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Abstract: Deep learning is applied in various manufacturing domains. To train a deep learning
network, we must collect a sufficient amount of training data. However, it is difficult to collect image
datasets required to train the networks to perform object recognition, especially because target items
that are to be classified are generally excluded from existing databases, and the manual collection of
images poses certain limitations. Therefore, to overcome the data deficiency that is present in many
domains including manufacturing, we propose a method of generating new training images via
image pre-processing steps, background elimination, target extraction while maintaining the ratio of
the object size in the original image, color perturbation considering the predefined similarity between
the original and generated images, geometric transformations, and transfer learning. Specifically,
to demonstrate color perturbation and geometric transformations, we compare and analyze the
experiments of each color space and each geometric transformation. The experimental results show
that the proposed method can effectively augment the original data, correctly classify similar items,
and improve the image classification accuracy. In addition, it also demonstrates that the effective
data augmentation method is crucial when the amount of training data is small.

Keywords: image data augmentation; data deficiency; deep learning; small dataset;
color perturbation; geometric transformation; peak signal-to-noise ratio

1. Introduction

In smart manufacturing, enormous amounts of data are acquired from sensors. The complexity of
data poses challenges when processing these data, such as a high computational time. Deep learning,
which achieves remarkable performance for various applications, provides advanced analytical tools to
overcome such issues in smart manufacturing [1]. This technique has been progressing because of many
factors such as the developing graphics processing units and the increasing amounts of data that need
to be processed. Therefore, studies investigating deep learning as data-driven artificial intelligence
techniques are rapidly increasing. It is applied in various domains, such as optimization, control
and troubleshooting, and manufacturing. Specifically, deep learning is used in applications such as
visual inspection processes, fault diagnoses of induction motors and boiler tubes, crack detection,
and monitoring of tool condition [2–8].

Deep learning stands out in the research domains that are related to visual systems. Since 2010,
the ImageNet Large Scale Visual Recognition Challenge has been organized every year [9].
Several object recognition, object detection, and object classification algorithms are evaluated in this
challenge. In 2012, a deep learning algorithm based on convolutional neural networks was developed
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for object recognition, which showed significant improvements in object recognition. AlexNet won the
challenge in the same year, i.e., 2012, with a top five test error rate of 15.3% for 1000 different object
categories [10]. VGGNet and GoogLeNet were proposed in 2014, whereas ResNet was proposed in
2015; as time progressed, these deep learning algorithms proved to be more efficient in performing
object classification than humans [11–13].

In deep learning, features are extracted via self-learning. Training the network begins with
preparing the training data. We must collect enormous amounts of data to train the deep learning
network and apply it to object recognition, as the classification accuracy is related to the amount
of training data. One method of collecting training data involves downloading images from the
Internet using image-crawling tools or by manually saving each image individually. In addition,
we can utilize the existing image databases such as ImageNet and Microsoft CoCo [14,15]. However,
collecting numerous image data for image classification of the assembly of electrical components or
picking and placing these components is challenging. As the images of such components for assembly
or picking are generally uncommon, it is difficult to obtain numerous component images in existing
databases or websites. Furthermore, it is significantly difficult to capture the parts manually to create a
sufficient amount of training data. As another example, it is also challenging to collect the training
images in visual inspection processes such as discriminating defective products and crack or defect
detection. Because the defective rate is meager in manufacturing domains, sample images of defects
are few. However, generally, to enhance the performance of deep learning, we must collect numerous
training datasets. This is because the classification result is influenced by the number of training
images.

To compensate for the data deficiency, a pre-trained model can be retrained using the available
training data. This is because the pre-trained model already contains the information of the extracted
features favorably in the weights of the feature extraction layers. However, this method is limited in
terms of increasing the classification accuracy, as eventually, it needs to augment the training data to
improve its classification performance.

Collecting extensive training datasets is another solution for overcoming the problem of data
deficiency. Many researches demonstrated the relationship between the amount of the training
dataset and classification accuracy. There are many data augmentation techniques to increase the
number of training images. Geometric transformation is usually applied for image data augmentation.
However, there are limitations to augmenting the training data via geometric transformation, such as
the linearization and standardization of data.

The overall research objective is to recognize and classify ten components for picking, placing, and
assembling work. However, this yields data deficiency when training the deep learning network to
recognize and classify components because these components are uncommon, as previously mentioned.
Therefore, we propose a method for effectively improving the object classification accuracy of the deep
learning network in the case of a small dataset in various manufacturing domains. To accomplish the
goal of object recognition, even if there are few images, we focus on a method generating the massive
training data from image data augmentation methods. Our study makes three main contributions:

• the extraction of the target object from the background while maintaining the original image ratio;
• color perturbation based on the predefined similarity between the original and generated images

because of the decision of the reasonable perturbation range;
• data augmentation by combining color perturbation and geometric transformation.

We eliminate the background, extract the target object, generate the image by tuning pixel values,
and transform to implement this concept. Mainly, the background is eliminated by considering
the characteristics of the CIE L*a*b* color space. Besides, an object in an image is extracted such
that it is proportional to the ratio of the object in the original image. Next, we change the image
by determining the reasonable range for color perturbation and tuning the pixel values based on
color space, following which, we combine the tuned images with the geometric transformations.
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This is unlike the traditional method, which arbitrarily adds the pixel values to the RGB color space.
Subsequently, we train the pre-trained network by using the generated images. This step is called
transfer learning. To verify the proposed method, we compare and analyze the experiments with one
another in terms of the color perturbation of three color spaces and two geometric transformations.
We compare the classification result of the trained networks by using test images.

The rest of this paper is organized as follows. In Section 2, we introduce works related to data
augmentation, color spaces, similarity calculation, and transfer learning. In Section 3, we discuss the
performance of the proposed method that applies deep learning to perform object recognition on
a small dataset. In Section 4, we present the experimental results of the proposed method. Finally,
in Section 5, we provide the conclusions.

2. Related Works

To train a deep learning network for image classification effectively, we must collect an enormous
amount of training data because the image classification accuracy is related to the amount of training
data. Data deficiency may result in overfitting or inaccurate image classification results. Therefore,
many studies were performed to generate images to counter data deficiency. In this section, we explain
the traditional methods related to improving classification accuracy, such as data augmentation and
transfer learning. Furthermore, to improve the efficiency of data augmentation, the characteristics of
the color space and similarity calculation are also investigated.

2.1. Data Augmentation

Data augmentation, which is used to generate several images from original images by changing
the original image, has been developed to improve the model performance via generalization,
avoiding overfitting, and training the network to become a robust classifier [16,17].

Geometric transformation is one of the traditional data augmentation methods. It is simple and
consumes lower computational time compared with other data generation methods such as generative
adversarial networks. Some of the generally applied data augmentation methods are: arbitrary rotation,
vertical transformation, horizontal transformation, cropping, scaling, perspective shifting, shearing,
zooming, and color jittering [17].

In these data augmentation methods, several techniques are used to perform color jittering.
By isolating a single color channel, a simple color-based augmentation can be performed.
Another technique for color jittering is to add a random value to the color channel. In addition
to this technique, the information of the color histogram or principal component analysis with respect
to the color channel can be utilized for performing color jittering [18]. Because it is a simple data
augmentation method, we expand this concept to compensate for the data deficiency.

Some data augmentation-based studies demonstrated that the classification results obtained
by combining a method with other algorithms resulted in better performance compared with the
case of applying only one algorithm. In [19], the classification result obtained upon combining
two algorithms resulted in better performance compared with the combination of three algorithms.
Therefore, we combined two geometric transformations with color jittering for augmenting the small
training data.

2.2. Characteristics of Color Space

Color is an important factor in image processing techniques such as object recognition.
The characteristics of color comprise brightness, hue, and saturation. The brightness of a color
can be represented using the power as a function of wavelength. Different parts of a spectrum are
referred to as long, medium, and short according to the wavelength of their peak response. Conversely,
colors such as red, green, blue, yellow, and orange are closely related to the wavelength of light that
ranges from 400 to 700 nm. The color is visible to the physical eye because of trichromatism, in which
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color information is derived from three types of cone cells present in the human eyes. Using each of
the three cones, the luminance of an object L(λ) elicits a particular response as follows:

ρ =
∫

λ
L (λ) Mr (λ) dλ

γ =
∫

λ
L (λ) Mg (λ) dλ

β =
∫

λ
L (λ) Mb (λ) dλ

(1)

In (1), Mr(λ), Mg(λ), and Mb(λ) denote the respective spectral responses of the red, green, and
blue cones. In addition, the results of the above-mentioned equations are ρ, γ, and β, known as
tristimulus values. These tristimulus values describe the color that a human can see and represent [20].

2.2.1. RGB Color Space

The color space is divided as the space is being built. Among the color spaces, the RGB color
space, which is comprised of red, green, and blue, is well known. Red, green, and blue are called
primary colors. Primary colors are fundamental for vision. The RGB color space is a basic color space
and depends on the intensity of the light [21,22].

From (1), if λ and a monochromatic stimulus of wavelength λs are equal, then L(λ) is defined as
Lλ. Using (1), the response of the cones to this stimulus is derived as follows:

ρ = Lλ Mr (λs)

γ = Lλ Mg (λs)

β = Lλ Mb (λs)

(2)

In addition, three primary colors, namely, R, G, and B, are represented as follows:

ρ = RMr (λr) + GMr
(
λg
)
+ BMr (λb)

γ = RMg (λr) + GMg
(
λg
)
+ BMg (λb)

β = RMb (λr) + GMb
(
λg
)
+ BMb (λb)

(3)

In (3), λr, λg, and λb denote the wavelengths of R, G, and B, respectively. In addition, R, G, and B
denote the intensities of R, G, and B, respectively. Using (2) and (3), the required tristimulus values are
derived as follows: R

G
B

 = Lλ

Mr (λr) Mr
(
λg
)

Mr (λb)

Mg (λr) Mg
(
λg
)

Mg (λb)

Mb (λr) Mb
(
λg
)

Mb (λb)

−1 Mr (λs)

Mg (λs)

Mb (λs)

 (4)

This transformation matrix is constant and depends on the spectral response of the cones. The RGB
color space can be transformed to another color space via a linear or non-linear transformation [20,23].

2.2.2. HSV Color Space

The HSV color space can instinctively represent color, whereas the RGB color space can represent
color by combining red, green, and blue colors. The RGB color space can be transformed to the HSV
color space as follows [23]:

H = arccos

 1
2 (2R− G− B)√

(R− G)2 − (R− B) (G− B)

 (5)
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S =
max (R, G, B)−min (R, G, B)

max (R, G, B)
(6)

V = max(R, G, B) (7)

The HSV color space represents an image by using three constituents, namely hue, saturation,
and value. Hue indicates the chromatic information, saturation the depth of purity of the color,
and value the brightness of the color. The HSV color space easily distinguishes a color because it
instinctively describes the color information, unlike the RGB color space. In addition, the HSV color
space separates out the intensity from the color information. However, it has some limitations: if the
saturation is low, it seems to represent gray color, even if the color is not gray; if the saturation is under
a threshold, then the hue is unstable; if the intensity is significantly low or significantly high, the hue
information is meaningless [24–26].

2.2.3. CIE L*a*b* Color Space

The CIE 1976 (L*, a*, b*) color space was introduced by Commission Internationale de I’Eclairage
(CIE) in 1976. The CIE L*a*b* color space is based on the compressed CIE XYZ color space, which can
predict spectral-power distributions that will be perceived as an identical color, coordinates nonlinearly.
The CIE L*a*b* color space is perceptually uniform, whereas the CIE XYZ color space is not. The CIE
L*a*b* color space is considered the most complete color space [22]. It is derived from CIE XYZ
tristimulus values. In addition, the CIE XYZ color space can be derived from the RGB color space.
The CIE XYZ color space was introduced in 1931 by CIE to match the perceived color of any given
spectral energy distribution. The system of imaginary non-physical primaries is known as X, Y, and Z.
Only Y contributes to the luminance, and X and Z have the value of chromaticity. All the colors can be
matched on the basis of the positive amounts of X, Y, and Z, unlike the RGB color space [27].

The CIE L*a*b* color space is transformed from CIE XYZ tristimulus values as follows [28]:

X = k
N−1

∑
i=0

x̄ (λi) l (λi) r (λi)

Y = k
N−1

∑
i=0

ȳ (λi) l (λi) r (λi)

Z = k
N−1

∑
i=0

z̄ (λi) l (λi) r (λi)

(8)

X
Y
Z

 =

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227


R

G
B

 (9)

L∗ = 116
(

Y
Yn

) 1
3
− 16 (10)

a∗ = 500

((
X
Xn

) 1
3
−
(

Y
Yn

) 1
3
)

(11)

b∗ = 200

((
Y
Yn

) 1
3
−
(

Z
Zn

) 1
3
)

(12)

The CIE L*a*b* color space comprises L, a, and b components. The L component represents the
luminosity layer, and the a and b components denote the chromaticity layers. As previously mentioned,
the CIE L*a*b* color space is cognitively uniform because the L component is linearly related to the
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brightness recognized by the human eyes. Among the chromaticity layers, the values of a component
are distributed from the red axis to the green axis. The green and red colors indicate negative and
positive values of a component. The value of the b component is distributed following the blue to
yellow axis. The blue color has negative values of the b component, and the yellow color has positive
values of the b component. Conversely, the a component is related to red color, while the R component
of the RGB color space is related to red color. In addition, the a component is related to green color,
while the G component of the RGB color space is related to green color and not the R component of the
RGB color space, unlike the case of red color [22].

2.3. Similarity Calculation

The peak signal-to-noise ratio (PSNR) represents the similarity between two images. If the PSNR
is low, the two images have high numerical differences. In addition, PSNR is more sensitive than
the structural similarity index measure [29]. Therefore, we computed the PSNR for calculating the
similarity between two images.

The similarity between two images based on PSNR is calculated using (13) as follows [30]:

PSNR = 10 log10

(
MAX2

I
MSE

)

= 20 log10

(
MAXI√

MSE

)
= 20 log10 (MAXI)− 10 log10 (MSE)

(13)

In (13), MAXI represents the maximum fluctuation determined by the type of input image.
The pixel values of the input image can range from zero to 255. Therefore, in this study, the value of
MAXI is 255. In addition, MSE is calculated using (14) as follows:

MSE =
1

mn

m

∑
i=1

n

∑
j=1

[I (i, j)− K (i, j)]2 (14)

Equation (14) demonstrates that PSNR is related to the difference calculated between the two
images I and K.

2.4. Transfer Learning

Overfitting may be an issue in the training process. If overfitting occurs, the target function is
perfectly mapped on each datum of the training dataset. However, it cannot predict the data that
are not contained within the training dataset, as the algorithm attempts to train the characteristics of
data by extending the training to learn the characteristics of the noise in the training data. Therefore,
overfitting makes it difficult to generalize the trained model [31].

Data augmentation is applied to avoid overfitting. There is another common solution called
transfer learning. The concept of transfer learning was introduced as memory-based learning [32].
Transfer learning is critical to overcoming data deficiency. The main reason is that transfer learning
utilizes the information of the feature extraction layers of the pre-trained model. The pre-trained model
is generally well trained using enormous amounts of training data. Conversely, it is competitive to
utilize the weights of the feature extraction layers that have been previously trained. The concept of
transfer learning is depicted in Figure 1 [33].
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Figure 1. Concept of transfer learning.

In this figure, the part of the feature extraction layers is retained, whereas the classification layers
are cropped. Next, new classification layers that correspond to new training data are attached at the
end of the network. Subsequently, the network is re-trained using new training data. This reduces the
training computational time and improves the accuracy of the classification result.

In addition, the data augmentation in the procedure of transfer learning is implemented via
linear transformation, non-linear transformation, auxiliary-variable addition, dynamic system-based
simulation, and generative model-based generation, among others. In the image processing domain,
data augmentation is implemented by adding noise, applying affine transforms such as translation,
zoom, flipping, shear, and mirror, and via color perturbation [34].

3. Proposed Method

As previously mentioned, it is difficult to collect a sufficient amount of training data to apply deep
learning because the target object of the manufacturing domain is not generally an uncommon item.
This results in a trained classifier that is vulnerable. Therefore, in this study, we propose a method of
augmenting the training data to counter data deficiency.

To compensate for the training data deficiency in the manufacturing domain, in this study,
we propose a method of augmenting the data using a small dataset by changing the pixel value with
respect to color spaces and transforming the image via rotation and flipping. The reason why we
selected color perturbation is that the image is closely connected with luminance in the environment,
and luminance has an influence on the color of the object in the image. The reason why we selected
geometric transformation is that our experiments were conducted on a conveyor.

Unlike the traditional method, which randomly adds the values to apply the color perturbation,
the proposed method applies the color perturbation based on the decision of a reasonable range,
which is determined by the inverse PSNR equation. Furthermore, in case of the traditional method,
the input size of the training image for training the deep learning network is just resized by the input
size of the network applied for the transfer learning. Therefore, the ratio of the image is distorted,
and it results in decreasing the image classification accuracy. Therefore, the proposed method crops
and resizes the image by maintaining the ratio of the object size in the original image. To implement
this, the center point of the object in the image is calculated. Furthermore, to analyze the effect
of the number of training images, the combination of the color perturbation with respect to each
color space and the combination of the geometric transformation are conducted. The overview of
the proposed method is depicted in Figure 2. The proposed method is divided into three parts:
image pre-processing (background elimination; ROI extraction while maintaining the ratio of the
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original image size), color perturbation via a random Gaussian distribution based on the inverse PSNR,
and geometric transformations.

Figure 2. Overview of the proposed method.

First, we capture the target objects that should be recognized by the deep learning network by
using a vision sensor. In this study, the object images were comprised of 32 images for each category.
Next, the background is eliminated to improve the classification accuracy by reducing the elements
that have an influence on training the object. The objects for the image classification are laid on a
color board. An object should be extracted from the image, without the color board as the background
image. This step is shown in Figure 3.

Figure 3. Process of background elimination.
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To eliminate the background color, the characteristics of the CIE L*a*b* color space are used. If the
background color is white, shadows hinder the background removal process. Therefore, a background
with a different color is considered. As previously mentioned, the CIE L*a*b* color space is comprised
of the red–green axis and blue–yellow axis, as depicted in Figure 4. Figure 5 depicts each component
of each color space. Red, green, blue, and yellow are more distinct in each component in the CIE L*a*b*
color space than the RGB color space [35,36]. Using this characteristic, we can easily extract the object
from the background color. Because the colors of the object used for image classification are varied,
such as red, green, blue, and black, the background colors of the board are determined as green and
blue. The green and blue colors can be effectively extracted, as they have convenient values in the CIE
L*a*b* color space that help distinguish the colors. The green color is located at the bottom of the a
component, which is related to the red–green axis. In addition, the blue value is located at the bottom
of the b component, which is related to the blue–yellow axis. Therefore, we selected green and blue
colors as the background color. The process for eliminating the background is as follows:

ALPHA =

{
0, Valcomp < THcomp

1, otherwise
(15)

ALPHA denotes the alpha matrix of the PNG image file. This matrix is related to the transparency
of an image. The region that we consider as the background is removed and transparentized using the
alpha matrix. The term Valcomp denotes a pixel value in each component layer. The component layer is
determined as the a component if the background is green color or the b component if the background
is blue color. The term THcomp denotes each threshold value with respect to the a or b component layer
for extracting the green or blue color. In addition, THcomp is determined according to the characteristic
depicted in Figure 4.

After background elimination, the image is cropped as the original image ratio is maintained
as depicted in Figure 6. The image ratio is important because the distortion affects the classification
accuracy during the training of the deep learning network. However, the training images are just
resized according to the input size of the network that is used for transfer learning. In this case, the ratio
of the image size of the training images is not maintained, and it may result in low classification
accuracy. Therefore, we crop and resize the image while maintaining the ratio when extracting the
target object from the image. For this procedure, a division algorithm is applied for extracting the
object from the background by measuring the properties of the image regions [37,38]. The center of
an object in an image is calculated by the region propsalgorithm. Then, the image is cropped and
resized as the square shape. Its size is determined as the input size of the deep learning network used
for training.

Figure 4. Axes of the CIE L*a*b* color space.
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Figure 5. Components of the CIE L*a*b* color space.

Figure 6. Process of the ROI extraction.

Next, the data augmentation is performed after image pre-processing. The main concept of the
proposed method is to generate similar images to build an enormous amount of training data from a
small amount of original image data. Because the number of training images affects the performance
of the image classification that is based on a deep learning network, we must prepare a massive
training dataset for training the deep learning network. Although the training data generated using
the proposed method should be similar to the original data, they should be nonlinear to ensure the
diversity required to train the network effectively. The reason behind considering similarity is that
the similarity of training images in the same category should be guaranteed to a certain degree for
the satisfactory performance of the classifier. Therefore, we proposed a data augmentation method
by generating an image that is similar to the original one on the basis of a similarity calculation.
In addition, we focused on color perturbation because color is affected by lighting and can be changed
to another color. Therefore, to generate new images reasonably based on the color perturbation for
training the network, we attempted to specify the range of transformation. To implement this concept,
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we considered the method of calculating the similarity between the original image and the generated
image. Therefore, we applied the concept of PSNR for data augmentation.

10 log10

(
1

mn

m

∑
i=1

n

∑
j=1

[I (i, j)− K (i, j)]2
)

= 20 log10

(
MAX2

I

)
− PSNR

m

∑
i=1

n

∑
j=1

[I (i, j)− K (i, j)]2 = mn ∗ 102 log10(MAX2
I )−0.1PSNR

(16)

By using (16) derived from (13), the similarity between two images can be calculated. Therefore,
we induce the method for generating similar images by inversely considering the PSNR equation.
First, the range of the PSNR result value is set. Subsequently, by inversely calculating the PSNR
equation, the perturbation range of pixel values is determined. Accordingly, a new image dataset that
will contain the training data is generated. An image that is similar to the original image should be
generated for augmenting the training data. In addition, the pixel values are generally changed because
of the lighting in the environment. Therefore, the proposed method considers color perturbation.
The inverse PSNR equation is used to realize a reasonable transformation.

The inverse PSNR can be used to determine the range of the transformation with respect to the
color perturbation. To generate a new image while considering its similarity with the original image,
the characteristics of the color space are concretely specified. Using the proposed method, the pixel
values are tuned over one color space. For reference, the RGB and CIE L*a*b* color spaces have three
and two chromaticity layers, respectively, while the HSV color space has only one layer, which is
directly related to the chromaticity layer. In the case of HSV color space, it is difficult to distinguish
the colors on the boundary as depicted in Figure 7 [39]. As depicted in the above figure, although the
H value of the pixel is changed slightly, the red color can be shown as pink or otherwise. Furthermore,
H values are similar in the case of yellow and green. Therefore, other color spaces for color perturbation
should be considered. In the case of the CIE L*a*b* color space, the parts in which the pixels denote red
color are distinct in the a-component layer unlike in the L- and b-component layers. The parts in which
the pixels denote yellow color are distinct in the b-component layer. Owing to these characteristics
of the CIE L*a*b* color space, we applied the RGB, CIE L*a*b*, and HSV color space to perform data
augmentation for diverse transformation.

Figure 7. H value distribution about sample values: (a) H value distribution of all samples; (b) H value
histogram of red color; (c) H value histogram of pink; (d) H value histogram of yellow color; (e) H
value histogram of green color; (f) H value histogram of blue color.

Color perturbation was performed on the basis of inverse PSNR and the characteristics of one,
two, and three color spaces. After calculating the inverse PSNR, the matrix of the color perturbation
was generated by adding values via the random Gaussian distribution. By determining the range of the
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perturbation, the interrelated images were generated to be similar to the original images. This affected
the classification accuracy by reducing the generation of images as the outlier. Finally, we combined two
geometric transformations for augmenting the training data. Because the experimental environment
was related to a conveyor, rotation and flipping were applied after the procedure of color perturbation
on the basis of the similarity of the generated images with the original images.

Transfer learning was applied to improve the training efficiency. Among the pre-trained networks,
the VGGNet network was re-trained using new training images that were generated using the proposed
method. We chose VGGNet because, in our previously conducted work, it showed better performance
than those of other pre-trained networks.

4. Experimental Results and Discussion

In this study, we proposed a method to improve the image classification accuracy for small
datasets. We applied transfer learning because a method that updates the weights of fully connected
layers is more effective than one that updates the weights of all the layers of the network [34].

The aim of the experiment was to classify the objects of 10 categories. Identifying images from
these categories is difficult because they are uncommon and not general items, whereas general items
are contained in well-known and existing image datasets. Therefore, the training images should
be collected first, although significantly few images were manually collected as the training data.
The original images were acquired as the training data using the vision sensor. The number of
original images was 32 in each category. In addition, the test data were collected in the same manner
as before. The test data were not contained in the training dataset. All experimental results were
verified with test data, which was not generated arbitrarily and just captured from the vision sensor.
Classification accuracy in the tables indicates the results classifying the object of test data.

To verify the proposed method, first we compared the traditional method with the proposed one.
Especially, to demonstrate the color perturbation with respect to the characteristic of color spaces and
the geometric transformations, we compared and analyzed the experiments of each color space and
each geometric transformation. Table 1 presents the results of image classification by comparing the
traditional methods with the methods that apply color perturbation based on the inverse PSNR with
respect to three color spaces based on the proposed method.

The traditional methods work by adding random values in the color channels.
Traditional Methods #1 and #2 arbitrarily transform the pixel values in terms of the RGB
color space. Traditional Method #1 adds positive values, whereas Traditional Method #2 adds
positive or negative values. As presented in this table, the case of adding only positive values
had better performance compared with the case of adding positive or negative values. RGB PSNR
indicates the generated training data by applying color perturbation based on the inverse PSNR with
respect to the RGB color space. Lab PSNR represents the generated training data by applying color
perturbation based on the inverse PSNR with respect to CIE L*a*b* color space. HSV PSNR denotes
the generated training data by applying color perturbation based on the inverse PSNR with respect to
HSV color space.

In addition, the methods that apply color perturbation based on the inverse PSNR had better
classification accuracy than that of the traditional methods. To conduct the experiments in the same
condition, we arbitrarily extracted an equal number of training images with respect to the methods
listed in Table 1. The classification results are presented in Table 2.
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Table 1. Classification accuracies of traditional methods and methods that use the inverse PSNR.

Method Number of Training Images Classification Accuracy

Traditional Method #1 2880 47.0%
Traditional Method #2 2880 34.0%

RGB PSNR 2880 50.0%
Lab PSNR 3200 63.0%
HSV PSNR 3200 53.0%

Table 2. Classification accuracy of traditional methods and the methods that use the inverse PSNR,
with an equal number of training images.

Method Number of Training Images Classification Accuracy

Traditional Method #1 2800 44.0%
Traditional Method #2 2800 43.0%

RGB PSNR 2800 62.0%
Lab PSNR 2800 62.0%
HSV PSNR 2800 63.0%

In addition, Table 2 shows that the methods that applied color perturbation based on
inverse PSNR could improve the classification accuracy better compared with the traditional
methods. The combination of extracted images was reflected in the classification results. Next,
another experiment was performed to compare the cases of joining the training data generated via the
inverse PSNR together with respect to each color space. The results are presented in Table 3.

From Table 3, it was evident that increasing the number of training images did not always
guarantee an improvement to the classifier performance. This was because the classification result
obtained upon joining the training data via inverse PSNR in terms of RGB, Lab, and HSV color
spaces was 54.0%, while the classification results obtained upon joining two training datasets among
the dataset generated via the inverse PSNR in terms of RGB, Lab, and HSV color space had higher
performance than 54.0%.

In a previously conducted research, we generated the training dataset by applying Lab PSNR after
applying RGB PSNR [40]. This was because the number of training images was critical for improving
the classification accuracy. In addition, in this study, the classification result of combining RGB PSNR +
Lab PSNR showed better performance when two training datasets were combined, as presented in
Table 3. Therefore, we performed additional experiments regarding overlapping the inverse PSNR
method on two color spaces: the first one (RGB-Lab PSNR) was applying Lab PSNR after applying RGB
PSNR; the other one (Lab-RGB PSNR) was applying RGB PSNR after applying Lab PSNR. The reason
behind considering the processing order was to ascertain whether the processing order was influential
or not. The experimental results are presented in Table 4.

Table 3. Comparison of the classification accuracy by joining the PSNR results.

Method Number of Training Images Classification Accuracy

RGB PSNR + Lab PSNR 6080 67.0%
Lab PSNR + HSV PSNR 6400 66.0%
RGB PSNR + HSV PSNR 6080 64.0%

RGB PSNR + Lab PSNR + HSV PSNR 9280 54.0%

Table 4. Comparison of the classification accuracy by overlapping the inverse PSNR method about two
color spaces.

Method Number of Training Images Classification Accuracy

RGB-Lab PSNR 28,800 55.0%
Lab-RGB PSNR 28,800 57.0%
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Comparing Tables 1 and 4, the result obtained upon overlapping the inverse PSNR method on
two color spaces was better than that obtained by adding up the three training datasets generated
using the inverse PSNR method in terms of each color space. Therefore, we performed the experiment
considering the following three categories: the case of the inverse PSNR method on only one color
space, the case of adding up the training datasets, and the case of overlapping the inverse PSNR method
on two color spaces. As previously mentioned, two geometric transformations, namely flipping and
rotation, were applied to each training dataset performed using the inverse PSNR method, as the target
experiment was related to the conveyor. First, we applied the flipping method after applying the color
perturbation based on the inverse PSNR method. The results are presented in Table 5.

Table 5. Classification accuracy obtained upon applying the inverse PSNR method and Geometric
Transformation #1: flipping.

Number of
Experiment Color Perturbation Geometric

Transformation
Number of

Training Data
Classification

Accuracy

1 RGB PSNR Flipping 11,520 77.0%
2 Lab PSNR Flipping 12,800 74.0%
3 HSV PSNR Flipping 12,800 65.0%
4 RGB PSNR + Lab PSNR Flipping 24,320 82.0%
5 RGB PSNR + Lab PSNR + HSV PSNR Flipping 37,120 65.0%
6 RGB-Lab PSNR Flipping 112,500 70.0%
7 Lab-RGB PSNR Flipping 112,500 79.0%

The experimental results showed that Experiment #4 yielded better performance than the other
experiments. The training data were composed by adding the two training datasets generated
using the inverse PSNR method with respect to the RGB color space and CIE L*a*b* color space,
respectively, and then performing the flipping method (horizontal, vertical, and horizontal–vertical).
Although Experiments #5, #6, #7 had more training data than that of Experiment #4, they showed
lower performance regarding test data. This meant that the number of training datasets was not the
only reason for the improvements in the classification results. With a sufficient amount of training data,
the data should be effectively augmented to train the network. Next, we applied the rotation method
as another geometric transformation to the training dataset. The results are presented in Table 6.

Table 6. Classification accuracy obtained upon applying the inverse PSNR method and Geometric
Transformation #2: rotation.

Number of
Experiment Color Perturbation Geometric

Transformation
Number of

Training Data
Classification

Accuracy

1 RGB PSNR Rotation 103,680 84.0%
2 Lab PSNR Rotation 115,200 91.0%
3 HSV PSNR Rotation 115,200 89.0%
4 RGB PSNR + Lab PSNR Rotation 218,880 92.0%
5 RGB PSNR + Lab PSNR + HSV PSNR Rotation 334,080 91.0%
6 RGB-Lab PSNR Rotation 1,036,800 93.0%
7 Lab-RGB PSNR Rotation 1,036,800 91.0%

From Table 6, it is evident that applying the rotation method could significantly improve the
classification accuracy. Because the objects were randomly laid down with respect to the rotation angle
of the object in the conveyor environment, the rotation method was more influential than the flipping
method. In this case, Experiment #6, which was related to overlapping the inverse PSNR method
about two color spaces, had higher performance. In addition, we applied the flipping and rotation
methods together, and the results are presented in Table 7.

In the case of applying the flipping and rotation methods together, the performances of the trained
networks slightly increased. In this case, the trained network of Experiment #4 by the training dataset
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adding up the two training data generated by the inverse PSNR method with respect to the RGB
color space and CIE L*a*b* color space and performing the flipping method (horizontal, vertical,
horizontal-vertical) had higher performance than those of others, as in Tables 3 and 5.

Finally, we performed additional experiments by using an equal amount of training data.
The smallest number of the generated training images was 1152 in the case of applying the color
perturbation based on the inverse PSNR method with respect to the RGB color space and flipping
transformation. Therefore, one-thousand training images were arbitrarily extracted in each category
and used for training the network in the same manner as before. The experimental results are presented
in Table 8.

Because the amount of training data was reduced, the results of the classification accuracy
tended to be slightly different than before. The experiment with the best performance with respect to
average classification accuracy, as shown in Table 8, was the one in which the inverse PSNR method
was applied in terms of overlapping CIE L*a*b* and RGB color space and rotation. The average
classification accuracy was 92.0%, and the variance of the classification accuracy calculated using (17)
was four. The experiment in which the inverse PSNR method was applied in terms of RGB and CIE
L*a*b* color spaces and rotation achieved the second best performance. The average classification
accuracy was 91.7%, and the variance of the classification accuracy calculated using (17) was 2.3.

VAR = STD2 =
1

n− 1

N

∑
i=1

(xi − x)2 (17)

For the experimental results, we generally considered the best case wherein rotation and flipping
were applied after the color perturbation with RGB and CIE L*a*b* color spaces by using the inverse
PSNR. In addition, the results obtained using the proposed method applied to Table 7, which showed
higher accuracy, tended to be similar to or lower than those of the proposed method applied to Table 6.
In the case of applying the inverse PSNR method in terms of the RGB and CIE L*a*b* color spaces and
two geometric transformations, the variance of the classification accuracy was 14.3. This meant that
the classification accuracy was heavily influenced by the randomly extracted training data. In addition,
the figure below shows that, as mentioned earlier, a sufficient amount of training dataset increased the
classification accuracy.

In Figure 8, we compare the cases of using the traditional methods and the case of applying
geometric transformation based on RGB PSNR + Lab PSNR training data, which was mostly the best
case among the training data generated by the proposed method. The classification accuracy for Object
#3 gradually increased in sequence. From Figure 8a,b, it was evident that the classification results
were mostly misclassified to be of some output class. In the case of Figure 8c, Object #3 was mostly
classified as Object #4. Their shapes were similar to a rectangle. By applying geometric transformations,
the amount of the training data and the classification accuracy increased. Finally, Object #3 could be
classified 100% using the re-trained classifier. In addition, Object #6 was mostly classified as Object
#5, as depicted in Figure 8c. As depicted in Figure 9, Objects #4, #5, and #6 were significantly similar,
especially when they were laid down in a standing position. However, using the proposed method,
the classification accuracy for Object #6 could be improved. Because Object #8 was significantly similar
to Object #7, as depicted in Figure 9, Object #8 was classified as Object #7, as depicted in Figure 8c.
However, Object #8 could be classified 100.0% using the proposed method. Similarly, Object #9 was
misclassified as Object #10, which was similar to Object #9. However, the proposed method could
classify Object #9 with 100.0% accuracy.
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Figure 8. Comparison of confusion matrices: (a) Traditional Method #1; (b) Traditional Method #2;
(c) RGB PSNR + Lab PSNR with no geometric transformation; (d) RGB PSNR + Lab PSNR with flipping;
(e) RGB PSNR + Lab PSNR with rotation; and (f) RGB PSNR + Lab PSNR with rotation and flipping.

Figure 9. Target objects for image classification.
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Table 7. Classification accuracy obtained upon applying the inverse PSNR method and two
geometric transformations.

Number of
Experiment Color Perturbation Geometric

Transformation
Number of

Training Data
Classification

Accuracy

1 RGB PSNR Rotation, Flipping 414,720 92.0%
2 Lab PSNR Rotation, Flipping 460,800 92.0%
3 HSV PSNR Rotation, Flipping 460,800 92.0%
4 RGB PSNR + Lab PSNR Rotation, Flipping 875,520 95.0%
5 RGB-Lab PSNR Rotation, Flipping 4,147,200 93.0%
6 Lab-RGB PSNR Rotation, Flipping 4,147,200 94.0%

Table 8. Classification accuracy obtained upon applying the inverse PSNR method and two geometric
transformations with an equal number of training images.

Color Perturbation Geometric
Transformation

Number of
Training Data Classification Accuracy (avg.)

RGB PSNR Flipping 10,000 76.0%, 76.0%, 75.0% (75.7%)
Lab PSNR Flipping 10,000 82.0%, 79.0%, 67.0% (76.0%)
HSV PSNR Flipping 10,000 70.0%, 66.0%, 64.0% (66.7%)

RGB PSNR + Lab PSNR Flipping 10,000 76.0%, 71.0%, 72.0% (73.0%)
RGB PSNR + Lab PSNR + HSV PSNR Flipping 10,000 80.0%, 67.0%, 78.0% (75.0%)

RGB-Lab PSNR Flipping 10,000 63.0%, 75.0%, 70.0% (69.3%)
Lab-RGB PSNR Flipping 10,000 71.0%, 63.0%, 69.0% (67.7%)

RGB PSNR Rotation 10,000 89.0%, 89.0%, 92.0% (90.0%)
Lab PSNR Rotation 10,000 87.0%, 89.0%, 89.0% (88.3%)
HSV PSNR Rotation 10,000 92.0%, 89.0%, 87.0% (89.3%)

RGB PSNR + Lab PSNR Rotation 10,000 92.0%, 93.0%, 90.0% (91.7%)
RGB PSNR + Lab PSNR + HSV PSNR Rotation 10,000 91.0%, 81.0%, 89.0% (87.0%)

RGB-Lab PSNR Rotation 10,000 93.0%, 88.0%, 89.0% (90.0%)
Lab-RGB PSNR Rotation 10,000 92.0%, 90.0%, 94.0% (92.0%)

RGB PSNR Rotation, Flipping 10,000 88.0%, 90.0%, 87.0% (88.3%)
Lab PSNR Rotation, Flipping 10,000 91.0%, 89.0%, 89.0% (89.7%)
HSV PSNR Rotation, Flipping 10,000 86.0%, 91.0%, 91.0% (89.3%)

RGB PSNR + Lab PSNR Rotation, Flipping 10,000 93.0%, 87.0%, 86.0% (88.7%)
RGB PSNR + Lab PSNR + HSV PSNR Rotation, Flipping 10,000 91.0%, 88.0%, 88.0% (89.0%)

RGB-Lab PSNR Rotation, Flipping 10,000 91.0%, 90.0%, 87.0% (89.3%)
Lab-RGB PSNR Rotation, Flipping 10,000 84.0%, 89.0%, 90.0% (87.7%)

5. Conclusions

In this study, we proposed a method to overcome data deficiency and improve classification
accuracy. Accordingly, we eliminated the background color and extracted the object while maintaining
the original image ratio. In addition, new training images were generated via color perturbation based
on the inverse PSNR with respect to color spaces and geometric transformations.

Experiments were performed to demonstrate the reasonable combination by considering color
spaces and geometric transformations and their combinations, respectively. First, we composed
11 training datasets to verify the validity of range determination for color perturbation:
Traditional Method #1, Traditional Method #2, RGB PSNR, Lab PSNR, HSV PSNR, RGB PSNR +
Lab PSNR, Lab PSNR + HSV PSNR, RGB PSNR + HSV PSNR, RGB PSNR + Lab PSNR + HSV PSNR,
RGB-Lab PSNR, Lab-RGB PSNR. Traditional Methods #1 and #2 were related to adding the pixel
values of the RGB color space arbitrarily. The other datasets were related to the proposed method.
The experimental results showed that the classification accuracy could be improved by the proposed
method as compared with the traditional methods, and the RGB PSNR + Lab PSNR training dataset
showed better performance than the others.

Second, we composed 21 training datasets to verify the effectiveness of geometric transformations:
flipping with RGB PSNR, flipping with Lab PSNR, flipping with HSV PSNR, flipping with RGB PSNR
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+ Lab PSNR, flipping with RGB PSNR + Lab PSNR + HSV PSNR, flipping with RGB-Lab PSNR,
flipping with Lab-RGB PSNR, rotation with RGB PSNR, rotation with Lab PSNR, rotation with HSV
PSNR, rotation with RGB PSNR + Lab PSNR, rotation with RGB PSNR + Lab PSNR + HSV PSNR,
rotation with RGB-Lab PSNR, rotation with Lab-RGB PSNR, flipping and rotation with RGB PSNR,
flipping and rotation with Lab PSNR, flipping and rotation with HSV PSNR, flipping and rotation with
RGB PSNR + Lab PSNR, flipping and rotation with RGB PSNR + Lab PSNR + HSV PSNR, flipping and
rotation with RGB-Lab PSNR, flipping and rotation with Lab-RGB PSNR. The experimental results
showed that the RGB PSNR + Lab PSNR with rotation and flipping method showed better performance
in the training data generated by the proposed method.

The classification accuracy of the network trained using the generated dataset by color
perturbation based on the similarity calculation, which was related to our contribution, showed better
performance than the arbitrary color perturbation like the traditional methods. In general,
the numerous image data showed a better performance of the classification accuracy. However,
it was not absolute. Therefore, we plan to study effective data augmentation methods by evaluating
the appropriate numerical value for improving the performance of the classification accuracy.

The experimental results showed that the proposed method could improve the classification
accuracy by classifying similar objects, which were easy to misclassify. This indicated that color
perturbation based on similarity was effective at improving the classification accuracy. In future
work, we plan to develop other reasonable data augmentation methods to overcome data deficiency,
including in the manufacturing domain.
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