
applied
sciences

Article

A Real-Time Chain and Variable Bulk Arrival and
Variable Bulk Service (VBAVBS) Model with λF

Nohpill Park 1, Abhilash Kancharla 1 and Hye-Young Kim 2,*
1 Computer Science, Oklahoma State University, Stillwater, OK 74078, USA; npark@cs.okstate.edu (N.P.);

abhilak@okstate.edu (A.K.)
2 School of Games, Hongik University, Jochiwon-eup, Chungcheongnam-do 339-701, Korea
* Correspondence: hykim@hongik.ac.kr; Tel.: +82-44-860-2683

Received: 3 April 2020; Accepted: 22 May 2020; Published: 25 May 2020
����������
�������

Abstract: This paper proposes a real-time chain and a novel embedded Markovian queueing model
with variable bulk arrival (VBA) and variable bulk service (VBS) in order to establish and assure
a theoretical foundation to design a blockchain-based real-time system with particular interest
in Ethereum. Based on the proposed model, various performances are simulated in a numerical
manner in order to validate the efficacy of the model by checking good agreements with the results
against intuitive and typical expectations as a baseline. A demo of the proposed real-time chain is
developed in this work by modifying the open source of Ethereum Geth 1.9.11. The work in this
paper will provide both a theoretical foundation to design and optimize the performances of the
proposed real-time chain, and ultimately address and resolve the performance bottleneck due to the
conventional block-synchrony by employing an asynchrony by the real-time deadline to some extent.

Keywords: blockchain; Ethereum; real-time; queueing; mining; transaction pool

1. Introduction

Blockchain technology [1–20] is a new internet protocol to address the longtime-awaited solution
for internet trust. Blockchain is a distributed ledger [4,5,7] of all the transactions that have been
executed. Blockchains are distributed databases that a group of individuals controls and that store
and share information. There are many different types of blockchains: Public, permissioned, private.
Irrespective of the type of the blockchain, cryptography is used to allow each participant on any given
network to manage the ledger in a secure way without the need for a central authority to enforce the
results. The blocks are appended successfully to the blockchain, and more importantly, a block once
appended cannot be removed from the blockchain. This makes the blockchain able to create trust in
digital data. Blockchains basically eliminate the need for a third-party intermediary. When data is
permanent and reliable in a digital format, one can transact business online in ways that, in the past,
were only possible offline or would take a lot of time to process online.

The motivation and objective of this paper is to develop a real-time chain model in a theoretical
manner, and to propose a novel embedded Markovian queueing model [19] of the M1,n/M1,n/1 type in
order to establish a theoretical foundation to design a blockchain-based real-time system with particular
interest in Ethereum, since there has been no adequate model to fulfill the above-mentioned objectives.
The model assumes variable bulk arrivals of transactions in Poisson distribution, i.e., M1,n, where n
is the number of slots across all the mined transactions, and variable bulk service of transactions in
exponential time, i.e., M1,n, for posting in the current block, namely, variable bulk arrival and variable
bulk service (VBAVBS) model with λF, where λF is a random variable employed specifically to address
the stringent real-time deadline requirement. The primary performance measurements of interest
are the average number of slots no matter how many transactions are mined under the assumption

Appl. Sci. 2020, 10, 3651; doi:10.3390/app10103651 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2151-5332
http://dx.doi.org/10.3390/app10103651
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/10/3651?type=check_update&version=3

Appl. Sci. 2020, 10, 3651 2 of 16

of maximum number of slots per block as specified by n; the average waiting time per slot; and the
throughput in terms of the average number of slots to be processed per time. The variable bulk arrival
rate is assumed to be linearly proportional to the size of the transactions in a multiple of λ per slot,
with success to arrive within the deadline, or some of the transactions with λF to fail to meet the
real-time deadline. The variable bulk service is assumed to take place when the number of slots in
the mined transactions reaches at every possible number i, where 0 ≤ i ≤ n, i.e., a bulk processing of
multiple transactions in multiple slots between 0 and n, inclusive, for posting in a block. Note that the
real-time deadline requirement is considered under the underlying assumption that the size of each
block is adaptive, in other words, varying block by block, and the proposed VBAVBS model with λF

normalizes the probability for each size of the block throughout.
The paper is organized as follows. In the following section, preliminaries and design-variables for

the proposed real-time chain and its performance modeling and analysis are reviewed, and some related
works on blockchain dependability [9,11] modeling and analysis are introduced; then, the proposed
real-time chain and its analytical model are derived and captured in the context of a queueing system;
a section follows in order to demonstrate numerical simulations versus various blockchain-related
parameters [10], and results are shown; finally, conclusions are drawn and a discussion completes the
last section.

2. Preliminaries and Literature Review

A few key concepts and components of blockchain are listed as follows [4,5,7]. Public Key:
Every node/user in the blockchain is assigned a public/private key. A transaction to be made on the
blockchain has to be signed by a private key, while the public key is always visible to everyone on the
blockchain; transaction: A transaction contains the details of the both the public keys (in case of smart
contract [16]—contract address), a hash of the previous block, the current block number and the amount
of crypto currency being transferred to, along with the gas needed to execute the transaction; block is
a list of transactions recorded into the distributed ledger over time. The transactions are grouped
together and put in the block which are then mined to be added to the blockchain. The immutability
of the blockchain assures that the transaction once recorded in a block cannot be deleted or undone;
chain: All the blocks have a unique block number. The block number is incremented by 1 for every block
that is added to the chain. The hash in blockchain is created from the data that was in the previous block.
The previous block hash will also be added to the current block details. Thereby, any change in the
previous block completely alters the entre hash which would invalidate the blockchain; crypto currency:
Ether is the crypto currency in Ethereum blockchain. Any transaction to be posted on the blockchain
utilizes the respective crypto currency of the blockchain; gas: The amount of ether needed to post a
transaction in Ethereum blockchain. The current blockchain is coded in such a way that the transaction
with highest gas fees are given higher priority to be included in the block. This proposed real-time details
out different algorithms that can be used to order transactions differently in the block; miner: Nodes that
participate in creating a new block are called miners. Miners are responsible for adding blocks to the
blockchain. The blocks are created based on the number of transactions present in the txnpool and
other characteristics like gas fee, block size, arrival time; transaction pool: Transaction pool is an array
datatype of transactions containing the pointers to the transactions that are not yet posted to the block.
Pending transactions are the transactions that are not yet posted to the blockchain and these pending
transactions reside in the transaction pool [8]. The different ordering of the transaction pool creates
different mining [14,15] algorithms [13]; mining: The central process of blockchain-based computing to
establish a trust among the nodes in the network connected in a P2P manner. Miners compete for the
next new hash code which requires a computationally intensive process and is highly costly. In this
context, there have been efforts made extensively to mitigate or eliminate the mining process.

There have been reports on various, yet critical, performance and dependability problems in [17–20],
where extensive research has been conducted on theoretical designs of a few blockchain-based solutions
in order to establish a theoretical yet substantial foundation. As the ultimate quality of crypto computing

Appl. Sci. 2020, 10, 3651 3 of 16

will be determined by its likelihood to be performed as commanded or desired— referred to as the
dependability—those theoretical models emphasized and are centered around the dependability
of each of those crypto solutions to accommodate such capabilities as the on/off-balanced crypto
computing [12,21], the real-time computing [20], the slim-computing [17] and the hybrid computing [18].
A theoretical study on performance is of ultimate interest to identify a theoretical intersection versus
the dependability, which is the ultimate objective of the proposed variable bulk arrival and variable
bulk service (VBAVBS) model with λF in the context of the proposed real-time chain.

3. Proposed Variable Bulk Arrival and Variable Bulk Service (VBAVBS) Model with λF for
Real-Time Chain

In the proposed real-time chain model, an embedded Markovian single-server exponential
queueing system (i.e., M1,n/M1,n/1) is considered without loss of generality, and the server (the server
is the equivalent of the group of miners to select the transactions to be posted) serves the entire batch
of customers (the customers are the equivalent of the transactions to be posted in the block) in the
queue (a queue is the equivalent of a block to be mined and posted) all at once, at the same time.
Whenever the server completes a service (a service is the equivalent of a process of posting a block),
it then purges the queue (i.e., the equivalence of posting a block) and then serves the influx of new
incoming customers. Note that it is assumed that the service takes place within a certain amount of
time, yet no transaction is assumed to arrive in the meantime. However, note that it is not unlikely to
have new customer arrive if a significant amount of service time is assumed, from a practical point
of consideration. It is assumed that the service time is exponential at 1

µ when the server is serving
the entire queue of any size between 0 and n, inclusively and equivalently, posting and purging the
entire queue. Without loss of generality, it is assumed that customers arrive at an exponential rate of λ
successfully within the deadline yet, at the rate of λF, the customers are assumed to fail to arrive within
a specific deadline to meet the real-time requirement. The underlying queueing process is assumed to
take place with variable-sized slots and the status of the queue is determined by the number of slots of
any size in the current block.

Based on the assumptions above, the proposed VBAVBS model with λF also employs an embedded
Markovian queueing model like the VBASBS (Variable Bulk Arrival And Static Bulk Service) in [19],
and it defines the states as expressed in terms of the number of slots assigned to a block, and it traces
the normalized number of slots allocated for the transactions in steady state rather than the number of
transactions whose size varies in the number of slots.

• P0: The state in which no transaction (i.e., no slot) has arrived in the queue as of yet for the posting
in the block, currently [19].

• Pn: The state in which there are n number of slots (i.e., the capacity of the queue, equivalently,
the maximum number of slots set and voted by the miners or voters) arrived in the queue for the
posting in the block, currently [19].

• Pi: The state in which there are i number of slots (where 0 < i < n) arrived in the queue for the
posting in the block, currently [19].

The random variables employed to express the state transition rates are specified as follows.

• λ: The rate for a slot of a transaction to arrive successfully within the real-time deadline requirement,
and the rate for a transaction to arrive is determined by the number of slots allocated for the
transaction in a prorated manner such that a transaction with a size of j number of slots arrives at
the rate of jλ, without loss of generality and practicality as well.

• λF: The rate for a slot of a transaction to arrive unsuccessfully past the real-time deadline
requirement, and at the rate, the state will self-loop without making any state transition. This rate
is the unique one to distinguish VBAVBS from VBASBS in which there was no real-time deadline
requirement taken into consideration.

Appl. Sci. 2020, 10, 3651 4 of 16

• µ: The rate for the slots of the transactions in the entire queue to be posted and purged. Notice that
this is a single and unique state transition 1, 2 and 3.

The balance equations for VBAVBS with λF are shown in the following Equations.

(λ+ 2λ+ 3λ + · · ·+ nλ+ λF)P0 =
µ

n
P1 +

µ

n− 1
P2 +

µ

n− 2
P3 + · · ·

µ

n− (n− 2)
Pn−1 + µPn (1)

(
λ(n)(n− 1)

2
+ λF

)
P0 = µ

(
1
n

P1 +
1

n− 1
P2 +

1
n− 2

P3 + · · ·
1

n− (n− 2)
Pn−1 + Pn

)
(2)

and
P0 + P1 + P2 + . . .+ Pn = 1 (3)

Appendix A shows the detailed solving of balance equations. Equations (4) and (5 describe the
generalized value of Pi.

Pi = q−1
i P0

 i∑
j=1

j

 i−1∑
k=1

k−1∏
l=1

q−1
l


k

 (4)

where,

q−1
i =

(
λ(n− i)(n− i + 1)

2
+ λF +

µ

n− i + 1

)−1

(5)

In the following, a few baseline performance measurements of primary interests in VBAVBS with
λF are shown.

• LQ: The average number of customers (i.e., equivalently the average number of transactions) in
the queue (i.e., the block currently being mined) [19] with the new Pi

LQ =
n∑

i=0

iPi (6)

• WQ: The average amount of time a customer (i.e., equivalently, a transaction) in the queue
(i.e., the block currently being mined) [19].

WQ =
LQ

λ
(7)

• W: The average amount of time a customer (i.e., equivalently, a transaction) in the system
(i.e., the transaction pool in the blockchain) [19].

W = WQ +
1
µ

(8)

• L: The average number of customers (i.e., equivalently, the average number of transactions) in the
system (i.e., the transaction pool in the blockchain) [19].

L = λW (9)

4. Numerical Analysis

The efficacy of the proposed VBAVBS model with λF is tested and verified through numerical
analysis for the LQ, WQ, W and L versus n (i.e., size of a block), λ (i.e., successful transaction arrival
rate or speed), λF (i.e., unsuccessful transaction arrival rate or speed) and 1

µ (i.e., block posting time).
Note that fitting the model against real data is not within the scope of the work, instead, various and
extensive numerical simulations are conducted as a baseline validation.

Appl. Sci. 2020, 10, 3651 5 of 16

Figure 1 plots the average number of customers in system (L) versus the number if slots (n), for
various λ and a µ (at 1/15).Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 17

Figure 1. Average number of customers in system (ܮ) vs number of slots (݊). ܮ versus ݊, for various λ and a ߤ, are plotted in Figure 1. It is observed that ܮ picks up as ݊

increases, as expected, yet in a near linear manner. Also, it is observed that ܮ picks up as λ increases,
as expected. Notice that the intervals in between the plots are quite proportionally spaced.

Likewise, Figure 2 shows the average number of customers in system (ܮ) plotted against the rate
of slots (ߤ) for various λ and an ݊ (at 10).

Figure 2. Average number of customers in the system (ܮ) vs rate of slots (ߤ).

It is observed that ܮ declines as ߤ increases, as expected. Also, it is observed that ܮ picks up
as λ increases, as expected. Notice that the intervals in between the plots are quite proportionally
spaced.

The following graph plots ܮொ versus ݊, for various λ and a ߤ (at 1/15).
It is observed in Figure 3 that ܮொ picks up as ݊ increases, as expected, yet in a near linear

manner. Also, it is observed that ܮொ picks up as λ increases, as expected. Notice that the intervals in
between the plots are quite proportionally spaced.

Figure 1. Average number of customers in system (L) vs number of slots (n).

L versus n, for various λ and a µ, are plotted in Figure 1. It is observed that L picks up as n
increases, as expected, yet in a near linear manner. Also, it is observed that L picks up as λ increases,
as expected. Notice that the intervals in between the plots are quite proportionally spaced.

Likewise, Figure 2 shows the average number of customers in system (L) plotted against the rate
of slots (µ) for various λ and an n (at 10).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 17

Figure 1. Average number of customers in system (ܮ) vs number of slots (݊). ܮ versus ݊, for various λ and a ߤ, are plotted in Figure 1. It is observed that ܮ picks up as ݊

increases, as expected, yet in a near linear manner. Also, it is observed that ܮ picks up as λ increases,
as expected. Notice that the intervals in between the plots are quite proportionally spaced.

Likewise, Figure 2 shows the average number of customers in system (ܮ) plotted against the rate
of slots (ߤ) for various λ and an ݊ (at 10).

Figure 2. Average number of customers in the system (ܮ) vs rate of slots (ߤ).

It is observed that ܮ declines as ߤ increases, as expected. Also, it is observed that ܮ picks up
as λ increases, as expected. Notice that the intervals in between the plots are quite proportionally
spaced.

The following graph plots ܮொ versus ݊, for various λ and a ߤ (at 1/15).
It is observed in Figure 3 that ܮொ picks up as ݊ increases, as expected, yet in a near linear

manner. Also, it is observed that ܮொ picks up as λ increases, as expected. Notice that the intervals in
between the plots are quite proportionally spaced.

Figure 2. Average number of customers in the system (L) vs rate of slots (µ).

It is observed that L declines as µ increases, as expected. Also, it is observed that L picks up as λ
increases, as expected. Notice that the intervals in between the plots are quite proportionally spaced.

The following graph plots LQ versus n, for various λ and a µ (at 1/15).
It is observed in Figure 3 that LQ picks up as n increases, as expected, yet in a near linear manner.

Also, it is observed that LQ picks up as λ increases, as expected. Notice that the intervals in between
the plots are quite proportionally spaced.

Average number of customers in queue (LQ) versus rate of slots (µ) is plotted in Figure 4, for various
λ, and an n (at 10).

Appl. Sci. 2020, 10, 3651 6 of 16
Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 17

Figure 3. Average number of customers in the queue (ܮொ) vs number of slots (݊).

Average number of customers in queue (ܮொ) versus rate of slots (ߤ) is plotted in Figure 4, for
various λ, and an ݊ (at 10).

Figure 4. Average number of customers in the queue (ܮொ) vs rate of slots (ߤ).

It is observed that ܮொ declines as ߤ increases, as expected. Also, it is observed that ܮொ picks up
as λ increases, as expected. Notice that the intervals in between the plots are quite proportionally
spaced.

The following graph plots ܹ versus ݊, for various λ and a ߤ (at 1/15).
In Figure 5, it is observed that ܹ picks up as ݊ increases, as expected, yet in a near linear

manner. Also, it is observed that ܹ picks up as λ increases, as expected. Notice that the intervals in
between the plots are quite proportionally spaced.

Figure 3. Average number of customers in the queue (LQ) vs number of slots (n).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 17

Figure 3. Average number of customers in the queue (ܮொ) vs number of slots (݊).

Average number of customers in queue (ܮொ) versus rate of slots (ߤ) is plotted in Figure 4, for
various λ, and an ݊ (at 10).

Figure 4. Average number of customers in the queue (ܮொ) vs rate of slots (ߤ).

It is observed that ܮொ declines as ߤ increases, as expected. Also, it is observed that ܮொ picks up
as λ increases, as expected. Notice that the intervals in between the plots are quite proportionally
spaced.

The following graph plots ܹ versus ݊, for various λ and a ߤ (at 1/15).
In Figure 5, it is observed that ܹ picks up as ݊ increases, as expected, yet in a near linear

manner. Also, it is observed that ܹ picks up as λ increases, as expected. Notice that the intervals in
between the plots are quite proportionally spaced.

Figure 4. Average number of customers in the queue (LQ) vs rate of slots (µ).

It is observed that LQ declines as µ increases, as expected. Also, it is observed that LQ picks up as
λ increases, as expected. Notice that the intervals in between the plots are quite proportionally spaced.

The following graph plots W versus n, for various λ and a µ (at 1/15).
In Figure 5, it is observed that W picks up as n increases, as expected, yet in a near linear manner.

Also, it is observed that W picks up as λ increases, as expected. Notice that the intervals in between the
plots are quite proportionally spaced.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 17

Figure 5. Average amount of time in system (ܹ) vs number of slots (݊).

The following graph plots ܹ versus ߤ, for various λ, and an ݊ (at 10).
In Figure 6, it is observed that ܹ declines as ߤ increases, as expected. Also, it is observed that ܹ picks up as λ increases, as expected. Notice that the intervals in between the plots are quite

proportionally spaced.

Figure 6. Average amount of time in system (ܹ) vs rate of slots (ߤ).

Figure 7 plots ொܹ versus ݊, for various λ and a ߤ (at 1/15).

Figure 5. Average amount of time in system (W) vs number of slots (n).

Appl. Sci. 2020, 10, 3651 7 of 16

The following graph plots W versus µ, for various λ, and an n (at 10).
In Figure 6, it is observed that W declines as µ increases, as expected. Also, it is observed that

W picks up as λ increases, as expected. Notice that the intervals in between the plots are quite
proportionally spaced.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 17

Figure 5. Average amount of time in system (ܹ) vs number of slots (݊).

The following graph plots ܹ versus ߤ, for various λ, and an ݊ (at 10).
In Figure 6, it is observed that ܹ declines as ߤ increases, as expected. Also, it is observed that ܹ picks up as λ increases, as expected. Notice that the intervals in between the plots are quite

proportionally spaced.

Figure 6. Average amount of time in system (ܹ) vs rate of slots (ߤ).

Figure 7 plots ொܹ versus ݊, for various λ and a ߤ (at 1/15).

Figure 6. Average amount of time in system (W) vs rate of slots (µ).

Figure 7 plots WQ versus n, for various λ and a µ (at 1/15).Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 17

Figure 7. Average amount of time in queue (ொܹ) vs number of slots (݊).

It is observed that ொܹ picks up as ݊ increases, as expected, yet in a near linear manner. Also, it
is observed that ொܹ picks up as λ increases, as expected. Notice that the intervals in between the
plots are quite proportionally spaced.

The following graph plots ொܹ versus ߤ, for various λ, and an ݊ (at 10).
In Figure 8, it is observed that ொܹ declines as ߤ increases, as expected. Also, it is observed that ொܹ picks up as λ increases, as expected. Notice that the intervals in between the plots are quite

proportionally spaced.

Figure 8. Average amount of time in queue (ொܹ) vs rate of slots (ߤ).

Equation (10) shows the throughput per block in the presented model. ߛ = ߤ ௡ܲ = ߤߣ ߤ ݊(݊ + 1)2 ଴ܲ = ߣ ݊(݊ + 1)2 ଴ܲ (10)

The following graph plots ߛ versus ݊, for various λ and a ߤ (at 1/15). Note that ߛ is plotted
versus full range of potential ݊ values so that the ߛ at an ݊ represents the normalized ߛ value in
the full range up to ݊.

Figures 9 and 10 plot the throughput per block. It is observed that ߛ stays constant throughout,
and ௡ܲ barely changes throughout.

Figure 7. Average amount of time in queue (WQ) vs number of slots (n).

It is observed that WQ picks up as n increases, as expected, yet in a near linear manner. Also, it is
observed that WQ picks up as λ increases, as expected. Notice that the intervals in between the plots
are quite proportionally spaced.

The following graph plots WQ versus µ, for various λ, and an n (at 10).
In Figure 8, it is observed that WQ declines as µ increases, as expected. Also, it is observed that

WQ picks up as λ increases, as expected. Notice that the intervals in between the plots are quite
proportionally spaced.

Equation (10) shows the throughput per block in the presented model.

γ = µPn = µ
λ
µ

n(n + 1)
2

P0 = λ
n(n + 1)

2
P0 (10)

Appl. Sci. 2020, 10, 3651 8 of 16

The following graph plots γ versus n, for various λ and a µ (at 1/15). Note that γ is plotted versus
full range of potential n values so that the γ at an n represents the normalized γ value in the full range
up to n.

Figures 9 and 10 plot the throughput per block. It is observed that γ stays constant throughout,
and Pn barely changes throughout.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 17

Figure 7. Average amount of time in queue (ொܹ) vs number of slots (݊).

It is observed that ொܹ picks up as ݊ increases, as expected, yet in a near linear manner. Also, it
is observed that ொܹ picks up as λ increases, as expected. Notice that the intervals in between the
plots are quite proportionally spaced.

The following graph plots ொܹ versus ߤ, for various λ, and an ݊ (at 10).
In Figure 8, it is observed that ொܹ declines as ߤ increases, as expected. Also, it is observed that ொܹ picks up as λ increases, as expected. Notice that the intervals in between the plots are quite

proportionally spaced.

Figure 8. Average amount of time in queue (ொܹ) vs rate of slots (ߤ).

Equation (10) shows the throughput per block in the presented model. ߛ = ߤ ௡ܲ = ߤߣ ߤ ݊(݊ + 1)2 ଴ܲ = ߣ ݊(݊ + 1)2 ଴ܲ (10)

The following graph plots ߛ versus ݊, for various λ and a ߤ (at 1/15). Note that ߛ is plotted
versus full range of potential ݊ values so that the ߛ at an ݊ represents the normalized ߛ value in
the full range up to ݊.

Figures 9 and 10 plot the throughput per block. It is observed that ߛ stays constant throughout,
and ௡ܲ barely changes throughout.

Figure 8. Average amount of time in queue (WQ) vs rate of slots (µ).
Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 17

Figure 9. Throughput per block (ߛ) vs number of slots (݊).

The following graph plots ߛ versus ߤ, for various λ, a ߤ (at 1/15) and a ߣி (at 0.001).

Figure 10. Throughput per block (ߛ) vs rate of slots (ߤ).

It is observed that ߛ picks up as ߤ increases, as expected. Also, it is observed that ߛ picks up
as λ increases, as expected. Notice that the intervals in between the plots are quite proportionally
spaced.

The following graph plots ܮ versus λி, for various λ, a ߤ (at 1/15), and ݊ (at 10).
It is was observed, in Figure 11, that ܮ declines as λி increases such that as more numbers of
transactions (or slots) fail to arrive within the required real-time deadline, less numbers of
transactions will be accommodated. Also, it is observed that ܮ picks up as λ increases, as expected.
Notice that the intervals in between the plots are spaced narrower at higher λ, as expected.

Figure 9. Throughput per block (γ) vs number of slots (n).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 17

Figure 9. Throughput per block (ߛ) vs number of slots (݊).

The following graph plots ߛ versus ߤ, for various λ, a ߤ (at 1/15) and a ߣி (at 0.001).

Figure 10. Throughput per block (ߛ) vs rate of slots (ߤ).

It is observed that ߛ picks up as ߤ increases, as expected. Also, it is observed that ߛ picks up
as λ increases, as expected. Notice that the intervals in between the plots are quite proportionally
spaced.

The following graph plots ܮ versus λி, for various λ, a ߤ (at 1/15), and ݊ (at 10).
It is was observed, in Figure 11, that ܮ declines as λி increases such that as more numbers of
transactions (or slots) fail to arrive within the required real-time deadline, less numbers of
transactions will be accommodated. Also, it is observed that ܮ picks up as λ increases, as expected.
Notice that the intervals in between the plots are spaced narrower at higher λ, as expected.

Figure 10. Throughput per block (γ) vs rate of slots (µ).

The following graph plots γ versus µ, for various λ, a µ (at 1/15) and a λF (at 0.001).

Appl. Sci. 2020, 10, 3651 9 of 16

It is observed that γ picks up as µ increases, as expected. Also, it is observed that γ picks up as λ
increases, as expected. Notice that the intervals in between the plots are quite proportionally spaced.

The following graph plots L versus λF, for various λ, a µ (at 1/15), and n (at 10).
It is was observed, in Figure 11, that L declines as λF increases such that as more numbers of

transactions (or slots) fail to arrive within the required real-time deadline, less numbers of transactions
will be accommodated. Also, it is observed that L picks up as λ increases, as expected. Notice that the
intervals in between the plots are spaced narrower at higher λ, as expected.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 17

Figure 11. Average number of customers in system (ܮ) vs rate of unsuccessful arrival (λி).

The following graph plots ܮொ versus λி, for various λ, a ߤ (at 1/15), and ݊ (at 10) in Figure 12.

Figure 12. Average number of customers in queue (ܮொ) vs rate of unsuccessful arrival (λி).

It is observed that ܮொ declines as λி increases, and as a greater number of transactions (or slots)
fail to arrive within the required real-time deadline, a smaller number of transactions will be
accommodated. Also, it is observed that ܮொ picks up as λ increases, as expected. Notice that the
intervals in between the plots are spaced narrower at higher λ, as expected.

The following graph plots ܹ versus λி, for various λ, a ߤ (at 1/15), and ݊ (at 10).
Figures 13 and 14 plot the average amount of time in the system/queue with respect to rate of
unsuccessful arrivals. It is observed that ܹ declines as λி increases as a greater number of
transactions (or slots) fail to arrive within the required real-time deadline, and the amount of time on
average that each transaction (or slot) will be waiting in the block prior to posting is reduced. Also, it
is observed that ܹ picks up as λ increases, as expected. Notice that the intervals in between the
plots are spaced narrower at higher λ, as expected.

Figure 11. Average number of customers in system (L) vs rate of unsuccessful arrival (λF).

The following graph plots LQ versus λF, for various λ, a µ (at 1/15), and n (at 10) in Figure 12.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 17

Figure 11. Average number of customers in system (ܮ) vs rate of unsuccessful arrival (λி).

The following graph plots ܮொ versus λி, for various λ, a ߤ (at 1/15), and ݊ (at 10) in Figure 12.

Figure 12. Average number of customers in queue (ܮொ) vs rate of unsuccessful arrival (λி).

It is observed that ܮொ declines as λி increases, and as a greater number of transactions (or slots)
fail to arrive within the required real-time deadline, a smaller number of transactions will be
accommodated. Also, it is observed that ܮொ picks up as λ increases, as expected. Notice that the
intervals in between the plots are spaced narrower at higher λ, as expected.

The following graph plots ܹ versus λி, for various λ, a ߤ (at 1/15), and ݊ (at 10).
Figures 13 and 14 plot the average amount of time in the system/queue with respect to rate of
unsuccessful arrivals. It is observed that ܹ declines as λி increases as a greater number of
transactions (or slots) fail to arrive within the required real-time deadline, and the amount of time on
average that each transaction (or slot) will be waiting in the block prior to posting is reduced. Also, it
is observed that ܹ picks up as λ increases, as expected. Notice that the intervals in between the
plots are spaced narrower at higher λ, as expected.

Figure 12. Average number of customers in queue (LQ) vs rate of unsuccessful arrival (λF).

It is observed that LQ declines as λF increases, and as a greater number of transactions (or slots) fail
to arrive within the required real-time deadline, a smaller number of transactions will be accommodated.
Also, it is observed that LQ picks up as λ increases, as expected. Notice that the intervals in between
the plots are spaced narrower at higher λ, as expected.

The following graph plots W versus λF, for various λ, a µ (at 1/15), and n (at 10).
Figures 13 and 14 plot the average amount of time in the system/queue with respect to rate of

unsuccessful arrivals. It is observed that W declines as λF increases as a greater number of transactions
(or slots) fail to arrive within the required real-time deadline, and the amount of time on average that
each transaction (or slot) will be waiting in the block prior to posting is reduced. Also, it is observed

Appl. Sci. 2020, 10, 3651 10 of 16

that W picks up as λ increases, as expected. Notice that the intervals in between the plots are spaced
narrower at higher λ, as expected.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 17

Figure 13. Average amount of time in system (ܹ) vs rate of unsuccessful arrival (λி).

The following graph plots ொܹ versus λி, for various λ, a ߤ (at 1/15), and ݊ (at 10).

Figure 14. Average amount of time in queue (ொܹ) vs rate of unsuccessful arrival (λி).

It is observed, in Figure 14, that ொܹ declines as λி increases as a greater number of transactions
(or slots) fail to arrive within the required real-time deadline, and the time on average is reduced in
which each transaction (or slot) will be waiting in the block prior to posting. Also, it is observed that ܹ picks up as λ increases, as expected. Notice that the intervals in between the plots are spaced
narrower at higher λ, as expected.

5. A Demo: Real-time Chain

Implementation of real-time is shown in this section. Table B1 in Appendix B shows a detailed
list of components used and the version numbers which were modified to create this demo. With
deadline time taken into consideration, four transactions are posted at the same time but with random
deadline times to simulate the priority to the deadline variable. In the standard Ethereum model, the
transactions are sorted based on the price and nonce. The four transactions, if posted in the standard
Ethereum model, would be included in blocks in a decreasing order based on price and nonce. In the
modified real-time model, the transactions with deadline time closest to the current block are given
higher priority. Figures mentioned in this section present an idea of the deadline times and block
posting of the four respective transactions.

Figures 15–18 show transactions that are posted with random deadline times: 35, 36, 50 and 58.
Figure 15 details a transaction that posted with deadline time variable set to 35. The transaction with

Figure 13. Average amount of time in system (W) vs rate of unsuccessful arrival (λF).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 17

Figure 13. Average amount of time in system (ܹ) vs rate of unsuccessful arrival (λி).

The following graph plots ொܹ versus λி, for various λ, a ߤ (at 1/15), and ݊ (at 10).

Figure 14. Average amount of time in queue (ொܹ) vs rate of unsuccessful arrival (λி).

It is observed, in Figure 14, that ொܹ declines as λி increases as a greater number of transactions
(or slots) fail to arrive within the required real-time deadline, and the time on average is reduced in
which each transaction (or slot) will be waiting in the block prior to posting. Also, it is observed that ܹ picks up as λ increases, as expected. Notice that the intervals in between the plots are spaced
narrower at higher λ, as expected.

5. A Demo: Real-time Chain

Implementation of real-time is shown in this section. Table B1 in Appendix B shows a detailed
list of components used and the version numbers which were modified to create this demo. With
deadline time taken into consideration, four transactions are posted at the same time but with random
deadline times to simulate the priority to the deadline variable. In the standard Ethereum model, the
transactions are sorted based on the price and nonce. The four transactions, if posted in the standard
Ethereum model, would be included in blocks in a decreasing order based on price and nonce. In the
modified real-time model, the transactions with deadline time closest to the current block are given
higher priority. Figures mentioned in this section present an idea of the deadline times and block
posting of the four respective transactions.

Figures 15–18 show transactions that are posted with random deadline times: 35, 36, 50 and 58.
Figure 15 details a transaction that posted with deadline time variable set to 35. The transaction with

Figure 14. Average amount of time in queue (WQ) vs rate of unsuccessful arrival (λF).

The following graph plots WQ versus λF, for various λ, a µ (at 1/15), and n (at 10).
It is observed, in Figure 14, that WQ declines as λF increases as a greater number of transactions

(or slots) fail to arrive within the required real-time deadline, and the time on average is reduced in
which each transaction (or slot) will be waiting in the block prior to posting. Also, it is observed that W
picks up as λ increases, as expected. Notice that the intervals in between the plots are spaced narrower
at higher λ, as expected.

5. A Demo: Real-time Chain

Implementation of real-time is shown in this section. Table A1 in Appendix B shows a detailed list
of components used and the version numbers which were modified to create this demo. With deadline
time taken into consideration, four transactions are posted at the same time but with random deadline
times to simulate the priority to the deadline variable. In the standard Ethereum model, the transactions
are sorted based on the price and nonce. The four transactions, if posted in the standard Ethereum
model, would be included in blocks in a decreasing order based on price and nonce. In the modified
real-time model, the transactions with deadline time closest to the current block are given higher
priority. Figures mentioned in this section present an idea of the deadline times and block posting of
the four respective transactions.

Appl. Sci. 2020, 10, 3651 11 of 16

Figures 15–18 show transactions that are posted with random deadline times: 35, 36, 50 and 58.
Figure 15 details a transaction that posted with deadline time variable set to 35. The transaction with a
gas limit of 3,000,000 is posted in 25th block. Figure 16 shows another transaction with lower gas limit
than the one shown in Figure 15. The gas limit of the transaction is 2,000,000, and the deadline time is
set to 36. The contract hash and the block number details are shown below, with the transactions being
posted in the 26th block.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17

a gas limit of 3,000,000 is posted in 25th block. Figure 16 shows another transaction with lower gas
limit than the one shown in Figure 15. The gas limit of the transaction is 2,000,000, and the deadline
time is set to 36. The contract hash and the block number details are shown below, with the
transactions being posted in the 26th block.

(a)

(b)

(c)

Figure 15. (a) Transaction with deadline time of 35, (b) full hash of the transaction, (c) gas limit
3,000,000 of the same hash.

(a)

(b)

(c)

Figure 16. (a) Transaction with deadline time of 36, (b) full hash of the transaction, (c) gas limit
2,000,000 of the same hash.

A transaction with a gas limit higher than 2,000,000 would be given higher priority in the
standard Ethereum model. Such a transaction is posted here to highlight the difference in the
priorities given to the transactions even though the transactions have a lesser gas limit. Figure 17
shows a transaction that was posted with a gas limit of 4,500,000 and a deadline time of 50. Since the
deadline time was higher than both the previous transactions, this transaction is posted in block 37.

(a)

Figure 15. (a) Transaction with deadline time of 35, (b) full hash of the transaction, (c) gas limit 3,000,000
of the same hash.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17

a gas limit of 3,000,000 is posted in 25th block. Figure 16 shows another transaction with lower gas
limit than the one shown in Figure 15. The gas limit of the transaction is 2,000,000, and the deadline
time is set to 36. The contract hash and the block number details are shown below, with the
transactions being posted in the 26th block.

(a)

(b)

(c)

Figure 15. (a) Transaction with deadline time of 35, (b) full hash of the transaction, (c) gas limit
3,000,000 of the same hash.

(a)

(b)

(c)

Figure 16. (a) Transaction with deadline time of 36, (b) full hash of the transaction, (c) gas limit
2,000,000 of the same hash.

A transaction with a gas limit higher than 2,000,000 would be given higher priority in the
standard Ethereum model. Such a transaction is posted here to highlight the difference in the
priorities given to the transactions even though the transactions have a lesser gas limit. Figure 17
shows a transaction that was posted with a gas limit of 4,500,000 and a deadline time of 50. Since the
deadline time was higher than both the previous transactions, this transaction is posted in block 37.

(a)

Figure 16. (a) Transaction with deadline time of 36, (b) full hash of the transaction, (c) gas limit 2,000,000
of the same hash.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17

a gas limit of 3,000,000 is posted in 25th block. Figure 16 shows another transaction with lower gas
limit than the one shown in Figure 15. The gas limit of the transaction is 2,000,000, and the deadline
time is set to 36. The contract hash and the block number details are shown below, with the
transactions being posted in the 26th block.

(a)

(b)

(c)

Figure 15. (a) Transaction with deadline time of 35, (b) full hash of the transaction, (c) gas limit
3,000,000 of the same hash.

(a)

(b)

(c)

Figure 16. (a) Transaction with deadline time of 36, (b) full hash of the transaction, (c) gas limit
2,000,000 of the same hash.

A transaction with a gas limit higher than 2,000,000 would be given higher priority in the
standard Ethereum model. Such a transaction is posted here to highlight the difference in the
priorities given to the transactions even though the transactions have a lesser gas limit. Figure 17
shows a transaction that was posted with a gas limit of 4,500,000 and a deadline time of 50. Since the
deadline time was higher than both the previous transactions, this transaction is posted in block 37.

(a)

Figure 17. Cont.

Appl. Sci. 2020, 10, 3651 12 of 16

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 17

(b)

(c)

Figure 17. (a) Transaction with deadline time of 50, (b) full hash of the transaction, (c) gas limit
4,500,000 of the same hash.

Figure 18 shows another such scenario where the gas limit is higher and the deadline time is
farther than the current block, which gives the transaction lesser priority. The transaction is posted
with a gas limit of 4,000,000 and the deadline time set to 58. The block number that the transaction
got posted is the 39th block of the chain.

(a)

(b)

(c)

Figure 18. (a) Transaction with deadline time of 58, (b) full hash of the transaction, (c) gas limit
4,000,000 of the same hash.

6. Conclusions and Discussion

This paper has proposed an analytical approach how to design and realize a real-time chain
(Ethereum blockchain-based) under a stringent real-time deadline requirement. A new and novel
analytical model has been proposed to estimate the performance of the real-time chain in a
quantitative manner, referred to as the variable bulk arrival and variable bulk service with ࡲࣅ where ࡲࣅ is a random variable employed specifically to address the stringent real-time deadline
requirement. The variable bulk arrival rate is assumed to vary linearly, proportional to the size of the
transactions in a multiple of λ per slot with success to arrive within deadline, and some of the
transactions in ߣி to fail to meet the real-time deadline, and the variable bulk service is assumed to
take place when the number of slots in the mined transactions reaches at every possible number ݅,
where 0 ≤ ݅ ≤ ݊, i.e., a bulk processing of multiple transactions in multiple slots between 0 and ݊,
inclusive, for posting in a block. Note that the real-time deadline requirement is considered under
the underlying assumption that the size of each block is adaptive, in other words, varying block by
block, and the proposed VBAVBS model with ߣி normalizes the probability for each size of the block
throughout. Numerical simulations are conducted on Matlab to verify and demonstrate the efficacy

Figure 17. (a) Transaction with deadline time of 50, (b) full hash of the transaction, (c) gas limit 4,500,000
of the same hash.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 17

(b)

(c)

Figure 17. (a) Transaction with deadline time of 50, (b) full hash of the transaction, (c) gas limit
4,500,000 of the same hash.

Figure 18 shows another such scenario where the gas limit is higher and the deadline time is
farther than the current block, which gives the transaction lesser priority. The transaction is posted
with a gas limit of 4,000,000 and the deadline time set to 58. The block number that the transaction
got posted is the 39th block of the chain.

(a)

(b)

(c)

Figure 18. (a) Transaction with deadline time of 58, (b) full hash of the transaction, (c) gas limit
4,000,000 of the same hash.

6. Conclusions and Discussion

This paper has proposed an analytical approach how to design and realize a real-time chain
(Ethereum blockchain-based) under a stringent real-time deadline requirement. A new and novel
analytical model has been proposed to estimate the performance of the real-time chain in a
quantitative manner, referred to as the variable bulk arrival and variable bulk service with ࡲࣅ where ࡲࣅ is a random variable employed specifically to address the stringent real-time deadline
requirement. The variable bulk arrival rate is assumed to vary linearly, proportional to the size of the
transactions in a multiple of λ per slot with success to arrive within deadline, and some of the
transactions in ߣி to fail to meet the real-time deadline, and the variable bulk service is assumed to
take place when the number of slots in the mined transactions reaches at every possible number ݅,
where 0 ≤ ݅ ≤ ݊, i.e., a bulk processing of multiple transactions in multiple slots between 0 and ݊,
inclusive, for posting in a block. Note that the real-time deadline requirement is considered under
the underlying assumption that the size of each block is adaptive, in other words, varying block by
block, and the proposed VBAVBS model with ߣி normalizes the probability for each size of the block
throughout. Numerical simulations are conducted on Matlab to verify and demonstrate the efficacy

Figure 18. (a) Transaction with deadline time of 58, (b) full hash of the transaction, (c) gas limit 4,000,000
of the same hash.

A transaction with a gas limit higher than 2,000,000 would be given higher priority in the standard
Ethereum model. Such a transaction is posted here to highlight the difference in the priorities given to
the transactions even though the transactions have a lesser gas limit. Figure 17 shows a transaction
that was posted with a gas limit of 4,500,000 and a deadline time of 50. Since the deadline time was
higher than both the previous transactions, this transaction is posted in block 37.

Figure 18 shows another such scenario where the gas limit is higher and the deadline time is
farther than the current block, which gives the transaction lesser priority. The transaction is posted
with a gas limit of 4,000,000 and the deadline time set to 58. The block number that the transaction got
posted is the 39th block of the chain.

6. Conclusions and Discussion

This paper has proposed an analytical approach how to design and realize a real-time chain
(Ethereum blockchain-based) under a stringent real-time deadline requirement. A new and novel
analytical model has been proposed to estimate the performance of the real-time chain in a quantitative
manner, referred to as the variable bulk arrival and variable bulk service with λF where λF is a random
variable employed specifically to address the stringent real-time deadline requirement. The variable
bulk arrival rate is assumed to vary linearly, proportional to the size of the transactions in a multiple of
λ per slot with success to arrive within deadline, and some of the transactions in λF to fail to meet the
real-time deadline, and the variable bulk service is assumed to take place when the number of slots in

Appl. Sci. 2020, 10, 3651 13 of 16

the mined transactions reaches at every possible number i, where 0 ≤ i ≤ n, i.e., a bulk processing of
multiple transactions in multiple slots between 0 and n, inclusive, for posting in a block. Note that
the real-time deadline requirement is considered under the underlying assumption that the size of
each block is adaptive, in other words, varying block by block, and the proposed VBAVBS model
with λF normalizes the probability for each size of the block throughout. Numerical simulations are
conducted on Matlab to verify and demonstrate the efficacy of the model and reveal a good agreement
with what was expected intuitively as a baseline validation. The primary performance measurements
to be taken are L, LQ, WQ, W and γ versus n (i.e., size of a block), λ (i.e., successful transaction arrival
rate or speed), λF (i.e., unsuccessful transaction arrival rate or speed) and 1

µ (i.e., block posting time).
The simulation results demonstrate the efficacy and validity of the proposed real-time chain in a
quantitative manner with respect to the proposed VBAVBS model with λF as far as it is concerned
about L, LQ, WQ, W and γ versus various n, λ, λF, µ. It is noteworthy that λF, as a real-time-specific
random variable, exhibits quite a significant impact on L, LQ, WQ, W. A demo has been developed to
demonstrate a real-time chain with modification on the Ethereum open source Geth 1.9.11.

Author Contributions: N.P.: overall supervision of the research and the manuscript. A.K.: a supervisee of the
research and main contributor to the simulations, the demo and the manuscript. H.-Y.K.: overall supervision of
the research, the manuscript and the publication cost. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Korean Government (MSIT) (No. 2019R1A2C1008533).

Acknowledgments: This work was supported by the National Research Foundation of Korea (NRF) grant funded
by the Korean Government (MSIT) (No. 2019R1A2C1008533). This work was also supported by the 2020 Hongik
University Research Fund.

Conflicts of Interest: Authors declare no conflict of interest.

Appendix A

Solution for the balance equations shown in Section 3 are provided here. Equation (A1) represents
the steady state probability for P1.(

λ+ 2λ+ 3λ+ · · ·+ (n− 1)λ+ λF +
µ

n− 0

)
P1 = λP0 (A1)

Equations (A2)–(A5) process the simplification.(
λ(n− 1)(n− 2)

2
+ λF +

µ

n− 0

)
P1 = λP0 (A2)

(
λ(n− 1)(n− 2)

2
+ λF +

µ

n− 0

)
P1 = λP0 (A3)

P1 = λ

(
λ(n− 1)(n− 2)

2
+ λF +

µ

n− 0

)−1

P0 (A4)

P1 = λq1P0 (A5)

Similarly, P2 can be expressed as follows:(
λ+ 2λ+ 3λ+ · · ·+ (n− 2)λ+ λF +

µ

n− 1

)
P2 = λP1 + 2λP0 (A6)

(
λ(n− 2)(n− 3)

2
+ λF +

µ

n− 1

)
P2 = λ(P1 + 2P0) (A7)

P2 = λ

(
λ(n− 2)(n− 3)

2
+ λF +

µ

n− 1

)−1

(Q1P0 + 2P0) (A8)

Appl. Sci. 2020, 10, 3651 14 of 16

P2 = λq2(Q1P0 + 2P0) (A9)

P2 = λq2(Q1 + 2)P0 (A10)

P2 = Q2P0 (A11)

P3 can be expressed as follows, and simplified in Equations (A12) and (A13).(
λ+ 2λ+ 3λ+ · · ·+ (n− 3)λ+ λF +

µ

n− 2

)
P3 = λP2 + 2λP1 + 3λP0 (A12)

(
λ(n− 3)(n− 4)

2
+ λF +

µ

n− 2

)
P3 = λ(P2 + 2P1 + 3P0) (A13)

Similarly, Pi, 0 < i < n can be expressed as follows:(
λ+ 2λ+ 3λ+ · · ·+ (n− i)λ+ λF +

µ

n− i + 1

)
Pi = λPi−1 + 2λPi−2 + . . .+ iλP0 (A14)

(
λ(n− i)(n− i + 1)

2
+ λF +

µ

n− i + 1

)
Pi = λ(Pi−1 + 2Pi−2 + . . .+ iP0) (A15)

Lastly, Pn can be expressed as follows:

(λF + µ)Pn = λPn−1 + 2λPn−2 + . . .+ nλP0 (A16)

(λF + µ)Pn = λ(Pn−1 + 2Pn−2 + . . .+ nP0) (A17)

P0 can be solved by substituting Equation (4) into Equation (3):

P0 + P1 + P2 + . . .+ Pn = 1 (A18)

P0 + q−1
1 P0

 1∑
j=1

j

 0∑
k=1

k−1∏
l=1

q−1
l


k

+ q−1
2 P0

 2∑
j=1

j

 1∑
k=1

k−1∏
l=1

q−1
l


k

+ . . .+ Pn = 1 (A19)

As, P0 is a term that is common in all the terms in Equation (A19):

P0

1 + q−1
1

 1∑
j=1

j

 0∑
k=1

k−1∏
l=1

q−1
l


k

+ q−1
2

 2∑
j=1

j

 1∑
k=1

k−1∏
l=1

q−1
l


k

+ . . .

 = 1 (A20)

Once the value of P0 is known, the other steady state probabilities of the Markovian model can be
obtained by using Equation (4) consecutively. Given that all the steady state probabilities are known,
the values of L, LQ, W and WQ are calculated.

Appendix B

The configuration settings for the components used in the real-time demo model described in
Section 5 are shown in Table A1.

Table A1. Configuration settings of Ethereum and other components.

Component Version

Geth/Ethereum 1.9.11
Architecture amd64
Go version go1.14

Operating system darwin
Nodejs v12.14.1
web3 1.2.7

Appl. Sci. 2020, 10, 3651 15 of 16

References

1. Rouhani, S.; Deters, R. Performance Analysis of Ethereum Transactions in private blockchain. In Proceedings
of the 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS),
Beijing, China, 24–26 November 2017.

2. Chauhan, A.; Malviya, O.P.; Verma, M.; Mor, T.S. Blockchain and Scalability. In Proceedings of the 2018
IEEE International Conference on Software Quality, Reliability and Security Companion, Lisbon, Portugal,
16–20 July 2018.

3. Kuzuno, H.; Karam, C. Blockchain explorer: An analytical process and investigation environment for bitcoin.
In Proceedings of the 2017 APWG Symposium on Electronic Crime Research (eCrime), Scottsdale, AZ, USA,
25–27 April 2017.

4. Nakamoto, S.; Bitcoin, A. A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/

bitcoin.pdf (accessed on 19 March 2019).
5. Ethereum: A Super Decentralized Generalized Transaction Ledger. Available online: http://gavwood.com/

paper.pdf (accessed on 19 March 2019).
6. Weber, I.; Gramoli, V.; Ponomarev, A.; Staples, M.; Holz, R.; Tran, A.B.; Rimba, P. On Availability for

Blockchain-Based Systems. In Proceedings of the 2017 IEEE 36th Symposium on Reliable Distributed Systems
(SRDS), Hong Kong, China, 26–29 September 2017.

7. Peck, M.E. Blockchains: How They Work and Why They’ll Change the World. IEEE Spectr. 2017, 54, 26–35.
[CrossRef]

8. Qin, R.; Yuan, Y.; Wang, F.Y. Research on the Selection Strategies of Blockchain Mining Pools. IEEE Trans.
Comput. Soc. Syst. 2018, 5, 748–757. [CrossRef]

9. Cinque, M.; Esposito, C. How to Assess the Dependability of Applications on Top of the Blockchain:
Novel Research Challenges. In Proceedings of the 2018 14th European Dependable Computing Conference
(EDCC), Iasi, Romania, 10–14 September 2018.

10. Lombardi, F.; Aniello, L.; de Angelis, S.; Margheri, A.; Sassone, V. A Blockchain-Based Infrastructure for Reliable
and Cost-Effective Iot-Aided Smart Grids; IET: London, UK, 2018.

11. Zhang, Q.; Novotny, P.; Baset, S.; Dillenberger, D.; Barger, A.; Manevich, Y. LedgerGuard: Improving
Blockchain Ledger Dependability. Available online: https://www.researchgate.net/publication/324939637_
LedgerGuard_Improving_Blockchain_Ledger_Dependability (accessed on 15 April 2019).

12. Seol, J.; Kancharla, A.; Park, N.; Park, N.; Park, I. The Dependability of Crypto Linked Off-chain File Systems
in Backend Blockchain Analytics Engine. Int. J. Netw. Distrib. Comput. 2018, 6, 210–215. [CrossRef]

13. How to Check the Reliability of a Blockchain Project. Available online: https://coinjournal.net/sponsored-
story-how-to-check-the-reliability-of-a-blockchain-project/ (accessed on 19 March 2019).

14. Worstall, T. Fascinating Number: Bitcoin Mining Uses $15 Million’s Worth of Electricity Every Day.”
Forbes, 3 December 2013. Available online: http://www.forbes.com/sites/timworstall/2013/12/03/fascinating-
number-bitcoin-mining-uses-15-millions-worth-ofelectricity-every-day/ (accessed on 19 March 2019).

15. Chadha, G.K.; Singh, A. Bitcoin Block-Chain Mining. In Proceedings of the 2019 9th International Conference
on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 29–31 May 2019; pp. 152–157.

16. Lee, W.-M. Beginning Ethereum Smart Contracts Programming; With Examples in Python, Solidity and JavaScript;
Apress: New York, NY, USA, 2019.

17. Kancharla, A.; Jongho, S.; Park, N.; Kim, H. Slim Chain and Dependability. In Proceedings of the 2nd ACM
International Symposium on Blockchain and Secure Critical Infrastructure (BSCI 2020), Taipei, Taiwan,
1–5 June 2020.

18. Kancharla, A.; Park, N.; Ke, Z.; Kim, H. Hybrid Chain and Dependability. In Proceedings of the 2nd ACM
International Symposium on Blockchain and Secure Critical Infrastructure (BSCI 2020), Taipei, Taiwan,
1–5 June 2020.

19. Jongho, S.; Kancharla, A.; Park, N.; Kim, H. A Variable Bulk Arrival and Static Bulk Service Queueing Model
for Blockchain. In Proceedings of the 2nd ACM International Symposium on Blockchain and Secure Critical
Infrastructure (BSCI 2020), Taipei, Taiwan, 1–5 June 2020.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
http://dx.doi.org/10.1109/MSPEC.2017.8048836
http://dx.doi.org/10.1109/TCSS.2018.2861423
https://www.researchgate.net/publication/324939637_LedgerGuard_Improving_Blockchain_Ledger_Dependability
https://www.researchgate.net/publication/324939637_LedgerGuard_Improving_Blockchain_Ledger_Dependability
http://dx.doi.org/10.2991/ijndc.2018.6.4.3
https://coinjournal.net/sponsored-story-how-to-check-the-reliability-of-a-blockchain-project/
https://coinjournal.net/sponsored-story-how-to-check-the-reliability-of-a-blockchain-project/
http://www.forbes.com/sites/timworstall/2013/12/03/fascinating-number-bitcoin-mining-uses-15-millions-worth-ofelectricity-every-day/
http://www.forbes.com/sites/timworstall/2013/12/03/fascinating-number-bitcoin-mining-uses-15-millions-worth-ofelectricity-every-day/

Appl. Sci. 2020, 10, 3651 16 of 16

20. Kancharla, A.; Park, N. A Realtime Crypto Computing and Block-Dependability. In Proceedings of the 9th
IEEE International Symposium on Cloud and Service Computing, Kaohsiung, Taiwan, 18–21 November 2019.

21. Kancharla, A.; Park, N. Dependable Industrial Crypto Computing. In Proceedings of the 28th International
Symposium on Industrial Electronics (IEEE-ISIE 2019), Vancouver, BC, Canada, 11–14 June 2019.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries and Literature Review
	Proposed Variable Bulk Arrival and Variable Bulk Service (VBAVBS) Model with F for Real-Time Chain
	Numerical Analysis
	A Demo: Real-time Chain
	Conclusions and Discussion
	
	
	References

