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Abstract: Nowadays, since energy management of buildings contributes to the operation cost, many
efforts are made to optimize the energy consumption of buildings. In addition, the most consumed
energy in the buildings is assigned to the indoor heating and cooling comforts. In this regard,
this paper proposes a heating and cooling load forecasting methodology, which by taking this
methodology into the account energy consumption of the buildings can be optimized. Multilayer
perceptron (MLP) and support vector regression (SVR) for the heating and cooling load forecasting of
residential buildings are employed. MLP and SVR are the applications of artificial neural networks
and machine learning, respectively. These methods commonly are used for modeling and regression
and produce a linear mapping between input and output variables. Proposed methods are taught
using training data pertaining to the characteristics of each sample in the dataset. To apply the
proposed methods, a simulated dataset will be used, in which the technical parameters of the
building are used as input variables and heating and cooling loads are selected as output variables
for each network. Finally, the simulation and numerical results illustrates the effectiveness of the
proposed methodologies.

Keywords: energy management; load forecasting; heating and cooling; machine learning; multi-layer
perceptron (MLP); support vector regression (SVR)

1. Introduction

Increasing the number of cities and their populations throughout the world requires a great
deal of energy to meet the needs of citizens. Recent studies have predicted that the population of
cities will increase up to five billion by 2030 [1]. Nearly 40% of total energy consumption is related
to the dwellings, and other building types constitute just a fraction of the buildings [2]. Supplying
energy to the citizens requires associated resources in which limited sources are available. As the
consumption of residential buildings forms a great amount of demand, regarding social welfare,
residential consumption should be monitored and controlled [3]. On the other hand, heating and
cooling are the most crucial energy sources among citizens, so in this regard usage of these energies
should be managed.

Managing and optimizing the energy consumption of buildings requires having complete
information about the performance of the building and environmental factors. Electricity, gas and
heating supply are the most important resources of energy in a building, but the important final use
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applications are elevators, heating ventilation and air conditioning (HVAC), domestic hot water, and
so on. Among the aforementioned energy sources, optimal operation of HVAC and indoor condition
supply are two important factors in evaluating building energy performance [4,5]. HVAC, as a basic
infrastructure in the building, plays an important role by changing the amount of internal cooling and
heating loads of residential buildings. Despite the need for this system in buildings, there is a major
concern that about 40% of all energy, especially in office buildings, is consumed by this system [6,7].
Forecasting the thermal loads plays an important role in optimizing the cooling and heating cost
of the buildings, as the deviation from the optimally scheduled values will increase the total cost
considerably [8].

Energy forecasting is a way to reach optimal operation of HVAC and energy management of
residential buildings. In this regard, residential buildings’ consumption patterns could be predicted [9].
Nowadays, by developing technology many small-scale smart devices and building management systems
(BMSs) can be installed on the residential buildings sites in order to monitor and record the load patterns
of the buildings, and also environmental characteristics that have a high impact on the energy forecasting.
Using such data, building consumption patterns could be predicted and controlled hourly. In addition,
the necessity of energy forecasting has been expressed by some researches e.g., a review study of thermal
energy consumption in the buildings pertinent to the comfort was introduced in [10] and the purpose of
the study was showing how social-economic, fuel mix and climate change are affected by thermal energy
comfort. Moreover, by load forecasting, buildings can schedule for the next day, not only to participate in
the demand–response programs [11–13] but also to participate in energy trading [14,15].

So far, many studies have been done in order to evaluate load forecasting of the buildings. In a
valuable study [16], an integrated design approach has been utilized to estimate life-cycle energy
savings, cost-effectiveness of energy efficiency measures in new buildings, and carbon emission
reduction. In [17], a multi-objective optimization for energy refurbishments of existing buildings
through energy efficiency measures and HVAC systems have been carried out using a genetic algorithm
coupled with a dynamic simulation tool. Predictor methods for heating load based on artificial neural
networks (ANN) have been evaluated in [18] for office buildings where the impact of data size and
dimensionality in ANN was inspected. In order for heating, ventilation, and air-conditioning (HVAC)
system optimization in [19], electricity load forecasting based on ANN has been studied. Among
three utilized algorithms such as Levenberg-Marquardt, Scaled Conjugate gradient back-propagation,
and Bayesian Regularization (BR), the BR-based ANN showed the best performance. Another study
proposed the energy forecasting method using statistical analysis for heating and cooling of an
office building [20]. In [21], four hybrid techniques based on artificial neural network (ANN) and
meta-heuristic algorithms such as artificial bee colony (ABC) optimization, particle swarm optimization
(PSO), imperialist competitive algorithm (ICA), and genetic algorithm (GA) have been suggested for
forecasting the heating load of buildings’ energy efficiency. Forecasting the cooling load has been
done in [22] using a probabilistic entropy-based neural (PENN) method. Short-term cooling load
prediction in order to optimize the operation of HVAC systems and energy efficiency measures in
buildings has been done in [23] using multiple nonlinear regression (MNR), auto regressive (AR),
and autoregressive with exogenous (ARX) models. In [24], the thermal comfort reduction of the energy
consumption in the building by 36.5% was performed via a feedforward neural network (FFNN). A
decision tree method has been suggested in [25] for energy demand forecasting and energy efficiency
measures of a residential building. A comparative study of forecasting methods for heating and
cooling load was done in [26], where machine learning techniques such as a deep neural network
(DNN), gradient boosted machine (GBM), Gaussian process regression (GPR) and minimax probability
machine regression (MPMR) were compared with each other. In [27], prediction of the cooling and
heating loads of the building were done using ANN, classification and regression tree (CART), general
linear regression (GLR), and chi-squared automatic interaction detector (CHAID). In the same work,
the technical characteristics of the building were considered as input to the networks. In [28], sixteen
residential buildings were evaluated in terms of heating and cooling energy consumption forecasting
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via adaptive linear time-series models. Likewise, cooling load forecasting based on data mining
techniques was proposed in [29] to help design a more efficient building management system (BMS).
In [30], the BMS based on electrical, economic, and ecological optimization using a genetic algorithm
was introduced to improve energy efficiency of the buildings. General regression neural network
(GRNN) has also been employed in [31] for cooling energy forecasting to optimize HVAC heat storage
of public buildings.

In most of the aforementioned research works, meteorological data was used as an indicator
and input for forecasting the cooling and heating loads of residential buildings. It is undeniable that
environmental and meteorological factors do not affect the cooling and heating loads of residential
buildings, but sometimes abrupt changes in weather could disrupt energy forecasting equations,
reducing the accuracy coefficient and increasing the error in the energy forecasting operation. In this
paper, high-precision prediction of cooling and heating loads of a building was done by using
multilayer perceptron (MLP) and support vector regression (SVR) methods. A set of data on structural
characteristics of the building was considered as an input variable, while the amount of cooling and
heating load was considered as an output variable. Using this data and creating a linear mapping
between input and output variables via the proposed methods, it is possible to make a more accurate
prediction of cooling and heating loads.

The rest of the paper is organized as follows: Section 2 describes the case study and dataset.
Section 3 represents the employed methodologies and techniques. Section 4 includes the simulation
and numerical results and finally, Section 5 concludes the paper.

2. Case Study

The dataset used in this work was created by Tsanas and Xifara [32]. Twelve different buildings
were simulated in Ecotect software to generate the dataset. The glazing area, distribution of the glazing
area and the orientation are the parameters that make the buildings different from each other. Each
building was simulated using eighteen preliminary cubes (3.5 × 3.5 × 3.5 m3) with the same materials
for all buildings. The newest and most common materials in the building construction industry were
selected for each of the eighteen elements so that the materials used for each of these elements were the
same for all forms of construction. In the design process, three types of glazing areas such as 10%, 25%,
and 40% were used as percentages of the floor area. In addition, it was assumed that buildings were
in Greece, Athens. Sixty percent humidity, 0.3 m/s wind speed, lightning level of 300 1x and 0.6 clo
of clothing were considered as internal design conditions during simulation, while the infiltration
rate was set to 0.5 for the air change rate with a wind sensitivity of 0.25 air changer per hour. The
dataset includes 768 samples with eight features for each sample, namely x1, x2, . . . , x8 and y1, y2 as
decision variables, which are listed in Table 1 [21,32]. This work aims to forecast y1 as the heating
load and y2 as the cooling load using the aforementioned features as decision variables. Although the
dataset was generated via simulation, it is notable that the proposed methods are applicable to the
real-world dataset.

Table 1. Details of input and output data.

Mathematical Symbol Variables

x1 Relative compactness
x2 Surface area
x3 Wall area
x4 Roof area
x5 Overall height
x6 Orientation
x7 Glazing area
x8 Glazing area distribution
y1 Heating load
y2 Cooling load
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3. Methods

Artificial neural network (ANN) and machine learning algorithms as powerful tools in data
mining were employed to do the modelling and forecasting tasks [33,34]. In this work, MLP and
SVR were used as two application models of these algorithms to create a linear mapping between the
technical parameters of building and the cooling and heating loads of the building in order to forecast
the load/energy. In the following, each of the proposed methods are briefly introduced.

3.1. Multilayer Perceptron (MLP)

MLP has a fully connected layer structure, i.e., each neuron in a layer is connected to all neurons
in the next and previous layers. The schematic of the MLP structure is shown in Figure 1, which
illustrates a nonlinear mapping between the input vector and the output vector [35]. The neurons are
connected through weights, and output signals are generated by a nonlinear transfer function [36].

Y = f (b +
N∑

l=1

wlxl) (1)
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In Equation (1) Y and x are the output and input signals, respectively, f is the nonlinear transfer
function, b and w are the bias and weight vectors, respectively, and N is the total number of the inputs.
Since MLP has the ability to learn through training, a dataset with known input vector and output
vector is required in which the weight vector is adjusted according to the output signals through
training [37].

3.2. Support Vector Regression (SVR)

SVR is one of the training tools which was developed from the support vector machine (SVM).
The principle of SVR is depicted in Figure 2. In this work, ε-SVR is employed for the training of data.
ε-SVR is a classic model of SVR with the aim of finding a flat function, which has a small (ε) error from
the obtained target [38]. In the case of SVR, the following function is trained using given training
data such as

{
(x1, y1), (x2, y2), . . . , (xl, yl), . . . (xN, yN)

}
⊂ χ×R, l = {1, 2, . . . , N}, where χ illustrates the

space of the input patterns:
f (x) = 〈w, x〉+ b; w ∈ χ, b ∈ R (2)
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where b is bias, and 〈w, x〉 represents the linear function of fitting input space to the feature space.
Equation (3) is using to minimizing the risk function as follows:

R =
1
2
‖w‖2 + c

N∑
i=1

(y1, 〈w, x〉) (3)
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In Equation (3), the selected loss function and c > 0 specifies the tradeoff between the smoothness
of f and allowed deviation larger than ε. In order to deal with the problem, the minimization problem
of (4) must be solved.

min
1
2
‖w‖2 + c

N∑
l=1

(ξl + ξ∗l ) (4)

s.t.


yl − 〈w, xl〉 − b ≤ ε+ ξl
〈w, xl〉+ b− yl ≤ ε+ ξ∗l

ξl + ξ∗l ≥ 0

where, ξl, ξ∗l are the slack variables which tackle the infeasible constraints. In order to solve the
optimization problem, the dual problem of the (4) can be derived using the Lagrange function. In
addition, w can be defined as an integration of training patterns of x linearly. Therefore, Equation (2)
can be reformulated as [39]:

f (x) = b +
N∑

l=1

(αl − α
∗

l )〈xl, x〉 (5)

where, αl,α∗l are the Lagrangian multipliers. Then, in order to put the nonlinearity in the algorithm,
the training patterns xl can be modified by a map Φ : χ→ F . In addition, Kernel function can be
defined as:

k(x, x′) :=
〈
Φ(x), Φ(x′)

〉
(6)

According to the above-mentioned equations, the optimization problem of (4) can be modified,
and finally, the function f derived as follows:

f (x) = b +
N∑

l=1

(αl − α
∗

l )k(xl, x) (7)

It is notable that in the nonlinear optimization problem, the flatness function is searched among
the feature space, not input space [40,41].
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4. Simulation and Results

The MLP and SVR networks are designed to predict the cooling and heating load. Each of these
networks was trained using a dataset as input. In this paper, 85% (658 samples) of the data were used
to train and validate the proposed methods and the remaining 15% (110 samples) were used for testing.
In the first stage, each network required a preliminary design to determine the number of neurons
in the hidden layer and the coefficients of the network. After designing each network, the amount
of training and testing data for the network was determined. In this work, 70% of the samples were
considered as training data and 30% as test data to validate the training phase of each network. After
training and testing each neural network or regression algorithm, the results need to be evaluated.
To do this, correlation coefficient (R), mean squared error (MSE), root mean squared error (RMSE),
and mean absolute error (MAE) can be used as statistical performance metrics. Each of the mentioned
indices are calculated according to the following equations [42].

R =

N∑
l=1

(xl − x)(yl − y)√
N∑

l=1
(xl − x)2 N∑

l=1
(yl − y)2

(8)

RMSE =

√√√
1
N

N∑
l=1

(xl − yl)
2 (9)

MSE =
1
N

N∑
l=1

(xl − yl)
2 (10)

MAE =
1
N

N∑
l=1

∣∣∣xl − yl
∣∣∣ (11)

where xl and yl illustrate the actual value and predicted value. x and y y depict the mean of actual
values and forecasted values, respectively. Figure 3 shows the good correlation coefficient between the
real values and the predicted value by the network in the training, testing and validation steps for the
MLP network. Figure 4 indicates an excellent correlation coefficient between the real values and the
predicted value for the SVR network during the training phase.

Given the excellent correlation between the target data and the output of each network (as shown
in Figures 3 and 4), it can be clearly understood that each of these networks have passed the training
phase well. Good training means that the network is able to identify inherent patterns in the nature of
data and to predict the unknown data by using the learned patterns, so that each network learns how
much of a cooling and heating load is required for each building with specific characteristics. With this
training, each network can predict the amount of cooling and heating loads related to the input data of
the test phase. After training, each network is validated using initial test data (30% of 85%). This is
kind of a test for the training phase, which is done by the network itself. The prediction error in the
test or validation, which is one of the most important values in evaluating the results, is presented in
Figures 5 and 6 for each of the MLP and SVR networks in the histogram form, respectively.

The error obtained in the error histogram model indicates the minimum and maximum prediction
error. This means that in predicting the cooling and heating loads for the test data, the amount of error
that each of the trained networks can have is equal to the amount provided in the above figures.

In evaluating and analyzing each of the above figures that somehow represent the performance of
each network in the initial training and testing stages, it can be concluded that the training of proposed
methods has been well validated using the desired data. It should be noted that when the network is
trained with high accuracy, it is well designed and the amount of error in the validation and initial
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testing process depends more on the type of data. It also implies that the network will be able to
accurately assess and predict new and unknown data. Each network is saved as a black box after
training. This black box contains patterns that the network was able to identify during the training
phase. Now, the new and unknown data must be used to test these networks and predict the cooling
and heating load of buildings. To do this, 15% (110 samples) of the data, kept as unknown and new
data, were used. Figures 7 and 8 show the results of forecasting heating and cooling loads for new data
using the trained MLP and SVR networks, respectively.Appl. Sci. 2020, 10, 3829  7  of  13 
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Performance evaluation of the proposed methods is presented in Table 2 in terms of R, MSE,
RMSE, and MAE.

Table 2. Results of accuracy and error for proposed methods in heating and cooling load prediction.

Heating Load Cooling Load

R MSE RMSE MAE R MSE RMSE MAE

MLP 0.9993 0.2335 0.4832 0.4118 0.9824 6.896 2.626 2.0973
SVR 0.9979 0.7838 0.8853 0.7780 0.9878 3.024 1.7389 1.4762

Based on the results presented in the Table 2, it can be seen that the best prediction was related
to the prediction of the heating load by the MLP method with the highest value of R (0.9993) and
minimal errors in the form of MSE (0.2335), RMSE (0.4832), and MAE (0.4118). However, in predicting
the cooling load, the SVR method with a large amount of R (0.9878) and lowest errors in the terms of
MSE (3.024), RMSE (1.7389), and MAE (1.4762) made a good prediction. Highest values of MSE and
RMSE errors of prediction were also related to the MLP method in the prediction of cooling load. The
use of machine learning methods and their results are highly dependent on the type of input data.
It is observed that there is a difference between the results of predicting the cooling load and heating
load by each of the networks and the heating load is predicted with high accuracy. This difference
is due to the poor correlation between the input data and the amount of cooling load relative to the
heating load. To evaluate the effectiveness of the proposed methods in this paper, it is necessary to
compare the results obtained with the results of other studies. Comparisons should be made with
caution using similar datasets. To this end, a number of studies were selected for comparison in which
similar data was used for predicting the cooling and heating loads. To express the effectiveness of
the data type in the accuracy of the results, the results of several studies conducted to predict cooling
and heating loads using different data were compared with the results obtained in this paper. Table 3
makes this comparison.

Table 3. Comparison of cooling and heating loads prediction results with other works.

Data Type References Heating Load (R) Cooling Load (R)

Used data in this paper MLP in this paper 0.9993 0.9824
SVR in this paper 0.9979 0.9878

DNN [14] 0.9805 0.9976
GBM [14] 0.9853 0.9853
GPR [14] 0.9984 0.9913

MPMR [14] 0.8802 0.8955
ANN [15] 0.9980 0.9840
CART [15] 0.9960 0.9810
GLR [15] 0.9950 0.9830

CHAID [15] 0.9950 0.9810
GA-ANN [18] 0.9800 -
PSO-ANN [18] 0.9720 -
ICA-ANN [18] 0.9700 -
ABC-ANN [18] 0.9730 -

Different data GRNN [28] - 0.9640
PENN [20] - 0.9500
MLR [20] - 0.7510
AR [20] - 0.8370

ARX [20] - 08640
MNR (initial prediction) [20] - 0.8990
MNR (final calibration) [20] - 0.9580

ANN [21] 0.9900 -
Decision tree [22] 0.92 -
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The comparison made in Table 3, shows the accuracy and efficiency of the proposed methods
in this paper for forecasting the cooling and heating loads of the building. The use of machine
learning applications and the selection of the applicable method for energy predicting and energy
efficiency measures in residential buildings are significantly effective in saving energy consumption.
The selected methods were able to realize the purpose of the paper with their high accuracy and
achieve this important goal. Finally, it should be noted that the proposed solutions can also be used for
real-world data.

5. Conclusions

Nowadays, the importance of energy saving and its management has raised many challenges
in forecasting the heating and cooling loads of buildings. Most researchers in this field offer many
methods and models for predicting heating and cooling loads to somehow increase the prediction
accuracy. In this paper, based on machine learning models two MLP and SVR methods were proposed
to predict the cooling and heating load of a residential building. The main idea of these methods was
to create a linear mapping between the input and output variables to increase the prediction accuracy.
After designing each of the proposed models, the technical parameters of a home building were used as
inputs and the heating and cooling loads were used as the output variables of each network during the
training phase. New and anonymous data were used to test the trained networks and for forecasting
the heating and cooling loads. Finally, each trained network was able to reliably provide the heating
and cooling load forecasts. Meanwhile, the MLP method with the maximal of R i.e., 0.9993 and the SVR
method with the highest value of R i.e., 0.9878 predicted the heating and cooling loads, respectively.
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