
applied
sciences

Article

Two Optimization Algorithms for Name-Resolution
Server Placement in Information-Centric Networking

Jiaqi Li 1,2 , Yiqiang Sheng 1,2,* and Haojiang Deng 1,2

1 National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy
of Sciences No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China; lijq@dsp.ac.cn (J.L.);
denghj@dsp.ac.cn (H.D.)

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy
of Sciences No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China

* Correspondence: shengyq@dsp.ac.cn; Tel.: +86-1312-116-8320

Received: 8 April 2020; Accepted: 18 May 2020; Published: 22 May 2020
����������
�������

Featured Application: In the era of 5G (fifth generation)-IoT (Internet of Things) integration,
information-centric networking (ICN) is an emerging technology that has the ability to share
data on the network layer. It brings great benefits such as in-network caching, mobility support,
and inherent security. Our proposed algorithms provide cost-efficient solutions for deploying
name-resolution servers in 5G edge networks. They also have the potential to be applied to other
scenarios, including the cloudlet placement problem in edge computation and the controller
placement problem in software-defined networking.

Abstract: Information-centric networking (ICN) is an emerging network architecture that has the
potential to address demands related to transmission latency and reliability in fifth-generation (5G)
communication technology and the Internet of Things (IoT). As an essential component of ICN,
name resolution provides the capability to translate identifiers into locators. Applications have
different demands on name-resolution latency. To meet the demands, deploying name-resolution
servers at the edge of the network by dividing it into multilayer overlay networks is effective.
Moreover, optimization of the deployment of distributed name-resolution servers in such networks
to minimize deployment costs is significant. In this paper, we first study the placement problem
of the name-resolution server in ICN. Then, two algorithms called IIT-DOWN and IIT-UP are
developed based on the heuristic ideas of inter-layer information transfer (IIT) and server reuse.
They transfer server placement information and latency information between adjacent layers from
different directions. Finally, experiments are conducted on both simulation networks and a real-world
dataset. The experimental results reveal that the proposed algorithms outperform state-of-the-art
algorithms such as the latency-aware hierarchical elastic area partitioning (LHP) algorithm in finding
more cost-efficient solutions with a shorter execution time.

Keywords: 5G; Information-Centric Networking; name resolution; placement optimization;
multilayer overlay network

1. Introduction

As a network technology, the Internet of Things (IoT) [1–3] connects a large number of devices
that are integrated with sensing, recognition, processing, communication, and networking functions.
Through seamless connections and interactions between a large number of heterogeneous devices,
the IoT provides a rich range of services and novel applications, changing the way we live and
work [4,5]. In terms of the application area aspect, IoT can be divided into consumer IoT and industrial

Appl. Sci. 2020, 10, 3588; doi:10.3390/app10103588 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7488-787X
https://orcid.org/0000-0002-8452-2492
http://www.mdpi.com/2076-3417/10/10/3588?type=check_update&version=1
http://dx.doi.org/10.3390/app10103588
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 3588 2 of 19

IoT (IIoT) [6]. With the rapid development of IoT, there will be 50 billion devices connected to the
Internet by 2020, among which about 20% will come from the industrial field, according to Cisco
Internet Business Solutions Group predictions [2]. By contrast with consumer IoT scenarios, the IIoT
has exceptionally high requirements for transmission latency and reliability. Transmission latency
and reliability directly affect the stability of industrial real-time monitoring and automatic control,
thus determining the accuracy, efficiency, and costs of industrial production. Not only low average
latency but also a deterministic upper bound of latency are needed when handing over data in the
IIoT [7]. Due to the increase in the number of IoT devices and the amount of the data they generate,
as well as the stringent quality of service requirements of the IIoT, current wireless communication
networks, such as 4G, fall short in supporting these challenges, restricting further development of
the IIoT.

Fortunately, fifth-generation (5G) wireless communication technology is expected to break the
performance bottleneck of the current communication network. Fifth-generation technology has
the potential to address the harshest demands posed by the IIoT since it provides higher data rates,
higher density, lower end-to-end latency, better reliability, and higher coverage [2,7]. The integration
of 5G and IoT will form new connected ecosystems in the near future, becoming one of the major
elements in shaping the future Internet [1]. In order to realize the high-performance indicators of 5G,
researchers are working hard to improve and standardize radio air interface technology, as well as
considering network architecture optimization as an essential part of this [8].

Information-centric networking (ICN) is an emerging network paradigm. It is under standardization
and has the potential to enhance and innovate data delivering services in the 5G network [8–10].
ICN adopts the paradigm of separation of the identifier and locator, which shifts the communication
model from host-centric to information-centric. It has several characteristics, such as in-network
caching [11], mobility support, built-in multicast delivery, and inherent security. These characteristics
complement the limitations of semantic overloaded due to exposure to the current Transmission Control
Protocol (TCP)/Internet Protocol (IP) network architecture [12,13]. In nature, IoT communications
and applications are information-based and follow a content-oriented paradigm. The matching of
paradigms also enables ICN to show a good capacity to work with the IoT.

In ICN, the identifier and locator are split into different naming spaces [14,15], and the
name-resolution system (NRS) is a network infrastructure that maps and stores the mappings between
them. NRS is an essential component of ICN because the delivery of content cannot be realized unless
the name-resolution process is completed. Thus, capabilities of name resolution directly influence the
performance of ICN in 5G. Several ICN projects have been proposed, and they offer different solutions
to the organization and deployment of the NRS. Most of these solutions deploy NRS in the cloud [16],
or organize distributed name-resolution servers based on the distributed hash table (DHT) [17–19].

The trend of the future network is transferred from best-effort to deterministic data transmission.
Consideration of the upper bound of the name resolution’s latency is significant, especially in the
5G-IoT scenario. Emerging technologies such as fog computing [20] and edge computing [21,22] are
advancing to enable 5G with ultra-reliable low-latency communication. In [23], Liao et al. introduced
the concept of deterministic latency into the NRS and proposed a deterministic latency name resolution
(DLNR) framework. The DLNR treats a network as a multilayer overlay network using different
latencies because Liao et al. believe that different applications have diverse deterministic latency
requirements. For each layer, network entities are partitioned into multiple areas based on the upper
bound set by this layer. In addition, name-resolution servers in the DLNR are placed at the edge of the
network to achieve lower latency and smaller latency jitter.

Placing servers at the edge of the network is a promising solution that makes servers closer to
end-users, providing a short latency response and high rate access [24]. However, this kind of approach
implies a substantial increase in deployment and operational costs. Determining how to deploy servers
to achieve a tradeoff between users’ quality of service and deployment costs is a great challenge.

Appl. Sci. 2020, 10, 3588 3 of 19

In this paper, we study how to cost-effectively place name-resolution servers without violating the
structural constraints of multilayer overlay networks in the DLNR. As far as we know, most previous
research has focused on the server placement problem in a single layer network. Methods proposed
in such studies do not work so well in multilayer overlay networks because these methods consider
little about the coordination between layers. Thus, it is of great importance to investigate the server
placement problem in multilayer overlay networks. The main contributions of this paper are as follows:

• We model the problem of latency-bounded optimal server placement in multilayer overlay
networks and formulate it as an integer linear program problem with the objective of minimizing
the deployment costs;

• We develop two algorithms based on the heuristic ideas of inter-layer information transfer (IIT)
and server reuse. The IIT-DOWN algorithm passes the server placement information from the
high-level layer to the low-level layer. It reuses servers chosen in the high-level layer to provide
low-level services as well. The IIT-UP algorithm passes the server placement information as well
as detailed latency information from low to high. The network scale shrinks during this procedure,
and the execution time reduces greatly;

• We conduct experiments on different scales of simulation networks and a real-world dataset to
measure the performance of our algorithms. We compare our algorithms with several approaches
to solve the server placement problem, and the experimental results show that our algorithms can
find more cost-efficient solutions with a shorter execution time.

The remainder of this paper is organized as follows. We review the related work about
name-resolution systems and the server placement problem in Section 2. Section 3 presents the
system model and problem statement of the name-resolution server placement in multilayer overlay
networks. In Section 4, two algorithms are described in detail; then, we evaluate and discuss their
performance with a comparison in Section 5. Finally, Section 6 concludes our work.

2. Related Work

Two research areas are related to the problem presented in the previous section: name-resolution
system and server placement optimization. The following sections present a comprehensive study of
the current literature on them.

2.1. Name-Resolution System

In existing ICN architectures, name resolution can be mainly divided into two categories according
to the coupling relationship with content routing: the name-based routing approach and the standalone
name-resolution approach [12,25,26]. We do not focus on name-based routing approaches, such
as Content-Centric Network (CCN) [27] and Named-Data Network (NDN) [28], because name
resolution and content routing are coupled in this approach, and there is no need for a separate
name-resolution service. ICN architectures using standalone name resolution include Data-Oriented
Network Architecture (DONA) [29], Publish/Subscribe for Internet Routing Paradigm (PSIRP) [30],
MobilityFirst [16], and so on. In this approach, name resolution and content routing are decoupled into
two steps: the identifier is used to lookup associated locators, and then data is routed by the locators.

Organization and deployment of NRS are crucial in standalone name-resolution approaches,
as they directly affect the efficiency of name resolution and the subsequent routing. MobilityFirst
employs a method called Globel Name Resolution Service (GNRS) with realization in the cloud,
which leads to long resolution latency [16]. Aiming to enhance scalability, several DHT-based
schemas have been proposed and studied, such as Multi-level Distributed Hash Table (MDHT) [17],
Hierarchical Distributed Hash Table (HDHT) [18], Scalable Multi-level Virtual Distributed Hash Table
(SVMDHT) [19], and Hierarchical Pastry (H-Pastry) [31]. Despite achieving good scalability and
robustness, the DHT mechanism has an inherent disadvantage that it is not topology aware. Overlay
networks built by DHT do not consider the nearness between nodes, and the name-resolution latency

Appl. Sci. 2020, 10, 3588 4 of 19

is hard to achieve. Compared with DHT methods, tree-based methods have a more definite query path
while taking scalability into account. Sun et al. proposed Griffin, which is based on a tree structure
and provides an efficient and scalable name-resolution service. However, its structure is built statically
and it cannot adapt to the dynamic environment in the 5G-IoT scenario [32]. Ftree, developed by
Louati et al. [33], stores name mapping in leaf nodes to ensure the nearest response is achieved, but it
does not distinguish among different latency demands, and its name-resolution latency still does not
promise an upper bound.

2.2. Deterministic Latency Name Resolution

Designing an ICN name-resolution system that can effectively meet the high scalability and
deterministic latency requirements of 5G-IoT is extremely challenging. Figure 1 shows the DLNR
framework. It is a potential solution proposed by Liao et al. [23]. DLNR develops a locally enhanced
name-resolution mechanism to provide a one-to-many relationship between an identifier and locators
with the constraints of scopes or distances to achieve deterministic low latencies in a limited domain by
accelerating the name-resolution process. It supports flat-name based NRS schemas, and the distributed
name solution nodes in this schema are organized by a tree structure. By contrast with current NRS
approaches, DLNR focuses on the underlying network and partitions the network entities into several
nested hierarchical elastic areas (HEAs) according to their different deterministic latency constraints.
There is a dedicated name-resolution node called the HEA Manager (HM) in every HEA. The HM is
responsible for establishing, storing the mapping of identifiers to locators and it provides the primary
name-resolution service to requesters in the HEA. In DLNR, the physical network is partitioned into
multilayer overlay networks, corresponding to multiple level HEAs. A higher-level HEA consists of
several lower-level HEAs. Different level layers of HEA have different latency constraints. The higher
level means a broader coverage and a higher latency upper bound. HEAs in the same level hold
the same latency with no area overlap. It is worth noting that Liao et al. carefully analyzed the
proportion of latencies contributed by each procedure in the name-resolution event. They found that
the transmission latency was much greater than that of the other steps. Therefore, they used the
transmission latency as the organization basis of the system structure, which is also used in this paper.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 20

structure is built statically and it cannot adapt to the dynamic environment in the 5G-IoT scenario
[32]. Ftree, developed by Louati et al. [33], stores name mapping in leaf nodes to ensure the nearest
response is achieved, but it does not distinguish among different latency demands, and its name-
resolution latency still does not promise an upper bound.

2.2. Deterministic Latency Name Resolution

Designing an ICN name-resolution system that can effectively meet the high scalability and
deterministic latency requirements of 5G-IoT is extremely challenging. Figure 1 shows the DLNR
framework. It is a potential solution proposed by Liao et al. [23]. DLNR develops a locally enhanced
name-resolution mechanism to provide a one-to-many relationship between an identifier and
locators with the constraints of scopes or distances to achieve deterministic low latencies in a limited
domain by accelerating the name-resolution process. It supports flat-name based NRS schemas, and
the distributed name solution nodes in this schema are organized by a tree structure. By contrast with
current NRS approaches, DLNR focuses on the underlying network and partitions the network
entities into several nested hierarchical elastic areas (HEAs) according to their different deterministic
latency constraints. There is a dedicated name-resolution node called the HEA Manager (HM) in
every HEA. The HM is responsible for establishing, storing the mapping of identifiers to locators and
it provides the primary name-resolution service to requesters in the HEA. In DLNR, the physical
network is partitioned into multilayer overlay networks, corresponding to multiple level HEAs. A
higher-level HEA consists of several lower-level HEAs. Different level layers of HEA have different
latency constraints. The higher level means a broader coverage and a higher latency upper bound.
HEAs in the same level hold the same latency with no area overlap. It is worth noting that Liao et al.
carefully analyzed the proportion of latencies contributed by each procedure in the name-resolution
event. They found that the transmission latency was much greater than that of the other steps.
Therefore, they used the transmission latency as the organization basis of the system structure, which
is also used in this paper.

Figure 1. The nested structure of deterministic latency name resolution (DLNR). The physical network
is partitioned into several hierarchical elastic areas (HEAs). These HEAs are nested organized, and
each HEA has an HEA Manager (HM) to provide a name-resolution service. Each layer is constrained
by an upper bound of latency.

The design of DLNR effectively addresses the 5G-IoT requirements. The method of the
hierarchical organization improves the scalability and satisfies differentiated demands for latency.
The partitioning of HEAs realizes the name resolution of deterministic latency, which limits the
queries in the domain and reduces the query traffic between domains. The nested tree structure
improves the management efficiency. The area partitioned according to the latency can be
constructed elastically. The networks in DLNR are typical multilayer overlay networks, and a
reasonable partition for each layer and the placement of name-resolution servers are the keys to the
whole architecture working efficiently.

Figure 1. The nested structure of deterministic latency name resolution (DLNR). The physical network
is partitioned into several hierarchical elastic areas (HEAs). These HEAs are nested organized, and each
HEA has an HEA Manager (HM) to provide a name-resolution service. Each layer is constrained by an
upper bound of latency.

The design of DLNR effectively addresses the 5G-IoT requirements. The method of the hierarchical
organization improves the scalability and satisfies differentiated demands for latency. The partitioning
of HEAs realizes the name resolution of deterministic latency, which limits the queries in the domain
and reduces the query traffic between domains. The nested tree structure improves the management
efficiency. The area partitioned according to the latency can be constructed elastically. The networks

Appl. Sci. 2020, 10, 3588 5 of 19

in DLNR are typical multilayer overlay networks, and a reasonable partition for each layer and the
placement of name-resolution servers are the keys to the whole architecture working efficiently.

2.3. Name-Resolution Server Placement in Information-Centric Networking (ICN)

As mentioned above, DLNR is an organizational framework for ICN name-resolution services in
5G-IoT scenarios. It brings two major constraints to the name-resolution server placement problem.
Firstly, the name-resolution server is compulsive at providing a resolution service within an upper
bound of latency. Secondly, name-resolution servers are organized as a multilayer to satisfy different
requirements of name-resolution latency. Proper placement of the servers is critical to reduce the costs
of system deployment. Therefore, we undertook a lot of research for inspiration.

Proper placement of the servers is critical to reduce the costs of system deployment in multilayer
overlay networks, such as the DLNR mentioned above. The server placement problem is a typical
problem that is widely applied in cloudlet placement [34], controller deployment in software-defined
networking [35], and virtual machine placement in cloud computing [36]. However, the server
placement problem can usually be regarded as an NP-hard problem [37], so it has attracted the attention
of researchers seeking to develop efficient algorithms to reach an approximate solution within a
reasonable amount of time.

Jia et al. [38] studied how to place K cloudlets and allocate users to cloudlets in wireless
metropolitan area networks (WMAN) such that the average system response time is minimized.
They proposed a density-based clustering (DBC) algorithm to solve the problem with the aim of
enabling the placement of cloudlets at regions with high user density. Xu et al. [39] formulated a
novel capacitated cloudlet placement problem that placed K cloudlets in different strategic locations.
They showed that the problem is NP-hard and then devised a greedy-based heuristic algorithm to
solve it. Since the greedy-based algorithm is simple and easy to implement to solve this problem,
several k-means based algorithms have been presented [40,41]. Wang et al. [42] defined an edge-server
problem as a multi-objective constraint optimization problem. They proposed an exact mixed-integer
linear programming solution to minimize the total access delay between users and edge servers.
Moreover, several heuristic algorithms were proposed to solve the server placement problem. In [43],
Jia et al. proposed a fast heuristic and a distributed genetic algorithm to minimize the maximum
response time of all offloaded tasks. The authors in [44] proposed a new heuristic algorithm and a
particle swarm optimization algorithm to find better server placement solutions.

The studies mentioned above focused on the placement strategy with K servers. Their targets
were to minimize the average access time and balance of offloading rather than minimizing the costs of
servers. In [45], Ma et al. placed cloudlets in the WMAN using a clustering algorithm, K-Medoids,
with the objective of minimizing the count of cloudlets. Li and Wang formulated the problem as a
multi-objective optimization problem and devised a particle swarm optimization algorithm to find
the optimal solution [46]. Studies in [47,48] transformed the edge-server placement problem into an
optimization problem that requires the dominating set of a given graph to be minimized, and graph
algorithms were applied to solve the problem.

Most of the studies on placement problems have focused on single-layer networks. When it
comes to multilayer networks, the problem becomes even more complicated, because the simple
superposition of optimal strategies in a single layer usually cannot obtain the optimal strategy in
multi-layer networks. Liu et al. [49] studied the hierarchical deployment of mobile edge computing
servers and the user allocation problem. Their hierarchical deployment is relative to specific 5G entities,
and no upper limit to access delay was considered. In [50], Sinky et al. studied placement problems
in tree-like structures. They used a hierarchical clustering algorithm with good scalability that only
adapts to the K server placement problem.

The studies above have some limitations if directly applied, because they do not take into account
both deterministic latency constraint and multiple latency demands when name-resolution servers are
placed in ICN. The most relevant studies are [23,51]. In [51], Nacher et al. first defined the multilayer

Appl. Sci. 2020, 10, 3588 6 of 19

control problem in terms of the minimum dominating set (MDS) controllability framework. Their target
was to minimize the total dominator count, which is similar to the server placement problem. However,
there are no more constraints between layers in their model, and it is not suitable for direct application
in name-resolution server placement in our situation. Liao et al. [23] proposed the DLNR framework,
and an algorithm called the latency-aware hierarchical elastic area partitioning (LHP) algorithm was
also proposed. However, the LHP is just a feasible algorithm that outputs a placement and partition
solution to satisfy the structural constraints, and its costs are not minimized.

3. System Model and Problem Statement

We modeled the placement problem of name-resolution servers in multilayer overlay networks
with an undirected graph G(V, E, W). V = {v1, v2, . . . , vN} is the set of nodes in the physical network,
including all network entities with the potential to place name-resolution servers. N is the total count
of network entities. E is the set of edges, and edge e(u, v) belongs to E if node u and node v can
communicate with each other without going through any other nodes in V. W is the weight set of
E, and the weight w(u, v) is the one-way transmission latency between node u and node v. We used
a matrix D to denote the one-way transmission latencies for all pairs of nodes in G, where d(u, v)
represents the shortest path latency between node u and node v. T = {t1, t2, . . . , tL} is a set that consists
of upper bounds of each layer’s constraint latencies, and L is the count of different latency scenarios.
It is noteworthy that when it comes to the secure name-resolution scenarios, authentication and
encryption processes may take some time. In these scenarios, upper bounds in T should be calculated
by subtracting corresponding process time. For all 0 ≤ i < j ≤ L, ti < t j holds, which means that
higher-level HEAs have higher latency upper bounds. T is usually determined by application scenarios
in the network. The detailed notations and descriptions used in this paper are summarized in Table 1.

Table 1. Summary of notation.

Notation Description

V the set of nodes that have the potential to place servers
N the total count of nodes in V
E the set of links directly connect between nodes
W the set of one-way transmission latencies of links
D N ×N matrix, the shortest path latencies between every pair of nodes in V

e(u, v) the link between node u and node v
w(u, v) the one-way transmission latencies of link e(u, v)
d(u, v) the shortest path latency between node u and node v

T the set of upper bounds of each level layer’s constraint latencies
L the count of layer levels
i the index of a level

Mi the count of HEAs in level i
m the index of HEA

HEAi
m the m-th cluster in level i

HMi
m the cluster head of the m-th HEA in level i

Hi
m the cluster member set of the m-th HEA in level i

xi
v binary variable, equal to 1 if node v is chosen as an HM in level i

yi
v binary variable, equal to 0 if node v is chosen as HM in the level higher than i
αi the costs of deploying a server at level i

SHM the global set of HM
MLi the attribute of a HM to record the maximum latency in its HEA

In this model, we can describe our optimization objective and the constraints of multilayer overlay
networks more accurately with exact formulas. For a layer in level i with a latency upper bound of ti,
we assume that G is divided into several HEAs. We record the count of HEAs as Mi. Nodes and edges
in each HEA form a subgraph Gi

m

(
Vi

m, Ei
m, Wi

m

)
of G, m = 1, 2, . . . , Mi. HEAi

m represents the cluster
of Gi

m, and HMi
m represents the cluster head of HEAi

m. For all nodes v in V, if node v is chosen as
HMi

m, we record xi
v = 1, otherwise, xi

v = 0. In our model, different overlay layers can choose the same
physical node for server placement, so we let the costs of deployment of the highest level represent the

Appl. Sci. 2020, 10, 3588 7 of 19

costs of this physical server. If node v has been chosen as an HM in the level higher than i, we record
yi

v = 0, otherwise, yi
v = 1.

Let αi represent the cost of deploying a server at level i. The server placement problem in
multilayer overlay networks can be formulated as follows:

Minimize
Cost =

∑L

i=1

∑
v∈V

xi
v ∗ yi

v ∗ α
i, (1)

subject to
∪

Mi

m=1 Vi
m = V, ∀i ∈ {1, 2, . . . , L}, (2)

Vi
m ∩Vi

n = ∅, ∀m, n ∈
{
1, 2, . . . , Mi

}
, m , n, i ∈ {1, 2, . . . , L}, (3)

Vi
m ⊆ V j

n, i f ∃v ∈ Vi
m and v ∈ V j

n, m ∈
{
1, 2, . . . , Mi

}
, n ∈

{
1, 2, . . . , M j

}
,

0 ≤ i < j ≤ L,
(4)

d
(
v, HMi

m

)
< ti, ∀v ∈ Vi

m, m ∈
{
1, 2, . . . , Mi

}
, ∀ ti ∈ T. (5)

Equation (1) represents the total placement costs of name-resolution servers. The constraint
of Equation (2) guarantees the full coverage of the partitioned HEAs to the nodes in the network,
which means all requesters can use name-resolution services in each latency level. The constraint of
Equation (3) ensures that there is no overlap between HEAs in the same layer, so a tree structure can be
formed and the management work becomes easy. Nested relationships between HEAs from different
level layers are indicated in Expression (4). In Expression (5), the upper bounds of name-resolution
response latencies are promised.

If a solution of placing name-resolution servers is subject to the aforementioned constraints, it is a
feasible solution in server placement in multilayer overlay networks. Finding the HM set of a single
layer network with a minimum count is similar to the MDS problem in graph theory. Nacher et al. [51]
first defined the multilayer control problem in terms of the MDS controllability framework, which is
called MDS in multilayer. They demonstrated that even in special cases of networks in which the MDS
is solved in polynomial time, the MDS in a multilayer (MDSM) problem is still NP-hard. There are
several constraints to guarantee the structure characteristic of multilayer overlay networks in our
model, and the server placement problem is NP-hard as well. A good algorithm gives a solution that
outputs HEAs and HMs for every layer of G with minimum cost and a shorter execution time.

4. Proposed Algorithms

In this section, we analyze the characteristics of the server placement problem. Inspired by the
ideas of transfer placement information between layers and server reuse, we developed the IIT-DOWN
algorithm in the direction from the high-level layer to the low-level layer. Then, we found that the
servers in the lower-level layer occupy the majority of the total number of servers, so we proposed the
IIT-UP algorithm, which transfers placement information and detailed latency information from low to
high. In these two algorithms, we used the relaxation technique of binary integer linear programming
in choosing each layer’s HM, since it is an NP-hard problem as well. Though the result is approximate,
it can output a solution that is not far from the exact solution within polynomial time [52].

4.1. Inter-Layer Information Transfer (IIT)-DOWN Algorithm

As shown in Figure 2, the main idea of the IIT-DOWN algorithm is as follows. After choosing
the HMs from a certain layer network, IIT-DOWN passes the chosen HMs’ location information to
the lower-level layer and removes the nodes in these locations. The details of this algorithm are as
follows: We carry out HEA partitioning from a high latency level to a low latency level. First, we deal
with the highest-level layer. All nodes are painted white in G, which means that these nodes are not
members of any HEAs yet. Then, the edges with a latency higher than ti, the latency upper bound
of this level, are removed. On the other hand, we add an edge between node u and node v with

Appl. Sci. 2020, 10, 3588 8 of 19

w(u, v) = d(u, v), if d(u, v) < ti holds. Then, we calculate the current layer’s HMs with the minimum
number and add these nodes to the global HM set, marked as SHM, and all nodes in SHM are painted
black. For every node in white, we find its closest HM from SHM, and make this node a member
of the corresponding HEA. The nodes contained in the HEA are marked as H. Then, we undertake
lower-level HEA partitioning for every partitioned higher-level HEA. In a lower-level layer, we remove
and add edges with the same principle. Then, we remove the nodes that are chosen as HMs in the level
higher than the current level and paint their neighboring nodes grey. By now, the current layer’s HMs
can be calculated using algorithm 3. Iteratively, after finishing partitioning in every layer, the output is
the partitioning result containing HEAs and SHM. The specific algorithm is presented in Algorithm 1.

Algorithm 1: IIT-DOWN

Input: G(V, E, W), D
Output: SHM, Hs
Parameters: T = {t1, t2, . . . , tL}

1: Initialization: HL+1 = {V}, HML+1 = ∅
2: for i from L to 1 do
3: for each h in Hi+1 do
4: generate Gi

(
Vi, Ei, Wi

)
where Vi = h, Ei = ∅, Wi = ∅

5: for v in Vi do
6: v.color = white
7: if v in HMi+1 then v.color = black
8: for each u, v in Vi that u , v do
9: if d(u, v) < ti then
10: add e(u, v) to Ei and add w(u, v) = d(u, v) to Wi

11: for v in HMi+1 do
12: for u in Vi do
13: if e(u, v) in Ei and u.color = white then u.color = grey
14: remove v from Gi

15: HMi = Choose_HM (Gi)
16: for each v in Vi do
17: if v in HMi then v.color = black
18: if not v.color = black then
19: find k with the minimum d(v, k) in HMi and add v to Hi

k
20: add Hi

k to Hi

21: add HMi to SHM and add Hi to Hs
22: return SHM, Hs

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 20 𝑤(𝑢, 𝑣) = 𝑑(𝑢, 𝑣), if 𝑑(𝑢, 𝑣)＜𝑡 holds. Then, we calculate the current layer’s HMs with the minimum
number and add these nodes to the global HM set, marked as 𝑆 , and all nodes in 𝑆 are painted
black. For every node in white, we find its closest HM from 𝑆 , and make this node a member of
the corresponding HEA. The nodes contained in the HEA are marked as H. Then, we undertake
lower-level HEA partitioning for every partitioned higher-level HEA. In a lower-level layer, we
remove and add edges with the same principle. Then, we remove the nodes that are chosen as HMs
in the level higher than the current level and paint their neighboring nodes grey. By now, the current
layer’s HMs can be calculated using algorithm 3. Iteratively, after finishing partitioning in every layer,
the output is the partitioning result containing HEAs and 𝑆 . The specific algorithm is presented in
Algorithm 1.

Figure 2. An example operation in inter-layer information transfer (IIT)-DOWN. Nodes do not change
in different layers, but the connections among them may be different. Nodes in black are chosen for
the placement of name-resolution servers. Nodes in white represent those that have not been
partitioned. The HMs chosen from level 𝑖 are removed in level 𝑖 − 1, and grey nodes represent nodes
that satisfy the latency constraint from these HMs. There are four HMs in total in this example.

Algorithm 1: IIT-DOWN

Input: 𝐺(𝑉, 𝐸, 𝑊), 𝐷

Output: 𝑆 , Hs

Parameters: 𝑇 = {𝑡 , 𝑡 , … , 𝑡 }
1: Initialization: 𝐻 = {𝑉}, 𝐻𝑀 = ∅

2: for 𝑖 from 𝐿 to 1 do

3: for each ℎ in 𝐻 do

4： generate 𝐺 (𝑉 , 𝐸 , 𝑊) where 𝑉 = ℎ, 𝐸 = ∅, 𝑊 = ∅

5: for 𝑣 in 𝑉 do

6: 𝑣.color = white

7: if 𝑣 in 𝐻𝑀 then 𝑣.color = black

8: for each 𝑢, 𝑣 in 𝑉 that 𝑢 ≠ 𝑣 do

9: if 𝑑(𝑢, 𝑣) < 𝑡 then

10: add 𝑒(𝑢, 𝑣) to 𝐸 and add 𝑤(𝑢, 𝑣) = 𝑑(𝑢, 𝑣) to 𝑊

11: for 𝑣 in 𝐻𝑀 do

12: for 𝑢 in 𝑉 do

13: if 𝑒(𝑢, 𝑣) in 𝐸 and 𝑢.color = white then 𝑢.color = grey

14: remove 𝑣 from 𝐺

15: 𝐻𝑀 = Choose_HM (𝐺)

Figure 2. An example operation in inter-layer information transfer (IIT)-DOWN. Nodes do not change
in different layers, but the connections among them may be different. Nodes in black are chosen for the
placement of name-resolution servers. Nodes in white represent those that have not been partitioned.
The HMs chosen from level i are removed in level i− 1, and grey nodes represent nodes that satisfy the
latency constraint from these HMs. There are four HMs in total in this example.

Appl. Sci. 2020, 10, 3588 9 of 19

4.2. IIT-UP Algorithm

While studying characteristics of multilayer overlay networks, we found that the topology of the
lower-level layer is a subgraph of the higher-level layer network. Because the level is determined by a
different latency, once two nodes can communicate with each other in a low-latency level, they can
communicate no more than a high-latency upper bound. On the other hand, we found that it is servers
in the lower-level layer that occupy the majority of the total count of servers. We took full advantage
of these characteristics and proposed the IIT-UP algorithm. This is an algorithm that gives priority to
the processing of the lower-level layer network. The topology that contains HMs in the sublayer forms
a subgraph of the physical network and becomes the current layer’s input.

As shown in Figure 3, when dealing with the layer of level i, edges in which latency is higher
than the upper bound of this level are deleted, and each pair of nodes is connected if the transmission
latency between them is lower than the upper bound. Then, the current layer’s HMs are calculated
with the minimum number using the relaxation technique of binary integer linear programming.
For every node that is not in an HM, its closest HM is found and this node is made to be a member of
the corresponding HEA. After this procedure, every HM has several HEA members. The maximum
latency among the latencies of HEA members to their HM is found and recorded as an attribute of this
HM, marked MLi (maximum latency). Then, partitioning in the level i + 1 layer begins, where the
nodes of the level i + 1 layer come from HMi. Accordingly, the principles of addition and deletion
edges for every node are constrained by the difference between ti and MLi

v. Iteratively, after finishing
partitioning in every layer, the output is the partitioning result containing HEAs and SHM. The specific
algorithm is presented in Algorithm 2.

Algorithm 2: IIT-UP

Input: G(V, E, W), D
Output: SHM, Hs
Parameters: T = {t1, t2, . . . , tL}

1: Initialization: HM0 = V
2: for each v in V do
3: v.MLi = 0
4: for i from 1 to L do
5: generate Gi

(
Vi, Ei, Wi

)
where Vi = HMi−1, Ei = ∅, Wi = ∅

6: for each v in Vi do
7: v.color = white
8: for each u, v in Vi that u , v do
9: if d(u, v) < ti −max

(
u.MLi, v.MLi

)
then

10: add e(u, v) to Ei and add w(u, v) = d(u, v) to Wi

11: HMi= Choose_HM (Gi)
12: for each v in Vi do
13: if v in HMi then v.color = black
14: if not v.color = black then
15: find k with the minimum d(v, k) in HMi and add v to Hi

k
16: add Hi

k to Hi

17: add HMi to SHM and add Hi to Hs
18: return SHM, Hs

Appl. Sci. 2020, 10, 3588 10 of 19

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 20

16: for each 𝑣 in 𝑉 do

17: if 𝑣 in 𝐻𝑀 then 𝑣.color = black

18: if not 𝑣.color = black then

19: find 𝑘 with the minimum 𝑑(𝑣, 𝑘) in 𝐻𝑀 and add 𝑣 to 𝐻

20: add 𝐻 to 𝐻

21: add 𝐻𝑀 to 𝑆 and add 𝐻 to Hs

22: return 𝑆 , Hs

4.2. IIT-UP Algorithm

While studying characteristics of multilayer overlay networks, we found that the topology of the
lower-level layer is a subgraph of the higher-level layer network. Because the level is determined by
a different latency, once two nodes can communicate with each other in a low-latency level, they can
communicate no more than a high-latency upper bound. On the other hand, we found that it is
servers in the lower-level layer that occupy the majority of the total count of servers. We took full
advantage of these characteristics and proposed the IIT-UP algorithm. This is an algorithm that gives
priority to the processing of the lower-level layer network. The topology that contains HMs in the
sublayer forms a subgraph of the physical network and becomes the current layer’s input.

As shown in Figure 3, when dealing with the layer of level 𝑖, edges in which latency is higher
than the upper bound of this level are deleted, and each pair of nodes is connected if the transmission
latency between them is lower than the upper bound. Then, the current layer’s HMs are calculated
with the minimum number using the relaxation technique of binary integer linear programming. For
every node that is not in an HM, its closest HM is found and this node is made to be a member of the
corresponding HEA. After this procedure, every HM has several HEA members. The maximum
latency among the latencies of HEA members to their HM is found and recorded as an attribute of
this HM, marked 𝑀𝐿 (maximum latency). Then, partitioning in the level 𝑖 + 1 layer begins, where
the nodes of the level 𝑖 + 1 layer come from 𝐻𝑀 . Accordingly, the principles of addition and
deletion edges for every node are constrained by the difference between 𝑡 and 𝑀𝐿 . Iteratively, after
finishing partitioning in every layer, the output is the partitioning result containing HEAs and 𝑆 .
The specific algorithm is presented in Algorithm 2.

Figure 3. An example operation in IIT-UP. The network of each layer is solved in order from low to
high. The HMs in the level 𝑖 layer constitute the topology of the level 𝑖 + 1 layer.

Algorithm 2: IIT-UP

Input: 𝐺(𝑉, 𝐸, 𝑊), 𝐷

Output: 𝑆 , Hs

Parameters: 𝑇 = {𝑡 , 𝑡 , … , 𝑡 }
1: Initialization: 𝐻𝑀 = 𝑉

2: for each 𝑣 in 𝑉 do

3: 𝑣. 𝑀𝐿 = 0

4: for 𝑖 from 1 to 𝐿 do

Figure 3. An example operation in IIT-UP. The network of each layer is solved in order from low to
high. The HMs in the level i layer constitute the topology of the level i + 1 layer.

4.3. Computation of Hierarchical Elastic Areas Manager (HM) in a Single Layer

In IIT-DOWN and IIT-UP, a solution for a single layer network is needed as well. This problem is
similar to finding an MDS set of a network. Here, we use the relaxation technique of binary integer
linear programming to choose the HMs in the colored graph in the proposed algorithms. The specific
algorithm is presented in Algorithm 3. However, other efficient single-layer approximation algorithms
can also be applied here, but this is not the focus of the current research.

Algorithm 3: Choose_HM

Input: G(V, E, W)

Output: HMs
1: Initialization: Vars = ∅
2: for each v in V do
3: add a variable xv to Vars, xv ∈ [0, 1]
4: for each v in V do
5: if v.color = white then
6: add constraint xv +

∑
u: e(u, v)∈E xu ≥ 1

7: minimize
∑

v: v∈V xv as optimize objective
8: do optimize
9: for each xv in Vars do
10: if xv > 0 then add v to HMs
11: return HMs

5. Evaluation and Discussion

5.1. Simulation Network

For comparison’s sake, we reproduced several existing algorithms and applied them to the
placement problem of name resolution in multilayer overlay networks. The comparison algorithms
were as follows:

• LHP: this algorithm was described in [23], and it is a heuristic graph-partitioning algorithm.
It divides a physical network into one or more connected subgraphs with the latency level
constrained from high to low. It chooses name-resolution nodes with the maximum degree and
finds nodes they cover. Partitioning for each layer is achieved one by one;

• MDSM: this is the algorithm that was used to analyze the upper bound of MDS in multilayer
networks in [51]. It is an algorithm that removes the neighboring nodes of higher-level dominators
before solving the current level layer’s MDS. The original MDSM does not satisfy the latency
constraints in multilayer overlay networks. We extended the MDSM appropriately to adapt to
the problem;

• Random allocate (RA): in this algorithm, the HM is chosen randomly, and users are allocated to
an HEA, depending on which HM is closest to them.

Appl. Sci. 2020, 10, 3588 11 of 19

We generated random graphs that follow the Barabási-Albert (BA) scale-free model. It is a typical
power-law degree distribution network that is widely used to simulate real network topology [53].
These networks’ node sizes are from 100 to 2000, and the average degree is 2. According to [54],
the end-to-end latency of the current internet is in the magnitude of ten milliseconds. Thus, we randomly
set the weight of each edge from 0 to 10 ms. Considering the different latency requirements of major
application scenarios in 5G-IoT, we chose T = {10 ms, 25 ms, 50 ms} as the upper bounds of the
one-way transmission latency [55]. These bounds cannot represent all of the latency demands but are
already able to evaluate the differences among these algorithms objectively. When it came to solving
the HM choosing problem in a single layer, we used the Solving Constraint Integer Programs (SCIP)
solver. It is currently one of the fastest non-commercial solvers for mixed integer programming and
mixed integer non-linear programming [56]. The settings of the experiment are also shown in Table 2.

Table 2. Evaluation setting.

Parameter Value

Number of nodes 100~2000
Average degree 2

L 3
T (ms) 10, 25, 50

Latency scope (ms) (0, 10]

Figure 4 shows the network scenario of simulation experiments. The network topology consists of
edge nodes such as base station and access point. Mobile edge computing in 5G technology makes it
possible to deploy name-resolution servers at the edge of the network. The expected server placement
result is also shown in the figure. The network is divided into three layers, corresponding to different
upper bounds of name-resolution latency. At each layer, several edge nodes are selected to place
name-resolution servers to provide deterministic resolution services.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 20

HM of
Level 3

HM of
Level 2

50ms

25ms 25ms

10ms10ms 10ms 10ms

HM of
Level 1

Base
Station

Access
Point

User
Equipment

Figure 4. The network scenario of simulation experiments.

The experiment environment was created and run in Python 3.6 on a PC with an Intel Core (TM)
i7-9750H CPU and 16GB of RAM. For each network node size, we experimented with 15 trials. All
algorithms were run with the same experiment environment and input topology. We recorded
several indicators for analysis, including the costs, execution time, number of HMs, and average
latency. The performances we analyzed were as follows.

5.1.1. Deployment Costs

We assumed that the costs of each server were the same and calculated the total costs of servers
that were placed to satisfy the transmission latency constraints under different network scales using
each algorithm. The simulation results are shown in Figure 5. It can be seen that the two IIT
algorithms performed better than the LHP algorithm and the RA algorithm in finding cost-efficient
solutions. The performance of the MDSM algorithm was in the middle. We analyzed the data from
the experiment. The cost of the solution obtained by IIT-DOWN was about 59.6% of that obtained by
the LHP algorithm, and about 67.9% of that obtained by MDSM. For the IIT-UP algorithm, the ratios
of the same comparison were 56.8% and 64.8%, respectively. We can draw the conclusion that the
costs of deployment can be effectively reduced by passing information between layers to coordinate
server placement and reusing servers. In addition, the relationship between costs and network size
was shown to be linear for all algorithms.

Figure 4. The network scenario of simulation experiments.

The experiment environment was created and run in Python 3.6 on a PC with an Intel Core
(TM) i7-9750H CPU and 16GB of RAM. For each network node size, we experimented with 15 trials.

Appl. Sci. 2020, 10, 3588 12 of 19

All algorithms were run with the same experiment environment and input topology. We recorded
several indicators for analysis, including the costs, execution time, number of HMs, and average
latency. The performances we analyzed were as follows.

5.1.1. Deployment Costs

We assumed that the costs of each server were the same and calculated the total costs of servers
that were placed to satisfy the transmission latency constraints under different network scales using
each algorithm. The simulation results are shown in Figure 5. It can be seen that the two IIT algorithms
performed better than the LHP algorithm and the RA algorithm in finding cost-efficient solutions.
The performance of the MDSM algorithm was in the middle. We analyzed the data from the experiment.
The cost of the solution obtained by IIT-DOWN was about 59.6% of that obtained by the LHP algorithm,
and about 67.9% of that obtained by MDSM. For the IIT-UP algorithm, the ratios of the same comparison
were 56.8% and 64.8%, respectively. We can draw the conclusion that the costs of deployment can
be effectively reduced by passing information between layers to coordinate server placement and
reusing servers. In addition, the relationship between costs and network size was shown to be linear
for all algorithms.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 20

Figure 5. Deployment cost comparison for each algorithm with different network sizes.

5.1.2. HM Count

We also analyzed the number of HMs in each layer, as shown in Figure 6. We figured out that
IIT algorithms can reduce the number of HMs at each level. Although the IIT-UP algorithm gives the
best results in terms of cost, we found that the IIT-DOWN algorithm outputs a lower HM count in
the higher-level layers, because it gives priority to dealing with the higher-level layer. In the situation
where servers deployed at the higher-level layer use more resources, such as bandwidth, storage, and
computation, IIT-DOWN becomes the best choice.

(a) (b) (c)

Figure 6. HM count at each layer. In each layer, inter-layer information transfer (IIT) algorithms
perform better than other algorithms. IIT-DOWN and multilayer minimum dominating set (MDSM)
algorithms need less name-resolution servers in higher-level layers. (a) The layer with the latency
upper bound at 50 ms. Note that the results of IIT-DOWN and MDSM overlap. (b) The layer with the
latency upper bound at 25 ms. (c) The layer with the latency upper bound at 10 ms.

We mentioned above that the HM choice problem is similar to the MDS problem in graph theory,
Nacher et al. proved that in the BA scale-free model, the size of the MDS is 𝜃(𝑛) [57], where n is the
number of nodes in the network. Our simulation results also confirmed this conclusion. We can use
this conclusion to estimate the number of name-resolution servers we have to deploy in a target
network if the network is in line with the BA scale-free model.

5.1.3. Execution Time

With an increment in the network size, the network becomes more and more complex. The time
to solve the problem will become increasingly more difficult to accept. When minimizing the costs of
server deployment is considered the optimization goal, we must consider the operation efficiency of

Figure 5. Deployment cost comparison for each algorithm with different network sizes.

5.1.2. HM Count

We also analyzed the number of HMs in each layer, as shown in Figure 6. We figured out that
IIT algorithms can reduce the number of HMs at each level. Although the IIT-UP algorithm gives the
best results in terms of cost, we found that the IIT-DOWN algorithm outputs a lower HM count in the
higher-level layers, because it gives priority to dealing with the higher-level layer. In the situation
where servers deployed at the higher-level layer use more resources, such as bandwidth, storage,
and computation, IIT-DOWN becomes the best choice.

We mentioned above that the HM choice problem is similar to the MDS problem in graph theory,
Nacher et al. proved that in the BA scale-free model, the size of the MDS is θ(n) [57], where n is
the number of nodes in the network. Our simulation results also confirmed this conclusion. We can
use this conclusion to estimate the number of name-resolution servers we have to deploy in a target
network if the network is in line with the BA scale-free model.

Appl. Sci. 2020, 10, 3588 13 of 19

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 20

Figure 5. Deployment cost comparison for each algorithm with different network sizes.

5.1.2. HM Count

We also analyzed the number of HMs in each layer, as shown in Figure 6. We figured out that
IIT algorithms can reduce the number of HMs at each level. Although the IIT-UP algorithm gives the
best results in terms of cost, we found that the IIT-DOWN algorithm outputs a lower HM count in
the higher-level layers, because it gives priority to dealing with the higher-level layer. In the situation
where servers deployed at the higher-level layer use more resources, such as bandwidth, storage, and
computation, IIT-DOWN becomes the best choice.

(a) (b) (c)

Figure 6. HM count at each layer. In each layer, inter-layer information transfer (IIT) algorithms
perform better than other algorithms. IIT-DOWN and multilayer minimum dominating set (MDSM)
algorithms need less name-resolution servers in higher-level layers. (a) The layer with the latency
upper bound at 50 ms. Note that the results of IIT-DOWN and MDSM overlap. (b) The layer with the
latency upper bound at 25 ms. (c) The layer with the latency upper bound at 10 ms.

We mentioned above that the HM choice problem is similar to the MDS problem in graph theory,
Nacher et al. proved that in the BA scale-free model, the size of the MDS is 𝜃(𝑛) [57], where n is the
number of nodes in the network. Our simulation results also confirmed this conclusion. We can use
this conclusion to estimate the number of name-resolution servers we have to deploy in a target
network if the network is in line with the BA scale-free model.

5.1.3. Execution Time

With an increment in the network size, the network becomes more and more complex. The time
to solve the problem will become increasingly more difficult to accept. When minimizing the costs of
server deployment is considered the optimization goal, we must consider the operation efficiency of

Figure 6. HM count at each layer. In each layer, inter-layer information transfer (IIT) algorithms
perform better than other algorithms. IIT-DOWN and multilayer minimum dominating set (MDSM)
algorithms need less name-resolution servers in higher-level layers. (a) The layer with the latency
upper bound at 50 ms. Note that the results of IIT-DOWN and MDSM overlap. (b) The layer with the
latency upper bound at 25 ms. (c) The layer with the latency upper bound at 10 ms.

5.1.3. Execution Time

With an increment in the network size, the network becomes more and more complex. The time
to solve the problem will become increasingly more difficult to accept. When minimizing the costs of
server deployment is considered the optimization goal, we must consider the operation efficiency of
the algorithm. As shown in Figure 7, we compared the execution time of each algorithm on different
network scales. First, we figured out that the execution times of these algorithms increased sharply
with an increment in the network size. Then we found that IIT algorithms output better results in less
time compared with the LHP algorithm. The MDSM algorithm removes neighbor nodes to reduce the
complexity and accelerate problem resolving. Still, we can see that the running times between it and
IIT-DOWN have little difference. Among these algorithms, IIT-UP has the best operation efficiency,
which means it can handle more extensive networks within a reasonable solving time.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 20

the algorithm. As shown in Figure 7, we compared the execution time of each algorithm on different
network scales. First, we figured out that the execution times of these algorithms increased sharply
with an increment in the network size. Then we found that IIT algorithms output better results in less
time compared with the LHP algorithm. The MDSM algorithm removes neighbor nodes to reduce
the complexity and accelerate problem resolving. Still, we can see that the running times between it
and IIT-DOWN have little difference. Among these algorithms, IIT-UP has the best operation
efficiency, which means it can handle more extensive networks within a reasonable solving time.

(a) (b)

Figure 7. Execution time comparison of each algorithm with different network sizes. IIT algorithms
require less time to solve a problem, which means that they can solve problems in more extensive
networks. The latency-aware hierarchical elastic area partitioning (LHP) algorithms may not complete
the calculation in a reasonable time. (a) Comparison of all five algorithms. (b) Comparisons of MDSM,
IIT-DOWN, and IIT-UP are presented in detail.

5.1.4. Average Latency

In multilayer overlay networks, it is enough for us to satisfy the requirement that the data
transmission time does not exceed the upper bound of latency. We also analyzed the average latency
at each level after the HEA partition using these algorithms. Figure 8c shows that at the bottom layer
with the upper bound latency of 10 ms, LHP algorithms result in a lower average latency, and the
algorithms proposed by us are not as good. However, it is unfair to only compare the average latency
because the LHP algorithm uses more servers than IIT algorithms. Interestingly, when it comes to
higher-level layers (Figure 8a,b), IIT algorithms result in a lower average latency, although we know
that the LHP still uses more servers. This may be caused by the user allocations strategy and the
accuracy of the HEA partition. The IIT-UP algorithm has the shortest average latency in higher-level
layers, which means it has the most accurate partition and the highest server utilization. Also, we
found that the average latency does not increase with an increment in the network size, mainly
because the number of HMs grows linearly with the size of the network, and the balanced partition
maintains the stability of the average latency.

(a) (b) (c)

Figure 7. Execution time comparison of each algorithm with different network sizes. IIT algorithms
require less time to solve a problem, which means that they can solve problems in more extensive
networks. The latency-aware hierarchical elastic area partitioning (LHP) algorithms may not complete
the calculation in a reasonable time. (a) Comparison of all five algorithms. (b) Comparisons of MDSM,
IIT-DOWN, and IIT-UP are presented in detail.

5.1.4. Average Latency

In multilayer overlay networks, it is enough for us to satisfy the requirement that the data
transmission time does not exceed the upper bound of latency. We also analyzed the average latency at
each level after the HEA partition using these algorithms. Figure 8c shows that at the bottom layer with
the upper bound latency of 10 ms, LHP algorithms result in a lower average latency, and the algorithms
proposed by us are not as good. However, it is unfair to only compare the average latency because the

Appl. Sci. 2020, 10, 3588 14 of 19

LHP algorithm uses more servers than IIT algorithms. Interestingly, when it comes to higher-level
layers (Figure 8a,b), IIT algorithms result in a lower average latency, although we know that the LHP
still uses more servers. This may be caused by the user allocations strategy and the accuracy of the HEA
partition. The IIT-UP algorithm has the shortest average latency in higher-level layers, which means it
has the most accurate partition and the highest server utilization. Also, we found that the average
latency does not increase with an increment in the network size, mainly because the number of HMs
grows linearly with the size of the network, and the balanced partition maintains the stability of the
average latency.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 20

the algorithm. As shown in Figure 7, we compared the execution time of each algorithm on different
network scales. First, we figured out that the execution times of these algorithms increased sharply
with an increment in the network size. Then we found that IIT algorithms output better results in less
time compared with the LHP algorithm. The MDSM algorithm removes neighbor nodes to reduce
the complexity and accelerate problem resolving. Still, we can see that the running times between it
and IIT-DOWN have little difference. Among these algorithms, IIT-UP has the best operation
efficiency, which means it can handle more extensive networks within a reasonable solving time.

(a) (b)

Figure 7. Execution time comparison of each algorithm with different network sizes. IIT algorithms
require less time to solve a problem, which means that they can solve problems in more extensive
networks. The latency-aware hierarchical elastic area partitioning (LHP) algorithms may not complete
the calculation in a reasonable time. (a) Comparison of all five algorithms. (b) Comparisons of MDSM,
IIT-DOWN, and IIT-UP are presented in detail.

5.1.4. Average Latency

In multilayer overlay networks, it is enough for us to satisfy the requirement that the data
transmission time does not exceed the upper bound of latency. We also analyzed the average latency
at each level after the HEA partition using these algorithms. Figure 8c shows that at the bottom layer
with the upper bound latency of 10 ms, LHP algorithms result in a lower average latency, and the
algorithms proposed by us are not as good. However, it is unfair to only compare the average latency
because the LHP algorithm uses more servers than IIT algorithms. Interestingly, when it comes to
higher-level layers (Figure 8a,b), IIT algorithms result in a lower average latency, although we know
that the LHP still uses more servers. This may be caused by the user allocations strategy and the
accuracy of the HEA partition. The IIT-UP algorithm has the shortest average latency in higher-level
layers, which means it has the most accurate partition and the highest server utilization. Also, we
found that the average latency does not increase with an increment in the network size, mainly
because the number of HMs grows linearly with the size of the network, and the balanced partition
maintains the stability of the average latency.

(a) (b) (c)

Figure 8. Average name-resolution latency at each layer. LHP provides a shorter average latency
at the lowest level because it uses more name-resolution nodes. However, in higher-level layers,
IIT algorithms perform better. (a) The layer with the latency upper bound at 50 ms. Note that the results
of IIT-DOWN and MDSM overlap. (b) The layer with the latency upper bound at 25 ms. (c) The layer
with the latency upper bound at 10 ms.

5.1.5. Cost Parameter

In Section 5.1.1, name-resolution servers at different latency levels are assumed to have the same
deployment cost weight. However, in reality, servers that cover a broader range often require higher
configurations, such as central processing unit (CPU), bandwidth, and storage, which also incurs
higher costs. Assuming that the ratio of deployment costs for servers at adjacent latency layers is
k, a further study about the impact of k on deployment costs was undertaken. Figure 9 shows the
change in the total cost relative to the k value under the three algorithms when the network size is 1000.
When the difference in server costs at different levels is small, IIT-UP gives the solution with the lowest
cost, since it can minimize the total number of servers. However, as k increases, its cost will gradually
exceed that of IIT-DOWN and MDSM. The exceedance points were 1.45 and 5.9 in this experiment,
respectively. In addition, we noticed that the IIT-DOWN algorithm always has a cost advantage over
the MDSM approach.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 20

Figure 8. Average name-resolution latency at each layer. LHP provides a shorter average latency at
the lowest level because it uses more name-resolution nodes. However, in higher-level layers, IIT
algorithms perform better. (a) The layer with the latency upper bound at 50 ms. Note that the results
of IIT-DOWN and MDSM overlap. (b) The layer with the latency upper bound at 25 ms. (c) The layer
with the latency upper bound at 10 ms.

5.1.5. Cost Parameter

In Section 5.1.1, name-resolution servers at different latency levels are assumed to have the same
deployment cost weight. However, in reality, servers that cover a broader range often require higher
configurations, such as central processing unit (CPU), bandwidth, and storage, which also incurs
higher costs. Assuming that the ratio of deployment costs for servers at adjacent latency layers is 𝑘, a
further study about the impact of 𝑘 on deployment costs was undertaken. Figure 9 shows the change
in the total cost relative to the 𝑘 value under the three algorithms when the network size is 1000.
When the difference in server costs at different levels is small, IIT-UP gives the solution with the
lowest cost, since it can minimize the total number of servers. However, as 𝑘 increases, its cost will
gradually exceed that of IIT-DOWN and MDSM. The exceedance points were 1.45 and 5.9 in this
experiment, respectively. In addition, we noticed that the IIT-DOWN algorithm always has a cost
advantage over the MDSM approach.

Figure 9. Impact of 𝑘 on deployment costs.

5.2. Coverage in K Placement Algorithms

The study above was undertaken to minimize the server cost under the constraint of the
deterministic delay structure. The count of servers cannot be forecast before solving the problem.
When the budget is limited, the server placement problem turns into the K placement problem. We
also set up experiments to find proper methods that can be used in this situation. We compared our
proposed IIT-UP algorithm with several algorithms, as follows:

• Density-based clustering (DBC) [38]: DBC first selects one node which has the largest degree
among all the nodes in the network and places one server on this node. Subsequently, all users
that have an access delay within this server’s coverage and have not been allocated are allocated
to this server. This procedure continues until all K servers are placed in the network, or all users
are allocated;

• K-Mediods [45]: this approach is a variant of K-means, which is commonly used to cluster a data
set into K groups automatically. In this approach, K initial cluster centers are selected and then
iteratively refined. In every iteration, a new cluster center is selected to minimize the within-
cluster sum of the access delay. This procedure continues until no cluster center changes, and
the last iteration’s cluster centers are placed servers;

• Top-K: this approach places the K servers on k nodes with the largest degree. Users are allocated
to their closest servers;

Figure 9. Impact of k on deployment costs.

Appl. Sci. 2020, 10, 3588 15 of 19

5.2. Coverage in K Placement Algorithms

The study above was undertaken to minimize the server cost under the constraint of the
deterministic delay structure. The count of servers cannot be forecast before solving the problem.
When the budget is limited, the server placement problem turns into the K placement problem. We also
set up experiments to find proper methods that can be used in this situation. We compared our
proposed IIT-UP algorithm with several algorithms, as follows:

• Density-based clustering (DBC) [38]: DBC first selects one node which has the largest degree
among all the nodes in the network and places one server on this node. Subsequently, all users
that have an access delay within this server’s coverage and have not been allocated are allocated
to this server. This procedure continues until all K servers are placed in the network, or all users
are allocated;

• K-Mediods [45]: this approach is a variant of K-means, which is commonly used to cluster a data
set into K groups automatically. In this approach, K initial cluster centers are selected and then
iteratively refined. In every iteration, a new cluster center is selected to minimize the within-cluster
sum of the access delay. This procedure continues until no cluster center changes, and the last
iteration’s cluster centers are placed servers;

• Top-K: this approach places the K servers on k nodes with the largest degree. Users are allocated
to their closest servers;

• Random-K: this approach randomly selects K nodes and places servers on them. Users are
allocated to their closest servers.

Since the approaches above mainly focus on single-layer networks, we extended them accordingly
to adapt them to the situation of multilayer overlay networks with nested constraints. The IIT-UP
algorithm was set as a benchmark. That is to say, in every layer, the parameter K was chosen from
the results output by IIT-UP. The experiment also involved 15 turns, and the same topologies were
guaranteed for each approach in each turn. The determined-access-latency coverage rate of users
was used as an evaluation of the performance of each approach. As shown in Figure 10, the IIT-UP
algorithms always guarantee the full coverage rate, because the strict latency constraint is applied in the
procedure of server selection and user allocation. However, uncovered users exist in other approaches.
The primary trend that we figured out is that as the level goes from high to low, the coverage rate
becomes lower. Among these approaches, DBC outperforms other K placement approaches and can
maintain more than 90 percent of the coverage in each layer. The K-Mediods approach performs at a
slightly lower level. An impressive result in our experiment was that in level 1 (Figure 10c) and level 2
(Figure 10b), the random-K approach even outperformed the Top-K approach. This means that if we
simply choose top-k degree nodes for server placement, this may result in more unsatisfactory results.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 20

• Random-K: this approach randomly selects K nodes and places servers on them. Users are
allocated to their closest servers.

Since the approaches above mainly focus on single-layer networks, we extended them
accordingly to adapt them to the situation of multilayer overlay networks with nested constraints.
The IIT-UP algorithm was set as a benchmark. That is to say, in every layer, the parameter K was
chosen from the results output by IIT-UP. The experiment also involved 15 turns, and the same
topologies were guaranteed for each approach in each turn. The determined-access-latency coverage
rate of users was used as an evaluation of the performance of each approach. As shown in Figure 10,
the IIT-UP algorithms always guarantee the full coverage rate, because the strict latency constraint is
applied in the procedure of server selection and user allocation. However, uncovered users exist in
other approaches. The primary trend that we figured out is that as the level goes from high to low,
the coverage rate becomes lower. Among these approaches, DBC outperforms other K placement
approaches and can maintain more than 90 percent of the coverage in each layer. The K-Mediods
approach performs at a slightly lower level. An impressive result in our experiment was that in level
1 (Figure 10c) and level 2 (Figure 10b), the random-K approach even outperformed the Top-K
approach. This means that if we simply choose top-k degree nodes for server placement, this may
result in more unsatisfactory results.

(a) (b) (c)

Figure 10. The coverage rate of K placement algorithms. (a) The layer with the latency upper bound
at 50 ms. (b) The layer with the latency upper bound at 25 ms. (c) The layer with the latency upper
bound at 10 ms.

5.3. Real-World Dataset

We also utilized the dataset for Shanghai Telecom’s base stations [58,59] for algorithm
comparison. Shanghai is a typical densely populated city, and its base station distribution is also
dense. This dataset contains location information for more than 3000 base stations. In our experiment,
we randomly chose 1000 base stations and used their location information to calculate the Euclidean
distances between each pair of base stations. Then, we calculated the propagation latency between
two base stations by considering an approximate propagation time of 5 µs/km [60]. Since the spans
of distances among Shanghai base stations are small, we chose T = {0.01 ms, 0.05 ms, 0.2 ms} as the
corresponding narrowing.

Table 3 shows the results of each algorithm, including the execution time, name-resolution
server at each layer, and total cost. The results show that the performance of each algorithm is the
same as that of the simulation network shown in Section 5.1. It can be seen that the IIT-UP algorithm
can minimize the total costs. Fewer name-resolution servers were chosen in level 2 by IIT-DOWN
and MDSM. However, the LHP algorithm did not perform well in terms of either the execution time
or the total costs.

Table 3. Comparison of algorithms on Shanghai Telecom’s base stations dataset.

Algorithm Level

Figure 10. The coverage rate of K placement algorithms. (a) The layer with the latency upper bound at
50 ms. (b) The layer with the latency upper bound at 25 ms. (c) The layer with the latency upper bound
at 10 ms.

Appl. Sci. 2020, 10, 3588 16 of 19

5.3. Real-World Dataset

We also utilized the dataset for Shanghai Telecom’s base stations [58,59] for algorithm comparison.
Shanghai is a typical densely populated city, and its base station distribution is also dense. This dataset
contains location information for more than 3000 base stations. In our experiment, we randomly chose
1000 base stations and used their location information to calculate the Euclidean distances between
each pair of base stations. Then, we calculated the propagation latency between two base stations by
considering an approximate propagation time of 5 µs/km [60]. Since the spans of distances among
Shanghai base stations are small, we chose T = {0.01 ms, 0.05 ms, 0.2 ms} as the corresponding narrowing.

Table 3 shows the results of each algorithm, including the execution time, name-resolution server
at each layer, and total cost. The results show that the performance of each algorithm is the same
as that of the simulation network shown in Section 5.1. It can be seen that the IIT-UP algorithm can
minimize the total costs. Fewer name-resolution servers were chosen in level 2 by IIT-DOWN and
MDSM. However, the LHP algorithm did not perform well in terms of either the execution time or the
total costs.

Table 3. Comparison of algorithms on Shanghai Telecom’s base stations dataset.

Algorithm Execution Time (s)
Level

Cost
3 (0.2 ms) 2 (0.05 ms) 1 (0.01 ms)

LHP 79.49 5 34 302 308
Random Allocate (RA) 101.74 6 42 328 342

Minimum Dominator Set in Multilayer (MDSM) 27.31 4 27 286 286
Inter-layer Information Transfer Down (IIT-DOWN) 28.98 4 27 283 283

Inter-layer Information Transfer Up (IIT-UP) 13.57 4 37 267 267

6. Conclusions

In this paper, we first studied the placement problem of the name-resolution server in multilayer
overlay networks and formulated it as an integer linear program problem with the objective of
minimizing the deployment costs. Then, two algorithms based on the heuristic ideas of inter-layer
information transfer and server reuse were developed. The first was called IIT-DOWN. This algorithm
passes the server placement information from the high-level layer to the low-level layer. Servers chosen
in the high-level layer are reused to provide low-level services as well. The second one was called
IIT-UP, and it follows the same idea but passes information, including both server location and detailed
latency information in the opposite direction.

Experiments were conducted on both simulation networks and a real-world dataset. The results
demonstrated that our proposed IIT algorithms outperform other existing algorithms in terms of
finding more cost-efficient solutions within a shorter execution time. The IIT-DOWN algorithm has
the advantage of reducing the number of high-level layer servers. However, IIT-UP can shrink the
network scale during its procedure and it greatly reduces the execution. In addition, during the study,
we also discovered two facts. One was that the size of the servers grew linearly with the network
size in multilayer overlay networks if the physical network was in line with the BA scale-free model.
The other one was that average latencies at each layer remained stable while the network size increased.

Future work should focus on two aspects. Firstly, the selection of the set of upper bounds of
latencies has a significant influence on the solution of the problem. We only selected the corresponding
upper bounds in some typical scenarios, which cannot represent all the scenarios. More upper-bound
latency combinations should be evaluated and analyzed to discover the potential rule. Secondly,
because name resolution plays an essential role in ICN, having a robust name-resolution service is
meaningful. Redundant overlay areas exist during the partition procedure in our proposed algorithms.
Further study should aim to make the best of these redundancies to improve the robustness of the
name-resolution service.

Appl. Sci. 2020, 10, 3588 17 of 19

Author Contributions: Conceptualization, J.L., Y.S., and H.D.; methodology, J.L., Y.S.; software, J.L.;
writing—original draft preparation, J.L.; writing—review and editing, J.L., Y.S., and H.D.; supervision, Y.S.; project
administration, Y.S.; funding acquisition, H.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by Strategic Leadership Project of Chinese Academy of Sciences: SEANET
Technology Standardization Research System Development (Project No. XDC02070100).

Acknowledgments: We would like to express our gratitude to Jinlin Wang, Yaqin Song, and Luchao Han for their
meaningful support for this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, L.D.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243.
[CrossRef]

2. Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [CrossRef]
3. Razzaque, M.A.; Milojevic-Jevric, M.; Palade, A.; Cla, S. Middleware for internet of things: A survey.

IEEE Internet Things J. 2016, 3, 70–95. [CrossRef]
4. Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of Things in the 5G

Era: Enablers, Architecture, and Business Models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [CrossRef]
5. Agiwal, M.; Saxena, N.; Roy, A. Towards Connected Living: 5G Enabled Internet of Things (IoT). IETE Tech.

Rev. (Inst. Electron. Telecommun. Eng. India) 2019, 36, 190–202. [CrossRef]
6. Bandyopadhyay, D.; Sen, J. Internet of things: Applications and challenges in technology and standardization.

Wirel. Pers. Commun. 2011, 58, 49–69. [CrossRef]
7. Saur, S.; Centenaro, M. Radio access protocols with multi-user detection for URLLC in 5G. In Proceedings of

the European Wireless 2017—23rd European Wireless Conference, Dresden, Germany, 15 May 2017; pp. 1–6.
8. Proof-of-concept for Data Service Using Information Centric Networking in IMT-2020. Available online:

https://www.itu.int/itu-t/recommendations/rec.aspx?rec=13655 (accessed on 20 May 2020).
9. Requirements and Capabilities of Name Mapping and Resolution for Information Centric Networking in

IMT-2020. Available online: https://www.itu.int/itu-t/recommendations/rec.aspx?rec=13890 (accessed on
20 May 2020).

10. Liao, Y.; Sheng, Y.; Wang, J. A Brief Survey on Information Centric Networking Proof of Concepts for
IMT-2020 and Emerging Networks. J. Netw. New Media 2018, 7, 54–63.

11. Naeem, M.A.; Rehman, M.A.U.; Ullah, R.; Kim, B.S. A Comparative Performance Analysis of Popularity-Based
Caching Strategies in Named Data Networking. IEEE Access 2020, 8, 50057–50077. [CrossRef]

12. Barakabitze, A.A.; Xiaoheng, T.; Tan, G. A Survey on Naming, Name Resolution and Data Routing in Information
Centric Networking (ICN). Int. J. Adv. Res. Comput. Commun. Eng. 2014, 3, 8322–8330. [CrossRef]

13. Xylomenos, G.; Ververidis, C.N.; Siris, V.A.; Fotiou, N.; Tsilopoulos, C.; Vasilakos, X.; Katsaros, K.V.;
Polyzos, G.C. A survey of information-centric networking research. IEEE Commun. Surv. Tutor. 2014,
16, 1024–1049. [CrossRef]

14. Ohlman, B. From ID/locator split to ICN. In Proceedings of the 2015 12th Annual IEEE Consumer
Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2015; pp. 256–261.

15. Menth, M.; Hartmann, M.; Klein, D. Global locator, local locator, and identifier split (GLI-Split). Futur. Internet
2013, 5, 67–94. [CrossRef]

16. Raychaudhuri, D.; Nagaraja, K.; Venkataramani, A. MobilityFirst: A robust and trustworthy mobility-centric
architecture for the future internet. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2012, 16, 2–13. [CrossRef]

17. D’Ambrosio, M.; Dannewitz, C.; Karl, H.; Vercellone, V. MDHT: A hierarchical name resolution service for
information-centric networks. In Proceedings of the ACM SIGCOMM Workshop on Information-Centric
Networking, Toronto, ON, Canada, 19 August 2011; pp. 71–72.

18. Dannewitz, C.; D’Ambrosio, M.; Vercellone, V. Hierarchical DHT-based name resolution for
information-centric networks. Comput. Commun. 2013, 36, 736–749. [CrossRef]

19. Liu, H.; De Foy, X.; Zhang, D. A multi-level DHT routing framework with aggregation. In Proceedings of the
Second Edition of the ICN Workshop on Information-Centric Networking, Helsinki, Finland, 17 August 2012;
pp. 434–438.

http://dx.doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.1016/j.jii.2018.01.005
http://dx.doi.org/10.1109/JIOT.2015.2498900
http://dx.doi.org/10.1109/JSAC.2016.2525418
http://dx.doi.org/10.1080/02564602.2018.1444516
http://dx.doi.org/10.1007/s11277-011-0288-5
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=13655
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=13890
http://dx.doi.org/10.1109/ACCESS.2020.2980385
http://dx.doi.org/10.17148/IJARCCE.2014.31055
http://dx.doi.org/10.1109/SURV.2013.070813.00063
http://dx.doi.org/10.3390/fi5010067
http://dx.doi.org/10.1145/2412096.2412098
http://dx.doi.org/10.1016/j.comcom.2013.01.014

Appl. Sci. 2020, 10, 3588 18 of 19

20. Meng, Y.; Naeem, M.A.; Almagrabi, A.O.; Ali, R.; Kim, H.S. Advancing the state of the fog computing to
enable 5g network technologies. Sensors 2020, 20, 1754. [CrossRef] [PubMed]

21. Brown, G. Mobile Edge Computing Use Cases & Deployment Options. Juniper White Paper. 2016.
Available online: https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000642-en.pdf (accessed on
26 February 2020).

22. Clinch, S.; Harkes, J.; Friday, A.; Davies, N.; Satyanarayanan, M. How close is close enough? Understanding
the role of cloudlets in supporting display appropriation by mobile users. In Proceedings of the 2012
IEEE International Conference on Pervasive Computing and Communications, Lugano, Switzerland,
19–23 March 2012; pp. 122–127.

23. Liao, Y.; Sheng, Y.; Wang, J. A deterministic latency name resolution framework using network partitioning
for 5G-ICN integration. Int. J. Innov. Comput. Inf. Control 2019, 15, 1865–1880.

24. Mei, H.; Wang, K.; Yang, K. Joint cache content placement and task offloading in C-RAN enabled by
multi-layer MEC. Sensors 2018, 18, 1826. [CrossRef]

25. Dong, L.; Wang, G. A Hybrid Approach for Name Resolution and Producer Selection in Information
Centric Network. In Proceedings of the 2018 International Conference on Computing, Networking and
Communications (ICNC), Maui, HI, USA, 5–8 March 2018; pp. 5745–5780.

26. Dong, L.; Wang, G. A robust and lightweight name resolution approach for IoT data in ICN. In Proceedings
of the Ubiquitous and Future Networks (ICUFN), Milan, Italy, 4–7 July 2017; pp. 61–65.

27. Jacobson, V.; Smetters, D.K.; Thornton, J.D.; Plass, M.F.; Briggs, N.H.; Braynard, R.L. Networking named
content. In Proceedings of the 5th International Conference on Emerging Networking Experiments and
Technologies, Rome, Italy, 1–4 December 2009; pp. 1–12.

28. Zhang, L.; Afanasyev, A.; Burke, J.; Jacobson, V.; Claffy, K.; Crowley, P.; Papadopoulos, C.; Wang, L.; Zhang, B.
Named data networking. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 66–73. [CrossRef]

29. Koponen, T.; Chawla, M.; Chun, B.-G.; Ermolinskiy, A.; Kim, K.H.; Shenker, S.; Stoica, I. A data-oriented (and
beyond) network architecture. In Proceedings of the ACM SIGCOMM Computer Communication Review,
Kyoto, Japan, 27 August 2007; pp. 181–192.

30. Publish/Subscribe for Internet: PSIRP Perspective. Available online: http://web.cs.ucla.edu/classes/winter09/

cs217/2010_PubSubPerspective.pdf (accessed on 30 April 2010).
31. Fotiou, N.; Katsaros, K.V.; Xylomenos, G.; Polyzos, G.C. H-pastry: An inter-domain topology aware overlay for

the support of name-resolution services in the future internet. Comput. Commun. 2015, 62, 13–22. [CrossRef]
32. Sun, Y.; Zhang, Y.; Zhang, H.; Fang, B.; Du, X. Geometric routing on flat names for ICN. In Proceedings of the

2015 IEEE Global Communications Conference, San Diego, CA, USA, 6–10 December 2015; pp. 1–6.
33. Louati, W.; Ben-Ameur, W.; Zeghlache, D. A bottleneck-free tree-based name resolution system for

Information-Centric Networking. Comput. Networks 2015, 91, 341–355. [CrossRef]
34. Yang, S.; Li, F.; Shen, M.; Chen, X.; Fu, X.; Wang, Y. Cloudlet placement and task allocation in mobile edge

computing. IEEE Internet Things J. 2019, 6, 5853–5863. [CrossRef]
35. Killi, B.P.R.; Reddy, E.A.; Rao, S.V. Cooperative game theory based network partitioning for controller

placement in SDN. In Proceedings of the 2018 10th International Conference on Communication Systems &
Networks (COMSNETS), Bengaluru, India, 3–7 January 2018; pp. 105–112.

36. Wang, Y.; Xia, Y. Energy optimal VM placement in the cloud. In Proceedings of the 9th IEEE International
Conference on Cloud Computing, (CLOUD 2016), San Francisco, CA, USA, 27 June–2 July 2016; pp. 84–91.

37. Xu, Z.; Liang, W.; Xu, W.; Jia, M.; Guo, S. Capacitated cloudlet placements in Wireless Metropolitan Area
Networks. In Proceedings of the 2015 IEEE 40th Conference on Local Computer Networks (LCN), Clearwater
Beach, FL, USA, 26–29 October 2015; pp. 570–578.

38. Jia, M.; Cao, J.; Liang, W. Optimal Cloudlet Placement and User to Cloudlet Allocation in Wireless Metropolitan
Area Networks. IEEE Trans. Cloud Comput. 2015, 5, 725–737. [CrossRef]

39. Xu, Z.; Liang, W.; Xu, W.; Jia, M.; Guo, S. Efficient Algorithms for Capacitated Cloudlet Placements. IEEE Trans.
Parallel Distrib. Syst. 2016, 10, 2866–2880. [CrossRef]

40. Li, B.; Wang, K.; Xue, D.; Pei, Y. K-Means based edge server deployment algorithm for edge computing
environments. In Proceedings of the Proceedings—2018 IEEE SmartWorld, Ubiquitous Intelligence
and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People and Smart City Innovations, SmartWorld/UIC/ATC/

ScalCom/CBDCom/IoP/SCI, Guangzhou, China, 8–12 October 2018; pp. 1169–1174.

http://dx.doi.org/10.3390/s20061754
http://www.ncbi.nlm.nih.gov/pubmed/32245261
https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000642-en.pdf
http://dx.doi.org/10.3390/s18061826
http://dx.doi.org/10.1145/2656877.2656887
http://web.cs.ucla.edu/classes/winter09/cs217/2010_PubSubPerspective.pdf
http://web.cs.ucla.edu/classes/winter09/cs217/2010_PubSubPerspective.pdf
http://dx.doi.org/10.1016/j.comcom.2015.02.003
http://dx.doi.org/10.1016/j.comnet.2015.08.024
http://dx.doi.org/10.1109/JIOT.2019.2907605
http://dx.doi.org/10.1109/TCC.2015.2449834
http://dx.doi.org/10.1109/TPDS.2015.2510638

Appl. Sci. 2020, 10, 3588 19 of 19

41. Guo, Y.; Wang, S.; Zhou, A.; Xu, J.; Yuan, J.; Hsu, C.H. User allocation-aware edge cloud placement in mobile
edge computing. Softw. Pract. Exp. 2019, 50, 489–502. [CrossRef]

42. Wang, S.; Zhao, Y.; Xu, J.; Yuan, J.; Hsu, C.H. Edge server placement in mobile edge computing. J. Parallel
Distrib. Comput. 2019, 127, 160–168. [CrossRef]

43. Jia, M.; Liang, W.; Xu, Z.; Huang, M.; Ma, Y. QoS-Aware Cloudlet Load Balancing in Wireless Metropolitan
Area Networks. In the IEEE Transactions on Cloud Computing; IEEE: Piscataway, NJ, USA, 2018.

44. Ma, L.; Wu, J.; Chen, L.; Liu, Z. Fast algorithms for capacitated cloudlet placements. In Proceedings of the
Proceedings of the 2017 IEEE 21st International Conference on Computer Supported Cooperative Work in
Design, CSCWD 2017, Wellington, New Zealand, 26–28 April 2017; pp. 439–444.

45. Ma, L.; Wu, J.; Chen, L. DOTA: Delay bounded optimal cloudlet deployment and user association in WMANs.
In Proceedings of the Proceedings—2017 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, CCGRID 2017, Madrid, Spain, 14–17 May 2017; pp. 196–203.

46. Li, Y.; Wang, S. An energy-aware edge server placement algorithm in mobile edge computing. In Proceedings
of the Proceedings—2018 IEEE International Conference on Edge Computing, EDGE 2018—Part of the 2018
IEEE World Congress on Services, San Francisco, CA, USA, 2–7 July 2018; pp. 66–73.

47. Ren, Y.; Zeng, F.; Li, W.; Meng, L. A low-cost edge server placement strategy in wireless metropolitan area
networks. In Proceedings of the Proceedings—International Conference on Computer Communications and
Networks, ICCCN, Valencia, Spain, 29 July–1 August 2018; pp. 1–6.

48. Zeng, F.; Ren, Y.; Deng, X.; Li, W. Cost-effective edge server placement in wireless metropolitan area networks.
Sensors 2019, 19, 32. [CrossRef] [PubMed]

49. Liu, Z.; Zhang, J.; Li, Y.; Ji, Y. Hierarchical MEC servers deployment and user-MEC server association in
C-RANs over WDM ring networks. Sensors 2020, 20, 1282. [CrossRef] [PubMed]

50. Sinky, H.; Khalfi, B.; Hamdaoui, B.; Rayes, A. Adaptive edge-centric cloud content placement for responsive
smart cities. IEEE Network 2019, 33, 177–183. [CrossRef]

51. Nacher, J.C.; Ishitsuka, M.; Miyazaki, S.; Akutsu, T. Finding and analysing the minimum set of driver nodes
required to control multilayer networks. Sci. Rep. 2019, 9, 1–12. [CrossRef]

52. Takemoto, K.; Akutsu, T. Analysis of the Effect of Degree Correlation on the Size of Minimum Dominating
Sets in Complex Networks. PLoS ONE 2016, 11, e0157868. [CrossRef]

53. Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [CrossRef]
54. Nasrallah, A.; Thyagaturu, A.; Alharbi, Z.; Wang, C.; Shao, X.; Reisslein, M.; ElBakoury, H. Ultra-Low Latency

(ULL) Networks: A Comprehensive Survey Covering the IEEE TSN Standard and Related ULL Research.
CoRR arXiv 2018, arXiv:1803.07673.

55. Schulz, P.; Matthe, M.; Klessig, H.; Simsek, M.; Fettweis, G.; Ansari, J.; Ashraf, S.A.; Almeroth, B.; Voigt, J.;
Riedel, I.; et al. Latency Critical IoT Applications in 5G: Perspective on the Design of Radio Interface and
Network Architecture. IEEE Commun. Mag. 2017, 55, 70–78. [CrossRef]

56. Achterberg, T. SCIP: Solving constraint integer programs. Math. Program. Comput. 2009, 1, 1–41. [CrossRef]
57. Nacher, J.C.; Akutsu, T. Dominating scale-free networks with variable scaling exponent: Heterogeneous

networks are not difficult to control. New J. Phys. 2012, 14, 073005. [CrossRef]
58. Wang, S.; Guo, Y.; Zhang, N.; Yang, P.; Zhou, A.; Shen, X.S. Delay-aware Microservice Coordination in

Mobile Edge Computing: A Reinforcement Learning Approach. In IEEE Transactions on Mobile Computing;
IEEE: Piscataway, NJ, USA, 2019.

59. Xu, J.; Wang, S.; Bhargava, B.K.; Yang, F. A blockchain-enabled trustless crowd-intelligence ecosystem on
mobile edge computing. IEEE Trans. Ind. Inform. 2019, 15, 3538–3547. [CrossRef]

60. Basta, A.; Blenk, A.; Hoffmann, K.; Morper, H.J.; Hoffmann, M.; Kellerer, W. Towards a cost optimal design
for a 5G mobile core network based on SDN and NFV. IEEE Trans. Netw. Serv. Manag. 2017, 14, 1061–1075.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/spe.2685
http://dx.doi.org/10.1016/j.jpdc.2018.06.008
http://dx.doi.org/10.3390/s19010032
http://www.ncbi.nlm.nih.gov/pubmed/30577685
http://dx.doi.org/10.3390/s20051282
http://www.ncbi.nlm.nih.gov/pubmed/32120874
http://dx.doi.org/10.1109/MNET.2019.1800137
http://dx.doi.org/10.1038/s41598-018-37046-z
http://dx.doi.org/10.1371/journal.pone.0157868
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1109/MCOM.2017.1600435CM
http://dx.doi.org/10.1007/s12532-008-0001-1
http://dx.doi.org/10.1088/1367-2630/14/7/073005
http://dx.doi.org/10.1109/TII.2019.2896965
http://dx.doi.org/10.1109/TNSM.2017.2732505
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Name-Resolution System
	Deterministic Latency Name Resolution
	Name-Resolution Server Placement in Information-Centric Networking (ICN)

	System Model and Problem Statement
	Proposed Algorithms
	Inter-Layer Information Transfer (IIT)-DOWN Algorithm
	IIT-UP Algorithm
	Computation of Hierarchical Elastic Areas Manager (HM) in a Single Layer

	Evaluation and Discussion
	Simulation Network
	Deployment Costs
	HM Count
	Execution Time
	Average Latency
	Cost Parameter

	Coverage in K Placement Algorithms
	Real-World Dataset

	Conclusions
	References

