation that a large
percentage of malicious scripts require specific API function calls to trigger malicious behavior.

In this paper, we leverage the specific key functions to generate semantic slices of JavaScript programs
and demonstrate its effectiveness in malicious JavaScript detection based on the BLSTM neural network.

3.2. JavaScript Deobfuscation

The obfuscation technique is widely used in JavaScript programs. On the one hand, benign
obfuscation can protect intellectual property rights and prevent code from being plagiarized. On the
other hand, to evade the detection of antivirus software and hide malicious intent, malicious JavaScript

Appl. Sci. 2020, 10, 3440 50f 21

uses a variety of obfuscation techniques. This presents a challenge to malicious script detection. Several
categories of obfuscation have been collected, as stated by [29-31], and they are discussed as follows:

(1) Randomization Obfuscation includes randomly inserting or modifying script elements without
changing the semantics of the script, for example, adding whitespace characters, randomizing
variable and function names. These operations invalidate content-based detectors.

(2) Encoding obfuscation uses standard encoding or custom encoding to encode key variables and
strings, making detection tools unable to identify real information.

(3) Data obfuscation uses various operations to modify and regroup strings in programs, including,
string concatenation, string splitting, and string replacement.

(4) Logical obfuscation refers to adding functional-independent logical structures to the code, such
as a large number of conditional branch statements.

It should be noted that the obfuscation technique is not one technique but a combination of
multiple techniques, which brings potential risks to the deep learning-based classifier for detecting
malicious JavaScript. For example, the training dataset for the neural network is mainly composed of
encoding obfuscated samples, in which there are a large number of encoded variables in the program,
then the trained neural network model may only tend to identify samples with abundant number of
encoded variables as malicious script. This makes the classifier more prone to false positives when
detecting samples processed by other obfuscation techniques.

To solve this problem, we need to deobfuscate the samples. We select JSDetox [32] and other
5 online JavaScript deobfuscation tools to process the samples. JSDetox is a famous JavaScript
deobfuscation tool which can analyze the given code and tries to solve calculations through static
analysis of the code. As shown in Figure 2, in the original code, the parameter of document.createElement()
is the result of an anonymous function calculation. Through the processing of JSDetox, the calculation
results of the variables XoNo and apoc are placed in the correct position of the document.createElement().

var GPSweCkB =
document.createElement((var GPSweCkB =
function () { document.createElement(
var XoNO="ject",apoc="0b"; "object"
return apoc+XoNO);
10);
(@) (b)

Figure 2. An example of deobfuscation using JSDetox. (a) shows the original code; (b) shows the
analysis result.

After further analysis, we find that the obfuscation techniques lead to huge changes in the results
of static analysis (e.g., lexical analysis, syntactic analysis) of the code. Table 1 shows the statistic result
of the code in Figure 2 after lexical analysis and syntactic analysis. The statistic result shows the
obfuscation increases the number of tokens and the number of AST nodes by 3 and 2 times, respectively.
These changes inevitably distort features extracted at the lexical level and syntactic level. Also, this
indicates the necessary to leverage the deobfuscated samples to train a neural network.

Table 1. Statistical results after static analysis of the code in Figure 2.

State #Token #AST Node
Original code 30 24

Analysis result 9 10

Appl. Sci. 2020, 10, 3440 6 0f 21

3.3. Program Dependency Analysis

In order to generate semantic slices, we need to generate the Program Dependency Graph (PDG) of
input programs, which can help us analyze the dependency between statements. For this purpose,
we first parse the program to get the Abstract Syntax Tree (AST) of the program. Then, the Control Flaw
Graph (CPQG) is generated by adding control dependencies to the AST. Finally, the data dependencies
are added to the CFG. Figure 3. shows how to generate PDG with an example.

Xpression
Statement

var a = 42

var b = 5

if(a > 10){
a=a-b

}

(a) (b)

Variable
Declaration

A 4

Variable Binary Xpression
Declarator Expression Statement
y
Assignment Variable
Expression Declarator
Binary
Expression
(9

Figure 3. The process from source code to abstract syntax tree to program dependency graph. (a) shows
the sample code with an if statement; (b) shows the Abstract Syntax Tree generated by the sample code;
(c) shows the Program Dependency Graph generated by the Abstract Syntax Tree.

Variable
Declaration

Syntactic Analysis. We leverage Esprima [33], a famous open source JavaScript parser, to take
syntactic analysis. It takes a valid JavaScript sample as input and generates the corresponding AST.
Overall, Esprima consists of 69 syntax units, which are divided into four categories: Expressions,

Appl. Sci. 2020, 10, 3440 7 0f 21

Patterns, Statements, and Declarations. Figure 3b shows the parsing result, where the sample from
Figure 3a is transformed into an AST. In order to make it easy to understand, this paper retains the
variable name and constant value in the leaf node, but they are not part of the AST.

The AST retains the structural information of the source code, but does not contain any control
dependency and data dependency.

Control Flow Analysis. Compared with the AST, the CFG is able to infer the conditions that
must be met when executing a specific program path. To this end, statements are represented by nodes
connected by directed edges to represent control flow. As shown in Figure 3¢, the CFG is constructed
over the previous AST in order to preserve the relationship between nodes. We refer to the extension
of the AST with control flow edges as CFG. There are many advantages to a CFG, for example, it can
easily summarize the information of each statement, it can easily locate the code that is not accessible
in the program, and it can easily find syntax structures such as loops in the CFG.

To add control dependencies in the AST, we first traverse the AST and look for nodes with
conditional syntax units, such as IFStatement and SwitchStatement. Then we traverse the subtree of the
node, and add control dependent edges between the parent and child nodes, that is, the green directed
edges on Figure 3c.

Data Flow Analysis. Finally, we implemented the PDG, which extends the previous CFG with
the data dependency. As shown in Figure 3¢, the nodes are connected with the directed blue edge if
an element (e.g., variables, objects, function) defined or modified at source node is used at the target
node. Because the PDG captures the data and control dependency between the different program
components, it is not influenced by the order of statements. In addition, the PDG implementation
follows the scoping rules of JavaScript and distinguishes between function declarations and function
expressions. Also, the function call node is connected to the corresponding function definition node
with data dependency, which define the PDG at the program level.

3.4. Program Slices Generation

Before generating program slices, we need to choose the appropriate key function, which can guide
the slicing to cover as many possible malicious statements as possible. We selected 2000 malicious
scripts from the dataset (detailed in Section 5) and performed statistical analysis to study the features
of API function calls. There are many studies that demonstrate the usefulness of API function calls for
malicious script detection as well, such as [34,35]. Combining existing research with our statistical
results, the key functions are divided into 4 categories according to their features. Table 2 shows the API
functions corresponding to each category of key functions.

Table 2. The key functions categories.

No Categories API Functions
1 String Operation substring(), charAt(), split(), concat(), slice(), substr()
2 Encoding Operation escape(), unescape(), string(), fromCharCode()

setTimeout(), location.reload(), location.replace(), ducument. URL(),
doucument.location (), document.referrer(),

eval(), setTime(), setInterval(), ActiveXObject(), createElement(),
document.write(), document.writln(), document.replaceChildren()

3 URL Redirection

4 Specific Behaviors

String Operations: The API functions regarding string are widely used in malicious JavaScript.
These functions are used by attackers to obfuscate code, which allows malicious scripts to evade the
detection of most programmers.

Encoding Operations: Similar to string operations, the API functions regarding encoding encode
variables and strings, making the attack scripts difficult to understand.

Appl. Sci. 2020, 10, 3440 8 of 21

URL Redirection: JavaScript-based redirection technology is widely used in malicious pages to
redirect spam.

Specific Behaviors: Malicious scripts frequently execute specific instructions dynamically,
for example, use the document.replaceChildren() function to dynamically manipulate the document
object model tree and plant malicious links into web pages.

When we implement program slicing, for convenience, all these key functions are divided into
forward functions and backward functions according to the position of the dependent statement.
The forward function receives parameters from an external input, such as a file or HTTP request.
For example, the eval function is a forward function because its arguments must come from the
previous statement. The backward function is that when the program runs, it does not need to receive
parameters from the external environment. Program slicing has 3 steps:

(1) Traverse the PDG of the input program to find a specific node. This node can hint that there is a
key function in the statements, such as CallExpression, FunctionDeclaration, or VariableDeclaraion.

(2) Check the name attribute of the specific node found in step 1. If it is one of the key functions,
traverse along the edges of the data dependency and control dependency to find all nodes that
have a dependency relationship with the specific node.

(3) Collect statements corresponding to all the nodes found in step 2. Then sort these statements in
the order of the input samples to generate program slices.

For ease of understanding, we leverage an example to illustrate the slicing process. The source
code in Figure 4 shows an example with an eval function. Then, we generate the PDG (for the
sake of clarity, we simplified the PDG), where the blue edges indicate data dependency, the green
directed edges indicate control dependency, and the number indicates the line number of the node
corresponding statement.

var a = 1

var code ="console.log(\"Maliciou

S\

1 var a =1

3 var b =12
2 var code = "console.log(\"Maliciou
s\

IS

if (a > 0){
3 if (a > @)
5 b += 1
! code = code + "\t\"Script\")"
6 code = code + "\t\"Script\")"
5 eval(code) //you are hacked

7}

»

eval(code) //you are hacked Semantic slice

Source Code

Program Dependency Graph

Figure 4. Extracting program slice from a JavaScript sample.

In order to generate program slice, we first traverse the PDG of the source code and find that the
gray node is a CallExpression node. We further found that the name attribute of this node is an eval
function, which is one of the key functions. Then, we track the data flow edge and control flow edge
separately, and get the sequence of nodes as CallExpression, AssignmentExpression, VariableDeclaration,
ExpressionStatement, IfStatement, VariableDeclaration. Finally, we extract the statements corresponding to
these nodes to generate program slices, which we call semantic slice.

4. Malicious JavaScript Detection Model

4.1. Model Selection

Although deep learning has been widely used in computer vision [36], natural language
processing [37], and image processing [38], these fields are different from malicious JavaScript detection.
This means that not all neural networks are suitable for malicious JavaScript detection. This is because
whether or not a slice of code is malicious depends on the context, so we need to find a proper neural

Appl. Sci. 2020, 10, 3440 90f 21

network which can cope with context. Therefore, we consider that the neural networks applied to
natural language processing are potentially suitable for malicious JavaScript detection, as context
is also crucial in this domain. However, many kinds of neural networks can be applied to natural
language processing. In order to narrow the choice, we focus on the two most widely used algorithms,
Convolutional Neural networks (CNNs) and Recurrent Neural Networks (RNNs). Before deciding on
the most suitable model for malicious JavaScript detection, we need to analyze these two algorithms
and their variants.

CNN’s have outstanding performance in the fields of image classification and machine vision.
But some CNN variants can be used to process natural language. Text-CNN [39] is a classic CNN
variant that uses convolutional operations to process text. It is often used to solve the classification
problem of long text sequences. But the convolutional operations ignore the word order of the sequence,
and code semantic information might be lost in this process. Therefore, it has limitations in detecting
malicious JavaScript code.

RNNSs are effective in dealing with long sequence problems [40,41], and they indeed have been
used for program analysis [42,43]. However, existing studies demonstrate that RNNs may suffer from
vanishing gradients [44] when the input sequence is too long. This means that using RNNs to process
JavaScript code may be invalid or even fail to train because the length of commercial JavaScript code is
usually very large. To solve the gradient problem, Long Short-Term Memory (LSTM) and the Gated
Recurrent Unit (GRU) are proposed [45,46]. LSTM is considered a special RNN because it has special
units in addition to standard units. These units include a memory cell that can save information in
memory for long periods of time. In order to control the flow of information in the memory cell, three
gates are designed, i.e., input gate, output gate, and forget gate. These gates allow memory cells to learn
for a long time. GRU adopts a similar design idea to LSTM but with a simpler structure. It also used
a set of gates to control the flow of information, but they did not use separate storage units. Since
GRU easily suffers from the overfitting problem, LSTM preforms better than GRU in natural language
modeling. Therefore, LSTMs are selected as the basic model.

Through further analysis, we find that the parameters of the function call in the program may
be affected by the statements before or after the function call. This means that even LSTM are
not enough to detect malicious JavaScript. Therefore, the selected LSTM variant should be able to
process the input sequence forward and backward. In the end, we chose the Bidirectional LSTM
(BLSTM) neural network [47] for detecting malicious JavaScript in this paper because it can learn input
information bidirectionally.

4.2. Structure of BLSTM

In this section, we introduce the structure of the BLSTM neural network for detecting malicious
JavaScript (the training parameters of the neural network are discussed in Section 5.3). As shown
in Figure 5, this model consists of an output layer, a dense layer, and multiple BLSTM layers.
The input of the model requires a fixed-length vector, which is a vector representation corresponding
to a semantic slice. The dense layer is used to compress the dimension of the output vector of the
BLSTM layer. The output layer collects the vector from the dense layer and outputs the probability
of classification.

The BLSTM layer is the most critical part of the model. It is established by stacking multiple
LSTM cells. These LSTM cells are chain-structured and process input information in both forward
and backward directions. Each LSTM defines and maintains a memory cell throughout the whole life
cycle, which is the most important element of the LSTM. As Figure 6 shows, the previous cell state ¢;_q
interacts with the previous cell output #;_; and the present input x; to determine which elements of the
internal state vector should be updated, maintained or forgotten. Three gates are defined to control the
changes of the memory cell state. The forget gate f; decides what information to throw away from the
cell state, the input gate i; decides what new information to store in the cell state, and the output gate
o; decides what to output.

Appl. Sci. 2020, 10, 3440 10 of 21

Output Layer:

Dens Layer

backward
BLSTM Layer

| I B
forward

Input Vector!

hy
Ct—1 C
RD—® :
Canh)
ft l¢ & Ot @
o] [o] Ga [
he-s hy

Xt

Figure 6. The structure of a typical Long Short-Term Memory (LSTM) cell. The circles represent
pointwise operations, e.g., vector addition, and the rectangles are the gates. Lines merging denote
concatenation, a line forking denotes its content being copied and the copies going to different locations.

The details of calculation are shown below, where o is the sigmoid function, tankh is the hyperbolic
tangent function, c; is the cell state, and /; is the cell output. W,;, Wy;, W, fr Wy, fr Wie, Whe, Wxo and
Wi, are weight matrixes for the corresponding input of the network activation functions. b;, by, b,
and b, are bias vectors.

it = o(Wyixe + Wyilt—1 + b;) 1

fr = O(foxt + Wirhi—1 + bf) 2)

¢t = ficp-1 + irtanh(Wyext + Wichi—1 + be) ®)
0t = 0(WxoXt + Wiohi_1 + by) 4)

h = ostanh(ct))

Since each BLSTM layer contain a forward LSTM layer and a backward LSTM layer, the calculation
of output vector h; is separated into forward output ht and backward output ht The forward output

ht is iteratively calculated using input in a positive sequence from time 0 to time T, while the backward

Appl. Sci. 2020, 10, 3440 110f 21

-
output h; is calculated using the reversed input from time T to time 0. Equations (6) and (7) give the
details, where W > W-os, W o WZ«]; are weight matrixes and bﬁ’ b«]; are bias vectors.

X X

hh
hy = U(Wxﬁxt +Woor hi+ b;) ©®)
ht = O'(Wx;xt + szhﬂrl + b;) (7)

4.3. Transforming Semantic Slice into Vectors

The input of the BLSTM neural network must be in vector form, so we need to transform the
semantic slice into a vector. First, we delete the blank characters and comments in the slice because
they are not useful for detecting malicious JavaScript. Second, we map user-defined variables to
symbolic names in a one-to-one manner, noting that the same variable name may be repeatedly defined
in different blocks of code in the original program, and these variable names may map to the same
symbolic name. For different variables, we use symbol and number to distinguish them, such as
Identifier_1, Identifier_2. Third, user-defined functions are mapped to symbolic names in a one-to-one
manner, and similar to variables, functions with the same name may be mapped to the same symbolic
representation. Fourth, through lexical analysis, we divide the rest of the slice into a token sequence,
including identifiers, keywords, operators and symbols. Table 3 shows the token sequence generated
by the semantic slice shown in the Figure 4.

In order to encode each token into a vector, we choose the word2vec as an embedding tool,
which is a shallow, two-layer neural network. Compare with other embedding algorithms, Word2vec
has powerful architecture and fast training speed. In this paper, the input of Word2vec is a series of
token sequences, and the output is a set of feature vectors representing tokens in the sequence.

BLSTM neural networks require vectors of equal length as input. However, because the number
of tokens in slices may be different, the corresponding vectors also have different lengths. In order to
solve this problem, the vector corresponding slice needs to be converted into a fixed length, which is
represented by the parameter len. When the vector length is longer than len, we delete the part of
the vector that is far from the key function. When the length of the vector is shorter than len, we pad
zeros at the end closer to the key function. The parameter len is related to the number of nodes in the
input layer in the BLSTM neural network. This parameter will affect the performance of malicious
JavaScript detection.

Table 3. Tokens generated from semantic slice.

No Token Value No Token Value
1 Keyword var 13 Numeric 0

2 Identifier_1 a 14 Punctuator)

3 Punctuator = 15 Identifier_2 code
4 Numeric 1 16 Punctuator =

5 Keyword Var 17 Identifier_2 code
6 Identifier 2 code 18 Punctuator +

7 Punctuator = 19 String "\t\"Script\")\"
8 String "console.log(\"Malicious\"+" 20 Identifier_3 eval
9 Keyword if 21 Punctuator (

10 Punctuator (22 Identifier 2 code
11 Identifier_1 a 23 Punctuator)

12 Punctuator > 24 Numeric 0

Appl. Sci. 2020, 10, 3440 12 0f 21

5. Experiment and Result

In this section, several research questions on the BLSTM neural network for malicious JavaScript
detection are proposed. This can help us objectively evaluate the effectiveness of the method proposed
in this paper. To this end, we propose comprehensive experiments to answer these questions:

RQ1: Is the BLSTM neural network effective for malicious JavaScript detection?

RQ2: How effective is the BLSTM neural network compared to other machine learning-based
detection methods?

RQ3: What is the influence of obfuscation on the BLSTM neural network and other learning-based
detection methods?

5.1. Dataset Preprocessing

We collected 60380 raw benign and malicious samples with a total size of more than 3.1 GB. To
prevent duplication of data from multiple data sources, we calculated the MD5 of each sample to
ensure that each sample is unique.

As for malicious samples, 29893 files (Table 4) were collected from HynekPatrak [48],
geeksonsecurity [49] and Wang Wei’s dataset [50]. Most of these malicious samples are JavaScript
files. For HTML files, we manually extracted the JavaScript code from the <script> tags and stored
them as a JavaScript file. Almost all samples were obfuscated, e.g., through data obfuscation or
encoding obfuscation.

Table 4. Overview of malicious JavaScript.

Source #]JS
HynekPatrak 27458
geeksonsecurity 1751

WangWei 684
Total 29893

As for benign samples, we collected JavaScript files in Alexa [51] top sites. We believe that
the JavaScript files from these sites are safe, because subjectively these sites have no motive to do
evil, and objectively there are a large number of security engineers to protect these sites. For each
website, we first visited their homepage, then visited the same domain link on the homepage to collect
dynamically generated scripts. For inline scripts in HTML, we extracted the JavaScript code and stored
it as a JavaScript file in the original order. In this way, we obtained 30487 unique benign samples.
In order to ensure that these JavaScript files are benign, we checked them with anti-virus software.
Skolka et al. [52] indicate that more than 30% of developers obfuscate their scripts and more than 55%
of third-party scripts are obfuscated. Therefore, there should also be a certain proportion of obfuscated
scripts in our benign samples.

We constructed two new datasets, DB_DeOb and DB_Ob, based on the collected raw data
(called DB_Raw). The dataset DB_DeOb contains only deobfuscated scripts. We combined
deobfuscation tools and manual analysis to deobfuscate 1227 malicious samples and 1516 benign
samples. It should be noted that there is currently no strict definition of obfuscated code and
deobfuscated code, so we consider the code that meets the following two conditions to be successful
in deobfuscating:

Condition 1: The variables and strings in the code are not encoded by Unicode, ASCII, etc.

Condition 2: Compared with before processing, the clarity of the processed code logic has been
significantly improved.

The dataset DB_Ob consists only of obfuscated codes. In order to construct DB_Ob, we collected
9892 benign samples and 9721 malicious samples from DB_Raw with conspicuous feature of obfuscation.
Table 5 gives the details of these datasets.

Appl. Sci. 2020, 10, 3440 13 of 21

Table 5. The datasets for BLSTM neural network.

Name Type #JS
DB_Raw benign 30487
malicious 29893

DB_Ob benign 9892
malicious 9721

DB._DeOb benign 1516
malicious 1227

5.2. Measurement Metrics

We leverage accuracy, precision, recall, and F1-score to evaluate the effectiveness of BLSTM neural
network in detecting malicious JavaScript. In general, the effectiveness of a model is evaluated by the
accuracy rate, i.e.,

N,
accuracy = —frue (8)
totle

where Ny represents the number of samples that predict correctly, and Ny, represents the total
number of samples in the dataset. However, it is not enough to evaluate the performance of the model
based on accuracy alone, so we choose precision and recall as supplements. The precision refers to the
ratio of true positive malicious JavaScript to the total number of samples detected as malicious, i.e.,

TP

precision = TP+ EP

©)
where TP is the number of samples with malware JavaScript detected correctly, and FP is the number
of samples with false malicious JavaScript detected. The recall measures the ratio of true positive
malware JavaScript to the entire population of malicious JavaScript samples, i.e.,

TP

recall = m

(10)
where FN is the number of samples with true malicious JavaScript undetected. Fl-score takes into
account both precision and recall, that is:

2 X precision X recall

F1 —score = —
precision + recall

(11)

Ideally, our detector should not miss any malicious code and not trigger false alarms, that is, it
both has high precision and recall at the same time, but these two indicators are mutually exclusive in
some scenarios. For example, if only one sample is taken, and the sample is also a positive sample, then
the precision = 1.0, and recall may be lower (because there may be multiple samples in the dataset). As
a comprehensive index, the Fl-score is to evaluate a classifier comprehensively in order to balance the
influence of precision and recall.

5.3. Learning the BLSTM Neural Network

In this part, we introduce the hyper-parameter selection of the BLSTM neural network. The BLSTM
neural network is implemented in Python with TensorFlow 2.0 and Keras. We experiment on a workstation
with NVIDIA Quadro P4000 and Intel Xeon E5-2630 CPU operating at 2.50GHz. Since malicious JavaScript
detection is a binary classification task, we use cross-entropy as the loss function, i.e.,

loss = —ylogy + (1 -y)log(1-17) (12)

Appl. Sci. 2020, 10, 3440 14 of 21

where y (0 for benign and 1 for malicious) is the label of the sample and § is the output probability
of the sample being malicious. We adopt Adam [53] as an optimizer, which is one of the most
efficient optimizers at present. Then, we experiment with different combinations of hyper-parameters

and compare the accuracy by 10 cross-validation. We will fix others when testing the influence of
a hyper-parameter.

(1)

(2)

3)

Determined Input Vector Dimensions: First, we test the influence of different input vector
dimensions. We fixed the number of BLSTM layers to 2 and the epoch to 10. Table 6 shows how
the model’s performance is affected by the different input vector dimensions. As we can see,
the accuracy increases obviously when the dimension increases from 60 to 80, the bug gets lower
when the dimension is set to 100. We also tested combinations of bigger dimensions and smaller
dimensions, but their performances are poorer. This is because too big a dimension gives the
sample pad too many zeros, which is useless for detecting malicious JavaScript, and too small a
dimension makes the samples lose too many program features, which reduces the performance
of the model. Therefore, the input vector dimension is set to 80.

Table 6. The influence of the input vector dimensions.

Vector Dimensions Accuracy
60 78.49%
70 80.68%
80 92.86%
90 89.13%
100 87.57%

Determined the number of epochs: Then we fixed the input vector dimension to 80 and test the
influence of the number epoch. An epoch refers to one cycle through the full training dataset.
An appropriate epoch can improve the performance of the model, but too large an epoch will only
waste training time. As shown in Figure 7, when the number of epochs is from 1 to 6, the accuracy
of the model continues to increase. When the number of epochs is greater than 6, the accuracy rate
hardly changes. This means that when the number of epochs is 6, we can get better performance
and less training time at the same time. Therefore, this hyper- parameter is set to 6.

100

90

80

70

Accuracy(%)

60

50

40

12 3 45 6 7 8 910111213 1415 16 17 18 19 20
The number of epochs

Figure 7. The influence of the number of epochs.

Determined the Number of BLSTM Layers: After setting the number of epochs to 10, we test the
influence of the number of the BLSTM layers. As Figure 8 shows, when the number of BLSTM

Appl. Sci. 2020, 10, 3440 15 of 21

layers is from 1 to 3, the accuracy of the model continues to increase. When the number of BLSTM
layers is greater than 3, the performance of the model shows a downward trend. Therefore,
the number of the BLSTM layers is set to 3.

[os]
(%)

Accuracy(%)
~ o]
w o

~N
o

a
(%)

a
o

1 2 3 4 5 6 7 8 9 10
The number of BLSTM layers

Figure 8. The influence of the number of BLSTM layers.

5.4. Runtime Performance

In order to comprehensively evaluate the performance of BLSTM neural network, we gather
statistics on the time consumption in each of the stages. We randomly select 2000 unique samples,
half of which are benign and half of which are malicious and that recorded the time consumption. As
for abstract code representation, Table 7 shows the minimum, maximum, average, and median time
consumption at each stage, for one file. As we can see, deobfuscation takes the least amount of time,
and a file takes only 18 ms on average. The generation of AST is divided into two steps, one is to parse
JavaScript files with Esprima [33], the other is to construct the AST, which makes the process take a
little longer, with an average of 96 ms per file. The more time-consuming stage is to generate the PDG,
which largely depends on the size of the AST, because we have to traverse it several times to add data
dependencies. The generation of semantic slices takes the most time, with an average of 233 ms, because
this process requires traversing the PDG and finding the corresponding source code statements at the
same time. In general, the more complex code representation causes higher overhead, but this also
makes the code abstract representation preserve more semantic information.

Table 7. Time consumption to generate abstract code representations.

Stage Min(ms) Max(s) Mean(ms) Median(ms)
deobfuscation 0.012 0.761 18.214 9.001
AST 0.138 2.414 96.231 20.587
CFG 0.013 1.211 37.091 4.635
PDG 0.142 12.261 210.258 9.621
semantic slice 0.271 13.957 232.712 11.243

Since the input vector dimensions of BLSTM neural networks are fixed, the time consumption per
sample is similar. Table 8 shows the average time of each stage of learning the BLSTM neural network,
for one file. As we can see, in the learning phase, the model spends an average of 0.241 ms processing
a file, and in the classification phase, the model spends an average of 2.765 ms process a file.

Appl. Sci. 2020, 10, 3440 16 of 21

Table 8. The time consumption to learn the BLSTM neural network.

Stage Time Consumption (ms)
Learner 0.241
Classifier 2.763

For one JavaScript sample, the detection time is approximately the sum of the average time for
generating the abstract code representation (from deobfuscation to semantic slice generation) and the
average time for the classifier. Based on the data in Tables 7 and 8, the detection time is 595 ms.
Considering that the average size of JavaScript samples is 32KB, we think this overhead is reasonable.

5.5. Detection Performance

Answer to RQ1: As shown in Table 9, the BLSTM neural network achieves a good performance.
The accuracy of the BLSTM neural network reached 97.71%, which indicates that most malicious
samples can be accurately found during the test. At the same time, the model also achieved a recall
rate of 97.91%, which means that it caused very few false positives. The Fl-score is the harmonic mean
of the precision and recall, where an F1 score reaches its best value at 1. It is one of the most important
measurements for evaluating a model’s performance. The Fl-score of the BLSTM neural network
reached a very high value of 98.29%, which means our model achieves higher rates of true positives
with lower rates of false positives.

Table 9. The performance of the models on DB_DeOb.

Methods Accuracy Precision Recall F1-Score
BLSTM 97.71% 98.68% 97.91% 98.29%
Naive Bayes 64.61% 67.91% 95.31% 79.31%
SVM 81.62% 93.71% 72.39% 81.68%
Random forest 90.01% 92.83% 89.53% 91.15%
JaSt 93.00% 96.14% 92.03% 94.04%
ClamAV 84.21% 95.01% 68.30% 79.47%

Therefore, we conclude that the BLSTM neural network is extremely effective in detecting
malicious JavaScript.

Answer to RQ2: In order to compare with other malicious code detection approaches, we chose
three widely used machine learning models, a malicious JavaScript detection tool and an antivirus
software. As shown in Table 9, although the Naive Bayes algorithm achieves a relatively high recall
rate, its accuracy is very low, only 64.61%. This means that a large number of benign samples are
misclassified. If the Naive Bayes model is used to detect malicious JavaScript on the Internet, then
much manpower must be invested to manually audit the detection results of the model to reduce the
impact on normal websites. Contrary to the Naive Bayes model, the accuracy rate of the Support Vector
Machine (SVM) model is higher than the recall rate, and the F1-score of 81.68% seems to perform well.
However, we noticed that the recall rate of the SVM model is only 72.39%, which means that 27.61% of
the malicious JavaScript evade the detection of the model. Therefore, such a model is not capable of
detecting malicious JavaScript. We consider that the reason for the poor performance of these two
models is that the models are too simple to fully describe the malicious features. The performance
of random forest is much better than the previous two models, but it is still worse than the BLSTM
neural network with 7.7% lower accuracy, 5.88% lower recall rate, and 7.17% lower F1-Score. We need
to emphasize that malicious JavaScript detection is different from other neural network applications,
such as speech recognition and emotion classification. Undetected malicious JavaScript may cause

Appl. Sci. 2020, 10, 3440 17 of 21

huge losses to Internet users, such as the stealing of credit card information. Therefore, any increase in
accuracy will protect more Internet users from attackers.

JaSt was proposed by Fass et al. [13], which extracts features from the AST and uses the frequency
analysis of specific patterns to detect malicious JavaScript. Since JsSt is open source, we use it to
compare with our method. Table 9 shows the experimental results, the perform of the BLSTM neural
network is better than JaSt with 4.71% higher accuracy, 5.88% higher recall rate, and 4.25% higher
Fl-score. This means that the program slices can extract more semantic information than simply
traversing the AST, and the increase in semantic information improves the performance. The results in
Table 9 are all experimentally obtained on the deobfuscated dataset. But we noticed that the authors of
JaSt do not process the samples collected from the Internet, but directly use them to train the model.
In order to demonstrate the robustness of our model, we use the same data processing method as JaSt
to experiment again. The experimental results are shown in Table 10. The accuracy rate of the BLSTM
neural network is 2.26% higher than that of JaSt, the recall rate is 2.99% higher, and the F1-score is
1.08% higher. This means that even with unprocessed samples to train the model, the BLSTM neural
network still performs better than JaSt.

Table 10. The performance of the models on DB_Raw.

Methods Accuracy Precision Recall F1-Score
BLSTM 94.51% 95.67% 94.74% 95.20%
JaSt 92.25% 96.61% 91.75% 94.12%

In addition, in order to demonstrate that the performance of the learning-based method is better
than the pattern-based method, we chose a traditional antivirus software for comparison. ClamAV [54]
is a famous open source antivirus software used in a variety of situations, including email scanning,
web scanning, and endpoint security. We used the latest stable release version (0.102.2) of ClamAV
to compare with our method. As shown in Table 9, ClamAV has an accuracy of 84.21%, which is
significantly lower than that of the BLSTM neural network and even lower than that of JaSt and random
forest. ClamAV’s 68.3% recall rate means that 31.7% of malicious samples have not been found, which is
lower than our expectations for antivirus software. Upon further analysis, we found that the precision
of ClamAYV reached 95.01%, combined with a low recall rate, which shows that ClamAV has very low
false positives. This means that ClamAV may tend to classify the samples as benign to avoid the bad
experience that false positives bring to users. In summary, learning-based detection methods perform
better than pattern-based detection methods. This is because the learning-based method can capture
high-level semantic information and describe attack vectors from hundreds of dimensions, while the
pattern-based method can only define rules to describe syntactic-level features. Therefore, we conclude
that the BLSTM neural network performs better than other methods in detecting malicious JavaScript.

Answer to RQ3: Many existing studies assume that neural networks can extract high-level
semantic features of programs, so obfuscation techniques have no influence on neural network-based
detectors. But they do not prove it experimentally. In order to study the influence of obfuscation
techniques on the BLSTM neural network and other machine learning models, we experiment again
on obfuscated dataset. As shown in Tables 9 and 11, the performance of the BLSTM neural network
decreases significantly on the obfuscation dataset, the accuracy, decrease from 97.71% to 92.01%,
the recall rate decrease from 97.91% to 93.03%, and the Fl-score decrease from 98.29% to 93.63%.
These measurements decrease by an average of 5.08%. This means that the obfuscation techniques
have a relatively significant negative impact on the BLSTM neural network. For the Naive Bayes
model, SVM model, and random forest model, the accuracy decreases by an average of 2.32% and
F1-socre decreases by an average of 2.4%. This means that deep learning models seem to be more
sensitive to obfuscation than traditional machine learning models. This may be due to the obfuscation
techniques make the semantic information in the semantic slices incorrect. These errors continue to

Appl. Sci. 2020, 10, 3440 18 of 21

accumulate between different layers of the neural network, which ultimately leads to a decline in the
performance of the BLSTM neural network.

Table 11. The performance of the models on DB_Ob.

Methods Accuracy Precision Recall F1-Score
BLSTM 92.01% 94.23% 93.03% 93.63%
Naive Bayes 62.73% 65.32% 93.16% 76.79%
SVM 80.22% 90.82% 71.48% 80.00%
Random forest 86.32% 89.12% 87.20% 88.15%
JaSt 92.14% 95.91% 92.45% 94.15%

For JaSt, obfuscation has little effect on it. The reason for this may be the choice of program
features. JaSt extracts syntax units from JavaScript programs, which is a syntactic level of program
features, and then uses them to train the model. This feature extraction method also captures the
syntax changes caused by obfuscation. In other words, JaSt considers that obfuscation is one of the
characteristics of malicious code. The author of JaSt also confirmed this in the paper. However, this
features extracting method has obvious limitations. On the one hand, benign obfuscation is widely
used to protect the intellectual property rights of program developers. Using obfuscation as a feature
of malicious code leads to false positives. On the other hand, the syntactic level program features have
limited expression power to malicious code. Experienced attackers can still evade the detection of JaSt
by adjusting the syntax structure, which makes it difficult to improve JaSt’s performance.

In summary, the assumptions about the effects of obfuscation in existing studies are not entirely
correct. The impact of obfuscation is related to the abstract representation of the program and the
choice of model. Semantic level program features are more sensitive to obfuscation than syntactic level
program features. Deep learning models are more sensitive to obfuscation than traditional machine
learning models.

6. Limitations

The abstract code representation is based on a static analysis of JavaScript to generate both the
control and data flow of an input program. Therefore, a complete code coverage based on code
analysis is constructed. In turn, it is subject to the defects brought about by the dynamics of JavaScript.
Specifically, JavaScript can generate code at runtime, for example, the eval function interprets a
dynamically constructed string as a program fragment and executes it in the current scope. If all the
code is generated dynamically (we only encounter it in conditional compilation), static analysis cannot
extract the correct program features. However, this does not mean static analysis is useless. Static
analysis requires fewer computing resources and has fast detection speed. With a reasonable design,
static analysis can also achieve high performance in most situations.

In addition, all learning-based malicious JavaScript detectors will fail to detect some attacks,
such as malicious scripts not containing any features in the current training dataset. In this paper,
the malicious JavaScript samples come from the Internet from 2015 to 2017. These samples cover most
of the JavaScript-based attacks. But the dataset still lacks samples of new attacks appeared after 2017,
which makes our model unable to detect these new attacks. We plan to continually add new malicious
JavaScript samples in the follow-up study to improve the performance of the model.

7. Conclusion

With the widespread use of JavaScript on the Internet, a large number of JavaScript-based attacks
have been developed, such as XSS and drive-by-download attack. This poses a serious threat to Internet
users. At present, the detection method based on expert knowledge cannot alleviate the growth rate

Appl. Sci. 2020, 10, 3440 19 of 21

of malicious code on the Internet. Fortunately, the latest studies demonstrate that the deep learning
model shows encouraging results in detecting malicious scripts.

Based on the existing research, we proposed a novel malicious JavaScript detection approach
based on BSLTM neural network. In order to transform JavaScript programs to vectors, we proposed
the concept of semantic slices, which preserve rich semantic information and are easy to transform into
vectors. Then we trained the BLSTM neural network to classify JavaScript samples. Experimental
results show that our model achieves the best performance compared with other four machine
learning-based models and a traditional antivirus software, with 97.71% accuracy and 98.29% F1-score.
At the same time, we preliminarily studied the influence of obfuscation on the performance of the
learning-based detector, and corrected the relevant assumptions of the existing research.

Future work will be carried out from two aspects. On the one hand, static analysis cannot detect
the malicious JavaScript code generated dynamically at present. We hope to alleviate the negative
impact of JavaScript dynamics through more sophisticated string processing. On the other hand,
researchers have proposed many new models, such as tree structure neural networks and graph
structure neural networks. We hope to study the effectiveness of more types of neural networks in
malicious JavaScript detection.

Author Contributions: Conceptualization, X.S. and C.C.; Methodology, X.S.; Software, X.S.; Validation, X.S., C.C.
and B.C.; Data Curation, C.C.; Writing—Original Draft Preparation, X.S.; Writing—Review and Editing, J.F.;
Visualization, J.E; Supervision, B.C.; Project Administration, B.C.; Funding Acquisition, B.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by Beijing Natural Science Foundation(4204107), the Fundamental Research
Funds for the Central Universities (No. 500419810), Funds of “YinLing” and in part by the China Postdoctoral
Science Foundation under Grant 2019M650020.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. JavaScript. Available online: https://developer.mozilla.org/en-US/docs/Web/JavaScript (accessed on
29 December 2019).

2. Bichhawat, A.; Rajani, V.; Garg, D.; Hammer, C. Information flow control in WebKit’s JavaScript bytecode.
In Proceedings of the International Conference on Principles of Security and Trust, Grenoble, France,
5-13 April 2014.

3. Zhou, Y,; Evans, D. Understanding and monitoring embedded web scripts. In Proceedings of the IEEE
Symposium on Security and Privacy, San Jose, CA, USA, 17-21 May 2015.

4. Symantec Security Center. Available online: https:/www.symantec.com/security-center/threat-report
(accessed on 19 November 2019).

5. Tanaka, Y.; Kashima, S. SeedsMiner: Accurate URL Blacklist-Generation Based on Efficient OSINT Seed
Collection. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, Thessaloniki,
Greece, 14-17 October 2019.

6. Egele, M.; Wurzinger, P; Kruegel, C.; Kirda, E. Defending Browsers against Drive-by Downloads: Mitigating
Heap-Spraying Code Injection Attacks. In Proceedings of the Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, Como, Italy, 9-10 July 2009.

7. Sachin, V,; Chiplunkar, N.N. SurfGuard JavaScript instrumentation-based defense against Drive-by downloads.
In Proceedings of the International Conference on Recent Advances in Computing and Software Systems,
Chennai, India, 25-27 April 2012.

8. Hallaraker, O.; Vigna, G. Detecting malicious JavaScript code in Mozilla. In Proceedings of the 10th IEEE
International Conference on Engineering of Complex Computer Systems, Shanghai, China, 16-20 June 2005.

9. Xu, W,; Zhang, F; Zhu, S. Jstill: Mostly static detection of obfuscated malicious JavaScript code. In Proceedings of
the Malicious JavaScript Detection using Statistical Language Model, San Antonio, TX, USA, 18-20 February 2013.

10. Fang, Y.; Huang, C.; Liu, L.; Xue, M. Research on malicious JavaScript detection technology based on LSTM.
IEEE Access 2018, 6, 59118-59125. [CrossRef]

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.symantec.com/security-center/threat-report
http://dx.doi.org/10.1109/ACCESS.2018.2874098

Appl. Sci. 2020, 10, 3440 20 of 21

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Stokes, J.W.; Agrawal, R.; McDonald, G.; Hausknecht, M. ScriptNet: Neural Static Analysis for Malicious
JavaScript Detection. arXiv 2019, arXiv:1904.01126.

Hao, Y.; Liang, H.; Zhang, D.; Zhao, Q.; Cui, B. JavaScript Malicious Codes Analysis Based on Naive Bayes
Classification. In Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing, Guangdong, China, 8-10 November 2014.

Fass, A.; Krawczyk, R.P.; Backes, M.; Stock, B. JaSt: Fully Syntactic Detection of Malicious (Obfuscated)
JavaScript. In Proceedings of the International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, Saclay, France, 28-29 June 2018.

Liang, H.; Yang, Y,; Sun, L.; Jiang, L. JSAC: A Novel Framework to Detect Malicious JavaScript via
CNNs over AST and CFG. In Proceedings of the 2019 International Joint Conference on Neural Networks,
Budapest, Hungary, 14-19 July 2019.

Cova, M.; Kruegel, C.; Vigna, G. Detection and analysis of driveby-download attacks and maliciousjavascript code.
In Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26-30 April 2010.
Kyungtae, K.; Kim, L.L.; Kim, C.H.; Kwon, Y.; Zheng, Y.; Zhang, X.; Xu, D. J-Force: Forced Execution on JavaScript.
In Proceedings of the 26th international conference on World Wide Web, Perth, Australia, 3-7 April 2017.
Jayasinghe, G.K.; Culpepper, J.S.; Bertok, P. Efficient and effective realtime prediction of drive-by download
attacks. Network Computer Appl. 2014, 38, 135-149. [CrossRef]

Mao, J.; Bian, J.; Bai, G.; Wang, R.; Chen, Y.; Xiao, Y.; Liang, Z. Detecting Malicious Behaviors in JavaScript
Applications. IEEE Access 2018, 6, 12284-12294. [CrossRef]

Canali, D.; Cova, M.; Vigna, G.; Kruegel, C. Prophiler: A Fast Filter for the Large-scale Detection of
Malicious Web Pages. In Proceedings of the International Conference on World Wide Web, Hyderabad,
India, 28 March-1 April 2011.

Curtsinger, C.; Livshits, B.; Zorn, B.G.; Seifert, C. ZOZZLE: Fast and precise in-browser JavaScript
malware detection. In Proceedings of the 20th USENIX Security Symposium, San Francisco, CA, USA,
8-12 August 2011.

Likarish, P; Jung, E.; Jo, I. Obfuscated malicious JavaScript detection using classification techniques.
In Proceedings of the Proceedings of the Third ACM conference on Data and Application Security and
Privacy, Quebec, AB, Canada, 13-14 October 2009.

Laskov, P; Srndi¢, N. Static Detection of Malicious JavaScript-Bearing PDF Documents. In Proceedings of the
27th Annual Computer Security Applications Conference, Orlando, FL, USA, 5-9 December 2011.

Stock, B.; Livshits, B.; Zorn, B. Kizzle: A SignatureCompiler for Detecting Exploit Kits. In Proceedings of the
46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Toulouse, France,
28 June-1 July 2016.

Kar, D.; Panigrahi, S.; Sundararajan, S. 2016. SQLiGoT: Detecting SQL injection attacks using graph of tokens
and SVM. Computer Secur. 2016, 60, 206-225. [CrossRef]

Kapravelos, A.; Shoshitaishvili, Y.; Cova, M.; Kruegel, C.; Vigna, G. Revolver: An Automated Approach to the
Detection. In Proceedings of the 22nd USENIX Conference on Security, Berkeley, CA, USA, 14-16 August 2013.
He, X.; Xu, L.; Cha, C. Malicious JavaScript Code Detection Based on Hybrid Analysis. In Proceedings of the
25th Asia-Pacific Software Engineering Conference, Nara, Japan, 4 December 2018.

Ndichu, S.; Ozawa, S.; Misu, T.; Okada, K. A machine learning approach to malicious JavaScript detection
using fixed length vector representation. In Proceedings of the 2018 International Joint Conference on Neural
Networks, Rio de Janeiro, Brazil, 8-13 July 2018.

Fass, A.; Backes, M.; Stock, B. JStap: A static pre-filter for malicious JavaScript detection. In Proceedings of
the 35th Annual Computer Security Applications Conference, San Juan, PR, USA, 9-13 December 2019.
Fass, A.; Backes, M.; Stock, B. Hidenoseek: Camouflaging maliciousjavascriptinbenign ASTs. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11-15 November 2019.
Howard, F. Malware with your Mocha? Obfuscation and antiemulation tricks in malicious JavaScript. Sophos
Tech. Papers 2010, 14, 1-18.

Xu, W.; Zhang, F; Zhu, S. The power of obfuscation techniques in malicious JavaScript code: A
measurement study. In Proceedings of the 7th International Conference on Malicious and Unwanted
Software, Fajardo, PR, USA, 16-18 October 2012.

JSDetox-A Javascript Malware Analysis Tool Using Static Analysis. Available online: http://www.relentless-
coding.org/projects/jsdetox (accessed on 19 November 2019).

http://dx.doi.org/10.1016/j.jnca.2013.03.009
http://dx.doi.org/10.1109/ACCESS.2018.2795383
http://dx.doi.org/10.1016/j.cose.2016.04.005
http://www.relentless-coding.org/projects/jsdetox
http://www.relentless-coding.org/projects/jsdetox

Appl. Sci. 2020, 10, 3440 21 of 21

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.
52.

53.
54.

ECMAScript Parsing Infrastructure for Multipurpose Analysis. Available online: https://esprima.org/index.html
(accessed on 19 November 2019).

Rieck, K.; Krueger, T; Dewald, A. Cujo: Efficient detection and prevention of drive-by-download
attacks. In Proceedings of the 26th Annual Computer Security Applications Conference, Austin, TX, USA,
6-10 December 2010.

Xu, Q. Research on the Methods for Javascript Malicious Code Detection. Master’s Thesis, Southwest
Jiaotong University, Chengdu, China, 2014.

Chen, YR,; Chao, K; Kim, M.S. Machine vision technology for agricultural applications.
Comput. Electron. Agric. 2002, 36, 173-191. [CrossRef]

Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Kingsbury, B. Deep neural networks for
acoustic modeling in speech recognition. IEEE Signal Process. Mag. 2012, 29, 82-97. [CrossRef]

Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA,
3-6 December 2012.

Gibert, L.D. Convolutional Neural Networks for Malware Classification. Master’s Thesis, Universitat
Politecnica de Catalunya, Campus Nord, Carrer de Jordi Girona, 2016.

Mikolov, T.; Karafiat, M.; Burget, L.; éernock}’l, J.; Khudanpur, S. Recurrent neural network based language
model. In Proceedings of the 11th annual Conference of the International Speech Communication Association,
Makubhari, Chiba, Japan, 26-30 September 2010.

Cho, K.; Van Merriénboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning
phrase representations using RNN Encoder-Decoder for statistical machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25-29 October 2014.
Li, Z.; Zou, D.; Xu, S.; Ou, X,; Jin, H.; Wang, S.; Zhong, Y. VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection. arXiv 2018, arXiv:1801.01681.

Guo, N,; Li, X,; Yin, H.; Gao, Y. VulHunter: An Automated Vulnerability Detection System Based on Deep
Learning and Bytecode. In Proceedings of the International Conference on Information and Communications
Security, Beijing, China, 15-17 December 2019.

Kolen, J.F; Kremer, S.C. Gradient flow in recurrent nets: The difficulty of learning long-term dependencies.
Field Guide Dyn. Recurr. Netw. 2001, 237-243. [CrossRef]

Cho, K.; Van Merriénboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation:
Encoder-decoder approaches. arXiv 2014, arXiv:1409.1259.

Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735-1780. [CrossRef]
[PubMed]

Graves, A.; Schmidhuber,]. Framewise phoneme classification with bidirectional LSTM and other neural
network architectures. Neural Netw. 2005, 18, 602-610. [CrossRef] [PubMed]

Hynek Petrak. Available online: https://github.com/HynekPetrak/javascript-malware-collection (accessed on
19 November 2019).

Geeksonsecurity. Available online: https://github.com/geeksonsecurity/js-malicious-dataset (accessed on
19 November 2019).

Wang Wei’s Home Page. Available online: http://infosec.bjtu.edu.cn/wangwei/?page_id=85 (accessed on
19 November 2019).

Alexa. Available online: https://www.alexa.com/ (accessed on 19 November 2019).

Skolka, P; Staicu, C.A.; Pradel, M. Anything to Hide? Studying Minified and Obfuscated Code in the Web.
In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13-17 May 2019.

Kingma, D.; Ba, J]. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

ClamAV. Available online: https://www.clamav.net/ (accessed on 21 February 2020).

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://esprima.org/index.html
http://dx.doi.org/10.1016/S0168-1699(02)00100-X
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/9780470544037.ch14
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://www.ncbi.nlm.nih.gov/pubmed/16112549
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/geeksonsecurity/js-malicious-dataset
http://infosec.bjtu.edu.cn/wangwei/?page_id=85
https://www.alexa.com/
https://www.clamav.net/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Dynamic Analysis of Malicious JavaScript
	Static Analysis of Malicious JavaScript

	Abstract Code Representation
	Defining Semantic Slice
	JavaScript Deobfuscation
	Program Dependency Analysis
	Program Slices Generation

	Malicious JavaScript Detection Model
	Model Selection
	Structure of BLSTM
	Transforming Semantic Slice into Vectors

	Experiment and Result
	Dataset Preprocessing
	Measurement Metrics
	Learning the BLSTM Neural Network
	Runtime Performance
	Detection Performance

	Limitations
	Conclusion
	References

