
applied  
sciences

Article

Effects of Class Purity of Training Patch on
Classification Performance of Crop Classification with
Convolutional Neural Network †

Soyeon Park and No-Wook Park *
Department of Geoinformatic Engineering, Inha University, Incheon 22212, Korea; sypark531@inha.edu
* Correspondence: nwpark@inha.ac.kr; Tel.: +82-32-860-7607
† This paper is an extended version of paper published in the 40th Asian Conference on Remote Sensing

(ACRS 2019), held in Daejeon, Korea, 14–18 October 2019.

Received: 25 April 2020; Accepted: 27 May 2020; Published: 29 May 2020
����������
�������

Abstract: As the performance of supervised classification using convolutional neural networks
(CNNs) are affected significantly by training patches, it is necessary to analyze the effects of the
information content of training patches in patch-based classification. The objective of this study is
to quantitatively investigate the effects of class purity of a training patch on performance of crop
classification. Here, class purity that refers to a degree of compositional homogeneity of classes within
a training patch is considered as a primary factor for the quantification of information conveyed
by training patches. New quantitative indices for class homogeneity and variations of local class
homogeneity over the study area are presented to characterize the spatial homogeneity of the study
area. Crop classification using 2D-CNN was conducted in two regions (Anbandegi in Korea and
Illinois in United States) with distinctive spatial distributions of crops and class homogeneity over
the area to highlight the effect of class purity of a training patch. In the Anbandegi region with
high class homogeneity, superior classification accuracy was obtained when using large size training
patches with high class purity (7.1%p improvement in overall accuracy over classification with the
smallest patch size and the lowest class purity). Training patches with high class purity could yield
a better identification of homogenous crop parcels. In contrast, using small size training patches
with low class purity yielded the highest classification accuracy in the Illinois region with low class
homogeneity (19.8%p improvement in overall accuracy over classification with the largest patch size
and the highest class purity). Training patches with low class purity could provide useful information
for the identification of diverse crop parcels. The results indicate that training samples in patch-based
classification should be selected based on the class purity that reflects the local class homogeneity of
the study area.

Keywords: class purity; training samples; patch-based classification; convolutional neural network

1. Introduction

Remote sensing images have been widely used in environmental monitoring and thematic
mapping as they can provide periodic thematic information at various spatial and temporal scales [1–4].
Image classification is regarded as one of the most important tasks in thematic mapping using remote
sensing images [5,6]. Thematic maps derived from the classification of remote sensing images, such as
land-cover and crop/forest type maps, are typically used as inputs for physical and environmental
models, thereby affecting the model outputs. Therefore, it is important to generate reliable and accurate
thematic maps from remote sensing images [5].

Supervised classification is typically performed to derive various types of thematic maps from
remote sensing images [7,8]. The quality of supervised classification results is sensitive to many factors,

Appl. Sci. 2020, 10, 3773; doi:10.3390/app10113773 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9778-3624
http://dx.doi.org/10.3390/app10113773
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/11/3773?type=check_update&version=2


Appl. Sci. 2020, 10, 3773 2 of 20

such as available remote sensing images, classification methodologies, and training samples [9].
In particular, spatial distributions and the accuracy of supervised classification results depend
significantly on the quantity and quality of training samples [9–12]. Therefore, it is critical to collect
training samples that provide useful information to correctly determine decision boundaries between
classes of interest.

In general, one of the most significant issues frequently encountered in image classification is
the mixed pixel effect. A mixed pixel refers to a pixel containing more than one land-cover class [13].
This effect is prominent in the classification of mid/low spatial resolution remote sensing images.
The conventional pixel-based supervised classification approach assumes that each training pixel
represents spectral signatures of a single class (pure training pixel). When remote sensing images
contain many mixed pixels, however, mixed pixels may be selected as training samples, which fail to
provide the representative spectral signature of a certain class. Therefore, the mixed-pixel effect should
be treated accordingly during classification [14].

To solve the mixed pixel effect problem, spectral unmixing or spectral mixture analysis has
been widely applied to extract pure pixels from an image of interest [15–18]. By applying spectral
unmixing, pure pixels (also known as endmembers) are first extracted and then used as training
samples for supervised classification [13]. In addition to spectral unmixing, other statistical approaches
have been applied to collect representative training samples. For example, Kavzoglu [19] selected
representative training samples using spectral histogram and boundary analyses with dimension
reduction. Conventional descriptive statistics including mean and standard deviation have also been
used to extract pure training samples [20].

Despite the promising results, most of the aforementioned studies have focused mainly on the
extraction of spectrally pure pixels. As many factors apart from spectral purity need to be considered,
it is challenging to collect and select representative training samples. Spatial resolutions of images
and the complexity of landscapes to be classified significantly affect training sample selection and
consequently, classification performance. Chen and Stow [21] reported that more training samples
are required to classify fine spatial resolution images than coarse ones, and that block-based training
samples are recommended to classify heterogeneous landscapes. Chen et al. [22] emphasized the
impacts of landscape heterogeneity on classification performance, in addition to the impurity of
training samples (compositional heterogeneity), when coarse spatial resolution images are used for
crop classification. The results from previous studies indicate the necessity of considering the purity
of training samples, landscape heterogeneity, and spatial resolutions for the appropriate selection of
training samples.

Regarding classification methodologies, interest in deep learning for remote sensing image
processing has increased owing to its superior classification accuracy to those of conventional machine
learning models [23,24]. Among the various deep learning models, convolutional neural networks
(CNNs) have been widely applied to the supervised classification of remote sensing images [25–29].
CNN models can be regarded as a patch-based classifier, in that an image of interest is divided into
several spatial units (patch) including multiple pixels [30,31]. In particular, this patch-based classifier,
which can account for spatial correlation information between neighboring pixels within a patch,
is effective for crop classification because of its ability in considering specific spatial features, such as
cultivation patterns of crops and shapes of crop parcels [27,29,32].

Patch-based supervised classification requires training patches that comprise a center pixel
representing a specific land-cover class and its neighboring pixels. Hence, the effect of multiple pixels in
training patches should be quantified accordingly because weights assigned to neighboring pixels in a
patch-based classification vary according to the impurity or heterogeneity of class compositions within
a training patch. Furthermore, the representativeness of training patches for a specific land-cover
class has significant influence on classification performance, similar to conventional pixel-based
classification [33]. Significant effort has been expended for the selection of representative training
samples in pixel-based classification. For example, Zhu et al. [34] developed a strategy for selecting
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representative training samples, including the optimum amount of training samples and the best
balance of training samples. Variations in the degree of spatial clustering of training samples and the
use of explicit spatial information were also tested for classification using machine learning models [35].
To our best knowledge, however, the effect of compositional homogeneity within a training patch on
the accuracy of patch-based classifiers such as CNNs has not been fully quantified.

The objective of this study is to quantitatively analyze the effect of class purity of a training
patch on the performance of CNN-based classification. The class purity of a training patch refers
to the degree of compositional homogeneity of classes within a training patch. Various training
patches with different class purity values and sizes are first generated and then used as inputs for
supervised classification using a two-dimensional CNN (2D-CNN). Quantitative indices, in particular,
are newly defined to quantify both local and global variations of class homogeneity in the study
area and then used to analyze the relationship between the class homogeneity of the study area
and classification performance. Crop classification in two study areas with significant differences
in landscape heterogeneity and spatial resolutions of input images is demonstrated to quantify and
compare the effects of class purity on classification performance in patch-based classification.

2. Materials and Methods

2.1. Study Areas and Datasets

Crop classification experiments were conducted in two regions where class type information is
available from ground truth data for the computation of class purity and class homogeneity of the
study area. Particularly, the two regions with significantly different class compositions and landscape
heterogeneity were selected to highlight the importance of class purity within a training patch in
patch-based classification. Furthermore, remote sensing images with different spatial resolutions were
used to classify crop parcels of different sizes.

2.1.1. Case 1: Anbandegi in Korea

The first case study area is Anbandegi in Korea, one of the major highland Kimchi cabbage
cultivation areas in Korea [7]. The crops cultivated in the study area include highland Kimchi cabbage,
cabbage, and potato, and several fallow parcels exist. As depicted in Figure 1a, each crop is cultivated
within a separate parcel.
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The total area of all crop parcels is approximately 28.7 ha, and crops are cultivated in small
size parcels. Considering the small-scale of the study area, unmanned aerial vehicle (UAV) imagery
was used as input for crop classification. One preprocessed UAV image with a spatial resolution
of 25 cm, acquired on 25 August 2017, was provided by the National Institute of Agricultural
Sciences (NAAS). The single UAV imagery obtained when highland Kimchi cabbage, the major crop
in the study area, could be well discriminated from other crops was used for classification based
on our previous study [7]. The UAV imagery was taken using a fixed-wing eBee unmanned aerial
system (senseFly, Cheseaux-sur-Lausanne, Switzerland) equipped with a Canon IXUS/ELPH camera
(Canon U.S.A., Inc., Melville, NY, USA) that included Blue (450 nm), Green (520 nm), and Red (660 nm)
spectral bands (Table 1). A ground truth map prepared by the NAAS was employed to select training
and reference samples and compute the class purity. Non-crop areas, including forests, roads, and
facilities, were masked out using a land-cover map from the Ministry of Environment [36].

Table 1. Summary of UAV imagery used for crop classification in Anbandegi.

Category Specification

UAV model eBee Classic
Camera Canon IXUS/ELPH

Image size 2629 by 3275
Area of crop parcels 28.7 ha

Spectral bands Blue, Green, Red
Spatial resolution 0.25 m
Acquisition date 25 August 2017

2.1.2. Case 2: Illinois in United States

The second case study was conducted in the subarea of Illinois that is part of the Corn Belt in the
Midwestern United States. Corn, soybean, and winter wheat are grown in the study area (Figure 2).
The total area of all crop parcels in the study area is approximately 19,476 ha, and the size of the crop
parcels is much larger than that of Anbandegi.
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A times-series Landsat-8 Operational Land Imager (OLI) image set with a spatial resolution of
30 m was used to classify the crops in a relatively large area (Table 2). Five cloud-free images from
March to October 2017 were collected from the United States Geological Survey GloVis website [37] by
considering the growth cycles of crops in the study area. Based on the results in a previous study where
crop classification was conducted in the same area [29], three spectral bands, including Red (655 nm),
near-infrared (NIR; 865 nm), and short-wave infrared (SWIR; 1600 nm) bands, were selected as inputs
to provide useful spectral information for the discrimination of major crops in the study area (Table 2).
The cropland data layers (CDLs) provided by the United States Department of Agriculture National
Agricultural Statistics Service [38] were used as the ground truth. Similar to the case of Anbandegi,
non-crop areas including urban areas and forests were masked out using the CDLs. Furthermore,
minor grain classes including hay and alfalfa were excluded owing to their small occupancy in the
study area.

Table 2. Summary of Landsat-8 OLI images used for crop classification in Illinois.

Category Specification

Satellite/Sensor Landsat-8 OLI
Image size 633 by 673

Area of crop parcels 198,476 ha
Spectral bands Red, NIR, SWIR

Spatial resolution 30 m

Acquisition date

7 March 2017
8 April 2017
27 May 2017

15 September 2017
17 October 2017

2.2. Sampling of Training Patch

2.2.1. Sampling Design Using Class Purity

To extract the representative training patches, the class purity and the patch size of a training patch
were considered in this study. The former was considered to quantify the class representativeness of a
training patch because a training patch contains pixels whose classes may differ from the representative
class of a center pixel. The latter was considered owing to its significant effect on classification
performance. The extraction of a training patch depends on the degree of difference between the
representative class of a center pixel and the classes to which the surrounding pixels belong. The degree
of class difference means the compositional homogeneity of classes within a training patch. In this study,
this compositional homogeneity within a training patch is referred to as class purity. More specifically,
the class purity is defined as the proportion of pixels present in a patch that belong to the same class as
the center pixel.

Figure 3 illustrates the selection of a training patch for a specific class and the calculation of class
purity values. For example, if the class of a center pixel in a 5 by 5 patch is A, and the classes of
15 pixels within the patch correspond to class A, this patch is regarded as a training patch for class A
with a class purity value of 60% (Figure 3a). This selection procedure assumes that the class of the
center pixel is the representative class of the patch, which is typical in patch-based classification [30,31].
In contrast, the two patches in Figure 3b are not considered as a training patch for class A because
the class of the center pixel is not class A. Instead, the two patches in Figure 3b can be training patch
candidates for classes B and D, separately. However, because these patch candidates have low class
purity values (24% and 28%, respectively), they cannot be used as training patches. Furthermore, if the
class of the center pixel is not one of the crop types in the study area, the patch candidate is not selected
as a training patch for crop classification. In the case where non-crop pixels are contained in a training
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patch, they are still considered to calculate the class purity value for a specific crop type but are masked
out in the final classification result.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 19 
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Figure 4 presents a procedure to extract training patch candidates using class purity values for a
comparative study. After determining both the patch size and a reference or threshold value of class
purity, a patch configuration with a predefined size is overlaid on all crop pixels in an image of interest
such that each pixel in the image is the center of the patch. Any patch that has the reference class
purity value is then selected. The representative class of each patch is determined by counting the
number of the most frequent class in the patch from the ground truth data in the study area. As a
result, the proportion of the representative class in the patch is the same number as the predefined
class purity value. The training patch candidates can then be selected by applying the following
two criteria: (1) the class of the center pixel in a patch should be the same as the representative class;
(2) the representative class of the center pixel should be one of the crop types. The final training patches
are extracted by applying specific selection criteria.
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2.2.2. Defining Class Homogeneity of Study Area

The class purity of a training patch measures a degree of homogeneity of class compositions in
a training patch. The compositional homogeneity within a training patch can vary across the study
area according to the landscape heterogeneity [22,39]. Therefore, the spatial heterogeneity of the study
area should be considered to better understand the effect of the class purity of a training patch on the
performance of patch-based classification.

In this study, class homogeneity was first quantified in a patch unit and then used to quantify
the spatial heterogeneity over the study area. First, local class homogeneity (LCH) was defined using
class information within each patch in the study area. The class information is readily available
from the ground truth data of the study area. More specifically, LCH was defined by modifying
the homogeneity index used to evaluate the compositional homogeneity in a previous study [22].
The homogeneity index in Chen et al. [22] was calculated in a specific region, whereas the LCH in this
study was calculated in a patch with a fixed size as follows:

LCH =
ln(m) +

∑n
i=1 Pi ln(Pi)

ln(m)
(1)

where m and n denote the total number of crop types in the study area and that present in a patch,
respectively; Pi is the proportion of the ith class within a patch.

The LCH ranges between 0 and 1. A higher LCH value indicates that a patch has a more
homogeneous class composition and vice versa. LCH is 1 when only one crop type exists in a patch.

As the LCH can vary across the study area, another index, called global class homogeneity (GCH),
is newly defined to quantify class homogeneity over an entire study area as a global statistic. The GCH
is defined as the average of LCH values computed within all the patches in the study area:

GCH =

∑K
k=1 LCHk

K
(2)

where K denotes the total number of patches in the study area and LCHk is an LCH value of the
kth patch. As a patch configuration with a predefined size is applied to all pixels in the study area,
K corresponds to the number of all crop pixels in the study area. Similar to LCH, GCH has a value
between 0 and 1. A GCH value closer to 1 indicates that the overall class composition in the study area
is homogeneous.

As mentioned above, the LCH may vary significantly across the study area; however, GCH is a
location-invariant global statistic. Consequently, it may be difficult to compare GCH values between
any study areas with significant differences in class homogeneity. To quantify relative variations of the
LCH with respect to the GCH for comparison with GCH values, a coefficient of variation (CV) of the
LCH was also computed using the LCH and GCH:

CV =

∑K
k=1(LCHk −GCH)2/(K − 1)

GCH
(3)

where the numerator is the standard deviation of all LCH values in the study area.
The higher the CV, the greater are the variations of the LCH over the study area, indicating that

the variations in the LCH are more significant, and that there are many patches including boundaries
between different crop parcels. In this study, both GCH and CV values were used to quantify the
spatial characteristics of the study area.

2.3. 2D-CNN Model

A 2D-CNN was employed as a patch-based classification model in this study because it uses
spatial features by accounting for spatial correlation with neighboring pixels in a patch, which is
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useful for discriminating various crops with peculiar cultivation patterns [27,32,40]. Furthermore,
it can be applied to both a single image and multi-temporal images for patch-based classification [29].
When applying 2D-CNN to multi-temporal images, 2D-CNN loses the temporal information because
both spectral and temporal dimensions are treated as the same dimension [40]. However, Kim et al. [29]
reported that the classification accuracy of 2D-CNN was similar to or slightly better than that of
3D-CNN in crop classification using multi-temporal UAV images and Landsat images. Based on this
result, 2D-CNN was applied as a patch-based classifier to both a single UAV image in Anbandegi and
time-series Landsat images in Illinois.

The architecture and hyper-parameters of the 2D-CNN model should be optimally designed and
determined to achieve satisfactory classification accuracy. A 2D-CNN model with a fixed architecture
and hyper-parameters based on our previous study in the study areas [27,29] and preliminary tests,
as listed in Tables 3 and 4. The model with a shallow layer architecture (Table 3) can extract spatial
features that are useful for the discrimination of crop types and avoid overfitting problems. The optimal
hyper-parameters listed in Table 4 were also determined based on preliminary tests and considerations
of parcel scales of the two test regions.

Table 3. Two-dimensional convolutional neural network (2D-CNN) architecture applied in this study.
P and F refer to the patch size and number of filters, respectively.

Layer Type/Method Output Dimension Number of Parameters

Conv2D_1 (P, P, F) 896
Conv2D_2 (P, P, F) 9248

Max-pooling2D (P/2, P/2, F) 0
Conv2D_3 (P/2, P/2, F × 2) 18,496
Dropout 256 neurons 0

Flattening 256 neurons 0
ReLu 64 neurons 16,448

Softmax 4 neurons 260

Table 4. List of hyper-parameters of 2D-CNN models applied to the two study areas.

Classifier Parameters
Value

Anbandegi Illinois

2D-CNN

Dropout rate 0.2
Patch size 5, 9, 13, 17, 21 5, 9, 15
Kernel size 3

Number of filters 32

2.4. Experimental Design

An experimental scheme for crop classification in the two study regions was designed to derive
suggestions or guidance for the selection of training patches in classification using 2D-CNN. Crop types
from ground data in Figures 1 and 2 were used as an important source of information for (1) the
computation of class purity and other quantitative indices quantifying the homogeneity of class
compositions either in a patch or over the study area; and (2) the extraction of training patches and
reference pixels for quantitative accuracy assessment.

2.4.1. Parameter Setting for Effect Analysis

As one of the major target factors of this study, three different class purity values, including 60%
(hereinafter referred to as CP60), 80% (CP80), 100% (CP100), were considered in crop classification
experiments. Significant variations in class compositions from CP50 to CP70 and CP70 to CP90 were
not observed in the preliminary tests. Therefore, the representative class purity values between those
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ranges were set to 60% and 80%, respectively. In other words, CP60 indicates the case where the class
purity value in a training patch is between 50% and 70%.

According to the change in a patch size, the number of pixels to be used for the computation of a
class purity value is changed accordingly. Moreover, the classification performance of the CNN-based
classification is affected significantly by the patch size. To account for the effects of patch size on the
classification performance, as well as those of class purity values in a training patch, several patch sizes
were used for classification by considering different parcel scales and spatial resolutions of input images
in the two study areas. For the Anbandegi region where UAV imagery was used for classification,
five different patch sizes were considered in the classification. The minimum and maximum patch
sizes were set to 5 and 21, respectively (see Table 4). By considering the coarse spatial resolution of
Landsat imagery used in the classification of the Illinois region, the maximum patch size was limited
to 15, and only three different patch sizes were used for classification.

2.4.2. Preparation of Training and Reference Datasets and Accuracy Evaluation

All the crop parcels in the study area were first divided into two exclusive groups including
training and reference parcels. For an objective comparison of classification results from the two
study regions, the same ratio of training and reference parcels, approximately 1:3, was applied to the
two regions. The procedure for selecting training samples shown in Figure 4 was then applied to
predetermined training parcels. A predetermined proportion of training patch candidates was selected
and used as the final training patches to mimic the case with limited training samples, which is typical
in supervised classification. In Anbandegi, many pixels are contained in each crop parcel owing to
the ultra-high spatial resolution of the UAV imagery (the total number of crop pixels was 4,531,661).
Only 0.1% of the training patch candidates was extracted and used as training patches, based on the
suggestion from the previous classification study in Anbandegi [32].

The area extent of the Illinois region is much larger than that of Anbandegi, but the total number
of crop pixels (213,733) was much smaller than it was in Anbandegi (only 4.72% of the total in
Anbandegi) owing to the relatively coarser spatial resolution of the Landsat imagery. Consequently,
many training patch candidates could not be generated, in contrast to Anbandegi. Using a small
training dataset for 2D-CNN might produce poor classification accuracy, and the quantification of
variations in classification accuracy with respect to different class purity values might be impossible.
By considering the number of pixels in the Illinois region, all the training patch candidates collected
for the predetermined patch size and class purity values were used as training patches. More training
patch candidates were likely to be extracted for CP100 owing to the primary selection of pixels inside
the crop parcels, compared with CP60 and CP80. All the numbers of training samples for different
class purity values were initially set to be the same or similar via random sampling.

Furthermore, the proportions of crop types in the two regions were considered to select the
final training samples to mitigate the bias sampling problem caused by the major class in the study
area [5]. More specifically, the maximum numbers of training patches were limited according to the
proportion of each crop type in the study area [34]. The proportions of highland Kimchi cabbage,
cabbage, potato, and fallow in the Abandegi region were 40%, 30%, 20%, and 10%, respectively.
Because the proportions of corn, soybeans, and winter wheat were different in the Illinois region
(35%, 45%, and 20%, respectively), the total numbers of final training patches differed slightly for all
class purity values.

To quantitatively evaluate the classification performance, several accuracy statistics, including
the overall accuracy, producer’s accuracy, and user’s accuracy, were computed from an error matrix.
The overall accuracy is the proportion of correctly classified pixels in the reference dataset, the producer’s
accuracy measures how well reference pixels of the given land-cover type are classified, and the
user’s accuracy is a measure of how well the classified pixel actually represents the given land-cover
class on the reference data [41]. All the pixels in the reference parcels were used as reference data.
The total numbers of reference data for Anbandegi and Illinois regions were 4,522,331 and 164,048,
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respectively. When using 2D-CNN for classification, the initial weights and a kernel configuration are
randomly determined. To reduce the effect of random sampling fluctuations, classification was repeated
four times, and the final classification accuracy was obtained by averaging the four classification
accuracy statistics.

3. Results

3.1. Comparison of Class Homogeneity of Two Regions

Prior to comparing the classification results, the class homogeneity of the two study areas was first
compared to quantify the different class compositions and landscape heterogeneity that significantly
affect the classification accuracy.

Figure 5 presents the variations in GCH and CV values with respect to different training patch
sizes. For a fair comparison of GCH and CV values in the two study regions, only three patch sizes
applied to the Illinois region were considered for the Anbandegi region. The GCH values in Anbandegi
were higher than 0.9 for all patch sizes (Figure 5a), signifying the homogeneous distribution of crop
classes in Anbandegi. As the patch size increased, the GCH value decreased, but the difference in the
GCH value with respect to the patch size was very small (less than 0.1). Because ultra-high spatial
resolution UAV imagery was used for classification, each crop contained a large number of pixels with
the same crop type. Consequently, most of the patches were likely to be homogeneous in terms of
class composition.
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homogeneity (CV) of two study regions.

In contrast, the Illinois region exhibited GCH values between 0.5 and 0.8, implying a relatively
heterogeneous class distribution, compared with Anbandegi. The relationship between patch size
and GCH value in the Illinois region was similar to that in Anbandegi: the larger the patch size,
the smaller the GCH value. However, the difference in the GCH value with respect to the patch size
was approximately 0.3, which was larger than in Anbandegi. This indicates that the class composition
within a patch in the Illinois region became more complex or heterogeneous as the patch size increased.
The area extent of crop areas in Illinois was much larger than that in Anbandegi, but the number of pixels
comprising crop parcels was small in the coarse resolution Landsat images. Furthermore, mixed pixels
containing boundaries either between crop parcels or between crop and non-crop areas included in the
images. Hence, many pixels having different classes existed around the center pixel within a patch,
thereby resulting in heterogeneous class compositions within the patches in the Illinois region.

Analyzing the CV values (Figure 5b), those for the two regions increased accordingly as the
patch size increased. However, the CV value in Anbandegi was much smaller than it was in Illinois,
regardless of the patch size. Furthermore, the difference in CV for different patch sizes was small (0.05)
in Anbandegi, compared with that in Illinois (0.11). The small CV value in Anbandegi implies small
variations in LCH within the patch across the entire study area. By contrast, the larger CV value in
the Illinois region indicates that variations in LCH within the patches were more prominent across
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the study area. The relatively larger CV value for the larger patch size was due to a decrease in class
homogeneity by the inclusion of more pixels of different classes in a large patch. These significant
differences in class homogeneity of the two regions imply that the class purity of the training patches
will exert different effects on the classification performance.

3.2. Classification Results in the Anbandegi Region

Figure 6 presents the variations in overall accuracy with respect to different patch sizes for each
class purity value. As the class purity value increased, the corresponding classification accuracy
increased, regardless of the patch size. In particular, when the patch size was small (e.g., 5 by 5
and 9 by 9), the difference in overall accuracy between CP60 and CP100 was larger than it was for
large patch sizes (approximately 4.3%p and 3.8%p for patch sizes of 5 by 5 and 9 by 9, respectively).
When both the class purity and patch size are small, the LCH within a patch is likely to be large.
Consequently, the spatial features extracted from the trained model may fail to accurately reflect the
homogeneous spectral patterns of most parcels in the study area, thereby yielding poor classification
accuracy. In contrast, as the patch size increases, the training patches have higher LCH values and
contain more homogeneous pixels, thereby improving classification accuracy.
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purity values in Anbandegi.

The classification results generated using a 9 by 9 patch, which achieved the highest classification
for CP100 and also demonstrated a significant difference in the overall accuracy with respect to different
class purity values, were further analyzed. The classification results generated using other patch sizes
and different class purity values in Anbandegi are presented in Figure S1.

Figure 7 is one of four classification results generated using a 9 by 9 training patch with the highest
overall accuracy. The spatial distributions of classification results are locally different according to the
change in class purity. In the case of CP60, the misclassification inside potato and fallow parcels was
prominent, and the highland Kimchi cabbage near the parcel boundaries was misclassified as cabbage.
In particular, the potato parcels located in the northwestern part were misclassified as highland Kimchi
cabbage, and a furrow pattern appeared inside the potato parcels. This misclassification inside the
parcels might be owing to the use of training patches selected near the parcel boundaries.

By contrast, misclassification in the potato parcels reduced significantly as the class purity
increased. Furthermore, the misclassification of fallow as highland Kimchi cabbage in the southeastern
part was alleviated significantly for CP100. However, training patches were selected only inside the
parcel for CP100. Hence, these patches might not accurately extract spatial features near the parcel
boundaries. Consequently, the sporadic misclassification of highland Kimchi cabbage as fallow or
cabbage was observed near the boundaries of highland Kimchi cabbage parcels. The two cabbage
parcels in the western part could not be correctly identified, regardless of the class purity values.
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This misclassification of cabbage as highland Kimchi cabbage and potato was due to the harvest of
cabbage in August, unlike other cabbage parcels in the study area.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 19 
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in Anbandegi.

Table 5 lists the accuracy statistics of one classification result using the 9 by 9 patch shown in
Figure 7 that yielded the highest classification accuracy. The accuracy statistics of the classification
results using other patch sizes and different class purity values in Abandegi are also listed in Table S1.
The significant difference in the producer’s accuracy for potato and fallow with respect to the class
purity values appeared to result in the difference in the overall accuracy. For CP100, the producer’s
accuracy values of fallow and potato improved significantly. Improvements in accuracy values of
fallow and potato for CP100 over CP60 were approximately 24.1%p and 6.5%p, respectively. However,
because the potato and fallow parcels occupied only 30% of the study area, the overall accuracy did not
increase substantially. The producer’s accuracy for highland Kimchi cabbage, a major crop in the study
area, slightly decreased for CP100, but the user’s accuracy for CP100 improved by approximately 6.2%p,
compared with that for CP60. The increase in accuracy by using the homogeneous training patches
yielded more reliable class distributions, as shown in Figure 7. In the case of cabbage, the second
major crop in the study area, the producer’s accuracy was approximately 72% and did not change
significantly with respect to the class purity values. This lower accuracy was mainly due to the harvest
in some cabbage parcels, as depicted in Figure 7. However, the large class purity value resulted in an
increase of 7.3%p in the user’s accuracy of cabbage owing to the reduction in the misclassification of
other crops as cabbage inside the crop parcels.

Table 5. Accuracy statistics with respect to different class purity values when using a 9 by 9 patch in
Anbandegi (PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy).

CP60 CP80 CP100

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Highland Kimchi
cabbage 94.79 82.70 95.08 87.71 93.12 88.91

Cabbage 72.16 87.52 71.89 92.40 72.66 94.85
Potato 90.12 84.96 95.12 74.02 96.57 77.75
Fallow 49.50 79.62 58.00 79.59 73.55 74.82
OA (%) 83.78 85.49 86.56

The Anbandegi region includes homogeneous and even distributions of crop parcels, as shown
in Figure 1. These spatial distribution characteristics of crop parcels yielded high class homogeneity
in the patch and low local variations of the LCH. Using training patches with high class purity can
significantly improve the classification accuracy in regions with homogeneous crop distributions.
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Furthermore, using large training patches can reduce noise patterns in the classification result, which is
typical when high-resolution imagery is used for classification. The inclusion of more pixels located
inside the crop parcels in large training patches resulted in smaller class variations within each crop
parcel. Consequently, the uniform distributions of the crop parcels were well represented in the
classification result. The experimental results of Anbandegi indicate that using large training patches
with high class purity (inclusion of many pixels located inside crop parcels in a training patch) is more
beneficial for the classification of regions with homogeneous crop distributions using high-resolution
remote sensing imagery.

3.3. Classification Results in the Illinois Region

The overall accuracy in the Illinois region decreased as class purity values increased (Figure 8),
in contrast to the result of the Anbandegi region. When the patch size was 15 by 15, the overall
accuracy decreased by 13.7%p for CP100, compared with that for CP60. This was due to the relatively
heterogeneous distributions of crops in the study area, as quantified by the GCH and CV values in
Figure 5. When the smallest patch size of 5 by 5 was used, the differences in overall accuracy for
different class purity values were lower than those for other patch sizes, but the lowest classification
accuracy was still yielded for CP100.

Comparing the classification accuracy with respect to the training patch size, the overall accuracy
decreased as the training patch size increased, regardless of the class purity values. The lowest accuracy
was obtained when a large patch size was used for CP100. As shown in Figure 5, both the GCH
and CV values of the Illinois region were smaller than those of Anbandegi, indicating the relatively
heterogeneous distributions of crops in the study area and larger variations of class homogeneity in
the patch unit. As the patch size increased, many pixels belonging to different classes were contained
in the training patch. This increased class heterogeneity resulted in significant misclassifications.
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Figure 9 presents the classification results generated using the 9 by 9 training patch that
produced a significant difference in the overall accuracy with respect to different class purity values.
The classification results generated using other patch sizes and different class purity values in Illinois
are presented in Figure S2. The distinctive differences between the classification results for different
class purity values can be highlighted in two subareas, denoted as A and B in Figure 9. For CP 100,
the exaggeration of soybean parcels and the misclassification of small corn parcels as soybean were
observed. This occurred because the training patches selected primarily inside the crop parcels could
not provide information regarding the discrimination of different crop types located at the boundary
of the parcels. By contrast, the misclassification of corn parcels surrounded by the soybean parcels
reduced significantly when using training patches with CP60. When a lower class purity value was
applied to select the training patches, those located at the boundary between different crop parcels
were primarily selected. Consequently, the 2D-CNN model trained using these training patches
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extracted spatial features that were useful to discriminate adjacent crops, thereby achieving increased
classification accuracy. However, misclassified pixels were identified inside the crop parcels in subarea
A of Figure 9, as observed for CP60 in Anbandegi, which is a limitation of using small training patches.
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Table 6 summarizes the accuracy statistics of one classification result generated using a 9 by 9
patch shown in Figure 9. The accuracy statistics of the classification results using other patch sizes and
different class purity values in Illinois are also listed in Table S2. As indicated in Figure 8, the overall
accuracy for CP60 was higher than that for CP100. This improvement in overall accuracy was attributed
to the significant increase of approximately 7.3%p in the producer’s accuracy of corn, which is one of
the major crops in the Illinois region. In the case of CP100, the user’s accuracy of soybean decreased
significantly by 4.4%p owing to the misclassification of corn as soybean, as shown in Figure 9.

Table 6. Accuracy statistics with respect to different class purity values when using a 9 by 9 patch in
Illinois (PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy).

CP60 CP80 CP100

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Corn 82.13 73.76 80.61 73.22 74.83 72.00
Soybean 76.87 86.76 77.42 86.11 75.96 82.32

Winter wheat 95.06 83.96 90.09 80.76 90.86 77.56
OA (%) 81.43 80.44 77.87

The Illinois region exhibited lower GCH and higher CV values than the Anbandegi region,
as shown in Figure 5. This implies the heterogeneous distributions of crop parcels and the large
variations in class homogeneity within a patch across the study area. Consequently, using training
patches with a low class purity value allows crops to be discriminated more accurately. Many training
patches collected at the boundaries between crop parcels contributed to the correct identification of
adjacent crop parcels. The significant decrease in classification accuracy when using large training
patches was due to the inclusion of more subareas having non-uniform class homogeneity with a patch.
Based on the results in the Illinois region, using training patches with low class purity and a smaller
size is more likely to produce more accurate results in the classification of regions with heterogeneous
crop distributions using mid-resolution remote sensing imagery.
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4. Discussion

4.1. Novelty of the Study and Implications for Training Sample Selection

Previous studies for supervised classification emphasized the importance of collecting informative
training samples and investigated the effects of different strategies in selecting training samples on
classification performance [9–12,14,21]. However, the strategies on selecting informative training
samples were developed for pixel-based classification. Because training patches that contain
neighboring pixels are used in patch-based classification, classification performance is affected by
both the representativeness of a training patch for a specific class and the degree of compositional
homogeneity of classes within a training patch. These two factors are related to landscape heterogeneity
of the study area [21,42,43]. Smith et al. [42,43] reported that classification accuracy decreased as
land-cover heterogeneity increased and patch size decreased in USA. However, the evaluation was
based on the comparison between classification accuracy and landscape variables, not on classification
results. In patch-based classification, Sharma et al. [30] used training samples that have a class purity
value of more than 60% for CNN-based classification without comparison with other class purity
values. Song et al. [31] quantified the degree of class heterogeneity and then analyzed its effects on
classification accuracy of patch-based CNN. An experiment on the classification of Landsat imagery
revealed that moderately heterogeneous samples produced the highest accuracy. However, landscape
heterogeneity was only used to demonstrate the superiority of patch-based CNN over pixel-based
classifier, not to explicitly relate the global or local characteristics of landscape heterogeneity in the
study area to classification performance.

In contrast to previous studies, the novelty of this study lies in the explicit quantification of the effect
of class purity of a training patch on patch-based crop classification through comparative experiments
conducted in two regions with different landscape characteristics and input images. Crop classification
experiments demonstrated that the class purity within a training patch significantly affected the
classification results, including the accuracy and spatial distributions because the information content
provided by patch-based training samples varies according to the diversity of class composition in
a patch. The relatively large crop parcel or the inside of the parcel (homogeneous subareas) was
correctly classified using training patches with high class purity. By contrast, training patches with low
class purity could discriminate both adjacent crops and the crop type near boundaries (heterogeneous
subareas) more successfully. This effectiveness of training patches with low class purity for the
heterogeneous distributions of land-cover class is similar to the results from previous pixel-based
classification studies that emphasized the necessity of including training data that lie close to the
location of boundaries in a geographic [9] or feature space [44]. This study also newly defined
the GCH and CV of the LCH that can be useful quantitative measures for the GCH and degree of
relative variations of class homogeneity across the study area, respectively. These quantitative indices
were used for the characterization of class homogeneity of the study area and the interpretations of
classification results. If such summary statistics in the study area can be combined with the LCH,
it may be possible to pinpoint the locations of informative training samples that are specific to the
discrimination of subareas with different local homogeneity.

It should be noted that class purity is inter-related to other factors, such as landscape heterogeneity,
training patch size, and spatial resolution of input images. Chen et al. [22] reported that both sample
impurity and landscape heterogeneity affect the classification accuracy in pixel-based classification
with coarse resolution MODIS images. The sample impurity corresponded to class purity in this study,
and the landscape heterogeneity was opposite to the GCH defined in this study. In particular, when the
landscape heterogeneity was high, the corresponding classification accuracy decreased. The Illinois
region classified in this study also exhibited high class heterogeneity. However, the classification
accuracy was improved significantly when small size training patches with low class purity were
used for classification. Therefore, training samples in patch-based classification should be collected by
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considering both characteristics of the study area (class purity and landscape homogeneity) and the
classification parameter (patch size in CNN-based classification).

The spatial resolution of remote sensing images used for classification is also one of the
important factors for the collection of training samples in supervised classification. Many studies
have demonstrated that landscape heterogeneity and training sample size might vary according to the
spatial resolution [21,39,45]. In this study, the LCH was defined to properly account for the difference
in spatial resolution of input images in two classification regions (0.25 m vs. 30 m). The Pi value in
Equation (1) can vary with respect to the spatial resolution of the input images. This indicates that the
strategy for training sample collection based on class purity should be changed because LCH values
may change accordingly even in the same region when remote sensing images with different spatial
resolution are used. For example, when coarser spatial resolution images are used for classification in
Anbandegi, the LCH values will decrease accordingly; hence, a different reference class purity value
should be determined. Furthermore, the spatial resolution affects the quantity of the training patches.
If a high class purity value is selected for the classification with coarse spatial resolution images, only a
small number of training patches may be collected, similar to the Illinois case. Therefore, the class
purity, LCH, and GCH defined in this study should be used to collect training patches according to the
spatial resolution of the input images.

Deep learning-based classifiers require the sufficient amount of training samples to achieve
satisfactory classification performance [28,29]. If such a small number of training patches are used
for CNN-based classification, it may be difficult to seek the optimal parameters of deep neutral
network structures, thereby yielding poor classification performance. In addition to the quantity of
training samples, the quality of training samples is important in supervised classification because
the learning process is based on the representativeness of the training samples for the classes of
interest. In particular, the classification results of deep learning models depend on high-level features
extracted from representation learning with training patches [46,47]. Therefore, the information content
contained in training patches is critical for extracting informative spatial features. As discussed,
using training patches with different class purity values and patch sizes produces spatial features with
different characteristics. Hence, training patches with a specific class purity and patch size based on
class homogeneity in the study area should be selected to discriminate homogeneous subareas (inside
the parcels) from heterogeneous ones (boundaries between parcels) and vice versa.

4.2. Limitations and Future Research Directions

The major findings in this study can provide guidance for selecting training samples in patch-based
classification; however, further investigation and confirmation are necessitated. In this study, crop type
information from ground truth data was used to analyze the effects of class purity in a training patch and
quantify the spatial homogeneity of the study area. From a practical viewpoint, however, such ground
truth information is not always available, which renders it impossible to calculate the class purity and
other quantitative indices. This limitation of the sampling strategy using class purity and quantitative
indices presented herein may be relieved using a past land-cover map in the study area of interest.
Unless significant changes have occurred in the study area, one can quantify the class homogeneity of
the study area using land-cover types in a past land-cover map. This class homogeneity information
can be used as a prior basis to determine the appropriate class purity and patch size values in the
study area. However, more extensive experiments should be conducted to determine the appropriate
reference or threshold value of class purity and the optimal patch size. In this study, the strategy for
selecting training patches based on class purity is based fully on class-type information, but may not
account for the spectral information of class type. The same class type may exhibit different spectral
characteristics, and mixed pixel effects are also typical in classifications using coarse spatial resolution
remote sensing images [13,14]. Hence, the effects of spectral purity should be analyzed via spectral
unmixing [48,49] in conjunction with those of class purity of training patches in future work.
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5. Conclusions

Previous studies have tested the effects of training samples on classification accuracy in supervised
classification, but a comparative analysis of training sample selection considering variations of
class purity within a training patch has not yet been fully performed in patch-based classification.
This analysis is important in patch-based classification because classification accuracy is sensitive to the
information content of training patches. In this study, the effects of class purity in a training patch on
the performance of crop classification using a 2D-CNN were investigated through crop classification
experiments conducted in two regions with different spatial homogeneity. Two quantitative measures
were also used to quantify global class homogeneity of the study area and local variations of class
homogeneity across the study area. Crop classification experiments conducted in two regions with
different class compositions and spatial homogeneity demonstrated that the class purity of a training
patch and patch size had significant influence on the classification accuracy, depending on the class
homogeneity of the study area. For the classification of regions with high class homogeneity using high
resolution remote sensing imagery, using large training patches with high class purity is beneficial.
Meanwhile, small training patches with low class purity are effective for the classification of regions
with high class heterogeneity using coarse resolution remote sensing imagery. These results indicate
that the classification accuracy of patch-based classification can be improved using informative training
samples selected by considering both class purity and spatial homogeneity of the study area. Therefore,
the key findings of this study are expected to serve as a useful basis for selecting training samples in
patch-based supervised classification; however, to expand the applicability of the major findings of this
study, other important issues not investigated in this study, including consideration of spectral purity
with class purity and selection of an appropriate threshold value of class purity, should be investigated
through extensive experiments.
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of four classification results with the highest overall accuracy. Table S1: Accuracy statistics of the classification
results using other patch sizes and different class purity values in Anbandegi (PA: producer’s accuracy; UA:
user’s accuracy; OA: overall accuracy). Classification accuracy values from one of four classification results with
the highest overall accuracy are displayed. Table S2: Accuracy statistics of the classification results using other
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