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Abstract: The deformation of air bubbles in a liquid flow field is of relevant interest in phenomena
such as cavitation, air entrainment, and foaming. In complex situations, this problem cannot be
addressed theoretically, while the accuracy of an approach based on Computational Fluid Dynamics
(CFD) is often unsatisfactory. In this study, a novel approach to the problem is proposed, based on the
combined use of a shadowgraph technique, to obtain experimental data, and some machine learning
algorithms to build prediction models. Three models were developed to predict the equivalent
diameter and aspect ratio of air bubbles moving near a plunging jet. The models were different in
terms of their input variables. Five variants of each model were built, changing the implemented
machine learning algorithm: Additive Regression of Decision Stump, Bagging, K-Star, Random Forest
and Support Vector Regression. In relation to the prediction of the equivalent diameter, two models
provided satisfactory predictions, assessed on the basis of four different evaluation metrics. The third
model was slightly less accurate in all its variants. Regarding the forecast of the bubble’s aspect
ratio, the difference in the input variables of the prediction models shows a greater influence on the
accuracy of the results. However, the proposed approach proves to be promising to address complex
problems in the study of multi-phase flows.
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1. Introduction

The study of the dynamics of air bubbles in a liquid flow field is of practical interest in many
areas of environmental, chemical, naval and ocean engineering. The interest in phenomena such
as cavitation, air entrainment and foaming is particularly relevant. The theoretical characterization
of motion and deformation of isolated bubbles is effective only in simple special cases. The most
basic theoretical model of the dynamics of a single bubble is represented by the Rayleigh–Plesset
equation [1,2], which allows for a description of the variation in the bubble radius as a function of
four forcers: the external pressure, the internal pressure of the bubble, the surface tension of the liquid
and the viscosity of the liquid. It is valid in the case of a perfectly spherical bubble in an infinite
liquid domain that is at rest far from the bubble. Moreover, temperature gradients are not considered,
while the pressure is a known input governing the bubble deformation. In most situations of practical
interest, these assumptions cannot be justified. Later, various authors proposed other theoretical models
under different hypotheses [3–6].
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More complex situations are generally modelled by experimental [7–10] or CFD-based
approaches [11–14].

However, the dynamics of individual bubbles in a water volume are governed by the physical
characteristics of water and air, which can be expressed in terms of water density ρw, bubble density
ρb, water dynamic viscosity µ and water surface tension σ. The rising of an air bubble depends also on
the buoyancy, which is a function of the pressure gradient ∂P/∂z, where z indicates the water depth,
and that of the gravitational acceleration g. The buoyancy also depends on the air bubble volume,
related to the bubble equivalent diameter (Deq) (i.e., the diameter of a sphere of volume equal to the
bubble volume). Furthermore, the relative motion between the air bubble and the surrounding water,
which moves with velocity Vw, involves a resistance related to the bubble velocity Vb [15]. In general,
the evolution of a single bubble that moves in the water can be described according to:

f (ρw,ρb,µ, σ, Deq, g,
∂P
∂z

, Vw, Vb) = 0 (1)

Based on the well-known dimensional analysis [16–18], four essential dimensionless numbers
affecting the evolution of individual bubbles can be obtained:

Reb =
Vb ·Deq

υ
(2)

Frb =
Vb√

g ·Deq
(3)

Web =
ρw ·V2

b ·Deq

σ
(4)

Eo =
(ρw − ρb) · g ·D2

eq

σ
(5)

where Reb is the bubble Reynolds number, υ is the water cinematic viscosity, Frb is the bubble Froude
number, Web is the bubble Weber number and Eo is the Eötvös number.

A somewhat complex phenomenon that induces the movement of bubbles in a water volume is
observed in the presence of a plunging jet. When a water jet plunges into a water pool, air bubbles are
generally entrained and carried away in the water volume (Figure 1) if the jet impact velocity exceeds
a critical value [19]. The impact of the jet induces a fluctuating pressure field that is very difficult to
characterize [20]. Moreover, in the turbulent flow induced by the plunging jet, the evolution of the
bubbles is also governed by other mechanisms, e.g., turbulence fluctuation, drag, turbulent shear,
etc. [21].

The knowledge of the pressure and shear stress is essential to accurately predict the evolution of
the size and shape of the bubbles near the plunging jet, since the shape of a single bubble can fluctuate
in response to oscillations in the pressure and shear stress in the liquid surrounding the bubble [22,23].

However, even if the pressure field is not known, the availability of a good amount of data
on the evolution of the size and shape of a suitable number of bubbles, as well as of data on some
characteristics of the flow field, leads us to consider an interesting alternative approach for predicting
the deformation of individual bubbles: machine learning algorithms. These procedures, particularly
suited to dealing with nonlinear regression problems dependent on several variables, have been widely
used in recent years in solving a variety of water engineering problems [24–34].
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Figure 1. Air bubbles entrained by the vertical plunging jet (a); individual air bubble path, rising 
inside the lateral recirculation zone (only the highlighted bubble is at the same time as the recorded 
frame) (b). 

The complexity of the observed phenomena makes two-phase air–water flows a field of 
investigation for which machine learning algorithms can represent a very useful tool. However, so 
far in the literature, there are few studies relating to the application of machine learning algorithms 
to two-phase air–water flow issues. Shaban and Tavoularis [35] developed a novel method to 
evaluate gas and liquid flow rates in vertical upward gas–liquid pipe flows. This technique consisted 
of an application of multi-layer backpropagation neural networks on the probability density function 
and the power spectral density of the normalized output of a differential pressure transducer 
connected to two axially separated wall pressure taps in the pipe. Granata and de Marinis [36] used 
the Regression Tree M5P model, Bagging algorithm and Random Forest algorithm to address some 
complex problems of wastewater hydraulics, including the air entrainment in a circular drop 
manhole under supercritical flow. Mosavi et al. [37] used an adaptive network-based fuzzy inference 
system (ANFIS) combined with CFD data to predict the macroscopic parameters such as gas velocity 
in the multiphase reactor. The mentioned studies already show the remarkable potential of 
approaches based on machine learning algorithms in addressing issues related to multi-phase flows. 

However, to the best of the authors’ knowledge, there are no previous studies based on machine 
learning algorithms that deal with the evolution of air bubbles in water volume. 

In this research, three different data-driven models have been developed for the prediction of 
bubble equivalent diameter (Deq) and aspect ratio (AR), where AR is equal to the ratio of the minor 
axis and major axis of the air bubble fitting ellipsoid [38]. 

The models differ in terms of their input variables. Five variants of each model have been built, 
varying the used machine learning algorithms, which are Additive Regression of Decision Stumps 

Figure 1. Air bubbles entrained by the vertical plunging jet (a); individual air bubble path, rising inside
the lateral recirculation zone (only the highlighted bubble is at the same time as the recorded frame) (b).

The complexity of the observed phenomena makes two-phase air–water flows a field of
investigation for which machine learning algorithms can represent a very useful tool. However,
so far in the literature, there are few studies relating to the application of machine learning algorithms
to two-phase air–water flow issues. Shaban and Tavoularis [35] developed a novel method to evaluate
gas and liquid flow rates in vertical upward gas–liquid pipe flows. This technique consisted of an
application of multi-layer backpropagation neural networks on the probability density function and
the power spectral density of the normalized output of a differential pressure transducer connected to
two axially separated wall pressure taps in the pipe. Granata and de Marinis [36] used the Regression
Tree M5P model, Bagging algorithm and Random Forest algorithm to address some complex problems
of wastewater hydraulics, including the air entrainment in a circular drop manhole under supercritical
flow. Mosavi et al. [37] used an adaptive network-based fuzzy inference system (ANFIS) combined
with CFD data to predict the macroscopic parameters such as gas velocity in the multiphase reactor.
The mentioned studies already show the remarkable potential of approaches based on machine learning
algorithms in addressing issues related to multi-phase flows.

However, to the best of the authors’ knowledge, there are no previous studies based on machine
learning algorithms that deal with the evolution of air bubbles in water volume.

In this research, three different data-driven models have been developed for the prediction of
bubble equivalent diameter (Deq) and aspect ratio (AR), where AR is equal to the ratio of the minor
axis and major axis of the air bubble fitting ellipsoid [38].
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The models differ in terms of their input variables. Five variants of each model have been
built, varying the used machine learning algorithms, which are Additive Regression of Decision
Stumps (ARDS), Bootstrap Aggregating (Bagging), K-Star, Random Forest (RF) and Support Vector
Regression (SVR). In general terms, the forecasting capability of different machine learning algorithms
is strongly dependent on the size and variety of the available dataset. The abovementioned algorithms
have been selected because they usually ensure high performance in modelling complex and highly
non-linear relationships. The input parameters of the models have been evaluated through experimental
measurements carried out using a shadowgraph technique, which will be described in detail in the
following section.

2. Material and Methods

2.1. Experimental Setup

The experimental facility (Figure 2) consists of a vertical steel pipe with nozzle diameter D = 21 mm,
from which a vertical plunging jet falls in a Plexiglas prismatic tank with a side equal to 14D and a
height equal to 24D. The water flow is recirculated in a closed circuit, supplied by a centrifugal pump.
The test water flow rate was Q = 0.5 L/s, measured by means of an electromagnetic flow meter.

The plunging jet axis is in the centerline of the tank with the jet nozzle located at 5D from the free
surface and 20D from the bottom of the tank.

The shadowgraph system consists of four Falcon® 1.4MP fast cameras (Teledyne DALSA, Waterloo,
ON, Canada), with 35-mm focal length lenses and a resolution of 1400 × 1024 pixels at 100 frames
per second. Cameras are arranged in couples and located in front of two different tank sides at a 90◦

angle. On the opposite tank sides, a couple of LED panels, with a size of 297 × 210 mm and a power of
30 W, were placed for the backlight illumination of the measurement volume. The investigated volume
extends from the free surface to 6.5D streamwise (vertical x-direction), from −2.5D to 2.5D spanwise
(y-direction) and from −1D to 1D depthwise (z-direction).
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Figure 2. Experimental setup.

An experimental test consisting of 2000 consecutive images has been carried out. In order to
evaluate the shape evolution of some air bubbles near the vertical plunging jet, the image sequences
have been recorded with a frame rate equal to 100 Hz with an image size of 1400 × 751 pixels and a
high spatial resolution, close to 0.1 mm/pixel. It should be noted that an increase in the camera’s frame
rate corresponds to a decrease in the image size, leading to a reduction in the investigated volume.
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Therefore, the frame rate has been optimized to ensure an investigated volume wide enough to allow
for an analysis of the rising bubbles inside the lateral recirculation zone.

2.2. Volumetric Shadowgraph Technique

The volumetric shadowgraph technique used in this study allows us to describe the
three-dimensional evolution of air bubble shape and position, based on the observation of the
bubble boundaries from different points of view [39,40]. The boundary projection in the Euclidean
space defines a cone whose axis joins the center of the camera lens to the bubble centroid. This principle
is illustrated in Figure 3, considering the projection of an object on two different planes, Oxy and O’x’y’,
with the local z-axis indicating the camera’s optical axis.
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If the extrinsic and intrinsic parameters of the camera system are known, it is possible to project,
in the three-dimensional space, the n cones, with n equal to the number of cameras. The extrinsic
parameters define the location and orientation of the camera reference frame with respect to a known
world reference frame, while intrinsic parameters define the optical, geometric and digital characteristics
of the camera, regardless of the world around it [41,42].

The estimation of the camera parameters takes place through a well-established calibration
procedure [43], which involves the use of a specific target, consisting of a planar chessboard 90 × 50 mm
with squares of 5 mm ± 0.02 mm in size, stuck on a planar steel plate. The calibration requires the
acquisition of a sequence of 40 images containing the entire translated and rotated target. The corner
identification in each target image allows us to evaluate the extrinsic parameters of each camera. Then,
the evaluation of the relative position and orientation of Cam1 to Cam0 and of Cam3 to Cam2 and
the subsequent estimation of the position and orientation of the two camera couples, both relative
and absolute, with respect to the world coordinate system, provide the mapping of the target and,
consequently, of the investigated volume.

The intersection of the n cones defines the carved hull of the same [44]. Therefore, using sufficiently
fast cameras, this technique allows for the detection and description of the spatial and temporal evolution
of individual air bubbles within a measurement volume.

A specific image processing algorithm (Figure 4) has been used to detect the air bubble boundaries
of each recorded data set. The procedure entails two preliminary steps: the first is the background
removal (Figure 4b), obtained by subtracting from each image the median image calculated over the
entire data set, the second step is the image binarization (Figure 4c) by means of the IsoData threshold
algorithm [45]. The latter allows for the detection of the bubbles characterized by a clearly visible
boundary, removing the out-of-focus bubbles. In the presence of relevant void fraction, air bubbles
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tend to aggregate, forming a bubble cluster. The direct application of the shadowgraph technique on
images containing bubble clusters involves the erroneous detection of a single bubble for the entire
cluster. In order to avoid this inconvenience, the watershed technique has been used (Figure 4d).
It considers a grayscale digital image as a relief map, with the gray levels of pixels indicating their
elevation in the relief [46]. Considering a bubble cluster as a series of watersheds adjacent to each
other, the watershed lines allow for their division and, consequently, their detection [47,48]. The last
step consists of bubble boundary detection, obtained by considering the pixel outline of the bubbles
(Figure 4e).

The air bubble tracking has been carried out by means of the Lucas–Kanade optical flow
algorithm [49], a correlation-based method that defines its best measurement as the minimum of the
Sum of Squared Differences (SSD) of pixel intensity values between interrogation windows in two
consecutive frames [50]. The optical flow has been applied on the detected bubble centroid in the 2D
frames recorded from each camera. By knowing the cameras’ positions with respect to the air bubbles
and the position of the latter in the Euclidean space through the volumetric shadowgraph technique,
it is possible to obtain a three-dimensional tracking of the air bubbles. It should be noted that, in a
shadowgraph image of a bubbly flow, regardless of the bubble size, the backlight from the LED panel
meets air–water interfaces from one or more bubbles and scatters both by total reflection and refraction
followed by internal reflections and refractions, such that the light intensity collected on the camera
sensor varies accordingly. This made it possible to detect and follow the trajectories of air bubbles with
different sizes, starting from a few millimeters. The same would not be possible in the presence of
solid particles and/or water drops where the introduction of a depth-of-field (DOF) criterion could be
necessary [51].
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Figure 4. Steps for the boundary detection: original image (a); image after background removal (b);
binary image (c); image after watershed operation (d); final image containing the outline of the detected
air bubbles (e).

Figure 5 shows the reconstructed sequence of positions taken by selected air bubbles, composed
of 26 consecutive frames. Some air bubbles have been observed inside the jet zone and show a
vertical downwards path, some other bubbles move in the lateral recirculation zones with an upwards
spiraling path.
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1 
 

 

Figure 5. Sequence of air bubbles entrained by the vertical plunging jet and reconstructed by means
of the volumetric shadowgraph technique. The plunging jet is downward from the top, with X/D = 0
indicating the water surface.

2.3. Algorithms

2.3.1. Additive Regression of Decision Stumps

An additive regression model [52] aims to obtain forecasts by summing up the outcomes from
other models: the weak learners. The procedure begins with the development of a standard regression
model (e.g., a regression tree model). The errors in the training data, i.e., the differences between the
algorithm predictions in the training values and the actual values are called residuals.

In order to correct these errors, another prediction model is built, generally of the same type as
the former one, which tries to forecast the abovementioned residuals. For this purpose, the initial
dataset is replaced by the attained residuals before training the second model. Adding the predictions
of the second model to the forecasts of the first one allows us to reduce the amount of residuals.
However, they are, again, different from zero because the second model is still not accurate enough.
Thus, a third model is developed to predict the residuals of the residuals and the procedure is iterated,
until a stopping rule based on cross-validation is met. In particular, a cross-validation is executed at
each iteration up to a user-defined maximum number. The result that minimizes the cross-validation
estimation of the squared error is selected. In this work, the algorithm performed 100 iterations for
each of the considered models.

The Decision Stump algorithm has been chosen as weak learner. This algorithm is based on a
one-level decision tree: one root node is directly linked to the terminal leaf nodes. A decision stump
allows us to get a prediction on the base of the value of a single input feature: a threshold value is
selected, and the stump is characterized by two leaves, respectively, for values above and below the
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threshold. There are also cases where multiple thresholds should be selected and the stump includes
multiple leaves.

2.3.2. K-Star

The K-Star procedure [53] is an instance-based algorithm very similar to the k-Nearest Neighbor
regression algorithm. The latter procedure provides a prediction by evaluating a weighted average of
the k-nearest neighbors’ values, weighted by the inverse of their distance, and the Euclidean metric is
typically used as distance metric. The innovative aspect of the K-Star algorithm is provided by the
use of an entropy metric instead of Euclidean distance. The complexity of transforming one instance
into another is chosen as the distance between the different instances. Complexity is evaluated by
introducing a finite set of transformations among the instances and by defining the K* distance:

K ∗ (b
∣∣∣a) = − log2 Pr ∗ (b

∣∣∣a) (6)

in which Pr* is the probability of all paths between instances a and b. If the instances are real numbers,
it can be demonstrated that Pr*(b|a) is only dependent on the absolute value of the difference between a
and b:

K ∗ (b|a) = K ∗ (i) =
1
2

log2(2s− s2) − log2(s) + i
[
log2(1− s) − log2(1−

√

2s− s2)
]

(7)

In which i = |a − b| and s is a parameter whose value is between zero and one. Consequently,
the distance is a function of the absolute value of the difference between two instances. In addition,
it can be assumed by the hypothesis that the real space is underlain by a discrete space, with the distance
between the discrete instances being very small. In Equation (7), as s approaches zero, this leads to a
probability density function, where the probability to obtain an integer between i and i + ∆i is:

Pr ∗ (i) =
√

s/2 · e−i
√

2s
· ∆i (8)

which needs to be rescaled in terms of a real value x, where x/xo = i
√

2s, in order to get the PDF of the
real numbers:

Pr ∗ (x) =
1

2xo
e
−x
xo dx (9)

In practical uses, a realistic value of xo must be chosen, which is the mean expected value for x over
the probability distribution. In the K-Star procedure, xo is chosen by selecting a number between no and
N, where N is the whole number of training elements, while no is the number of the training elements at
the smallest distance from a. The choice of xo is generally made by introducing the “blending parameter”
b, which takes the value b = 0%, for no and b = 100%, for N, while intermediate values are linearly
interpolated. For a more detailed description of the algorithm, see Cleary and Trigg [53]. A value of
b = 40% has proven to be optimal for the problems addressed in this study.

2.3.3. Bagging and Random Forest

A regression tree essentially consists of a decision tree used as a predictive model [54]. Each internal
node represents an input variable, while leaves correspond to specified real values of the target variables.
The development of a regression tree consists of a recursive procedure in which the input data domain
is divided into subdomains, while a multivariable linear regression model is employed to obtain
predictions in each subdomain.

The recursive tree growth process is carried out by splitting each subdivision into smaller branches,
considering all the possible splits in every field and detecting, at each step, the subdivision in two
separate subsets minimizing the least squared deviation, defined as:
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R(t) =
1

N(t)

∑
i∈t

(yi − ym(t))
2 (10)

where N(t) is the number of sample elements in the t node, yi is the value of the target variable in
the i-th element and ym is the average value of the target variable in the t node. This sum estimates
the “impurity” at each node. The algorithm stops when the lowest impurity level is reached or if a
different stopping rule is encountered.

The grouping of multiple learning models leads to an ensemble method, which may increase the
forecast accuracy. The outcomes of different regression trees can be combined to get a single numeric
result, for example, through a weighted average. Bootstrap aggregating, also known as Bagging, a ML
algorithm introduced by Breiman, is based on such an approach: numerous training datasets of the
same size are randomly picked, without replacement, from the original dataset in order to build a
regression tree for each dataset. Different predictions will be provided by different regression trees,
since small variations in the training dataset may lead to significant changes in ramifications and
in outcomes for test instances. Bagging attempts to counteract the instability of the regression tree
development process by varying the original training dataset instead of sampling a new independent
training set each time: some instances are replaced by others. Finally, the individual predictions of the
different regression trees are averaged.

The Random Forests algorithm is similar to the Bagging algorithm, but the procedure by which
regression trees are built is different. Each node is allocated without considering the best subdivision
among all the input variables, but by randomly choosing only a part of the variables to split on.
The number of these variables does not change during the training process. Each tree is developed as
far as possible, without pruning, until the minimum number of instances in a leaf node is reached.

In this study, the minimum number of leaf elements has been chosen to be equal to five, while each
forest consists of 1000 trees.

2.3.4. Support Vector Regression

Starting from a training dataset {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ X × R, where X is the space of the
input arrays (e.g., X ∈ Rn). Support Vector Regression (SVR) is a supervised learning algorithm [55]
whose purpose is to find a function f (x) as flat as possible and with a maximum ε deviation from the
observed target values yi. Therefore, given a linear function in the form:

f (x) = 〈w, x〉+ b (11)

in which w ∈ X and b ∈ R, the Euclidean norm ||w||2 must be minimized, and this leads to a constrained
convex optimization problem. In most cases, a significant error must be tolerated, so it is necessary to
introduce slack variables ξι, ξι∗ in the constraints. Consequently, the optimization problem can be
formulated as follows:

minimize
1
2
‖w‖2 + C

l∑
i=1

(
ξi + ξ∗i

)
(12)

subject to
yi − 〈w, xi〉 − b ≤ ε+ ξi
〈w, xi〉+ b− yi ≤ ε+ ξ∗i

(13)

where the function flatness and the tolerated deviations are dependent on the constant C > 0.
The SVR algorithm becomes nonlinear by pre-processing the training instances xi by means of a

function Φ: X→F, where F is some feature space. Since SVR only depends on the dot products between
the different instances, a kernel k(xi, x j) = 〈Φ(xi), Φ(x j)〉 can be used rather than explicitly using the
function Φ(·).

In this research, the Pearson VII universal function kernel (PUFK) has been selected:
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k(xi, x j) =
11 + ((

2
√∣∣∣xi − x j

∣∣∣2√2(1/ω) − 1
)
/σ

)2ω
(14)

in which the parameters σ and ω control the half-width and the tailing factor of the peak. In this study,
the best results have been obtained for σ = 0.4 and ω = 0.4.

2.4. Evaluation Metrics and Cross-Validation

Different evaluation metrics have been used to assess the effectiveness of the predicting models:
the coefficient of determination R2, the Mean Absolute Error (MAE), the Root Mean Squared Error
(RMSE) and the Relative Absolute Error (RAE). These well-known metrics are defined below:

R2 =

1−

∑m
i=1( fi − yi)

2∑m
i=1(ya − yi)

2

 (15)

where m is the total number of experimental data, fi is the predicted value for data point i, and yi is the
experimental value for data point i:

MAE =

∑m
i=1

∣∣∣ fi − yi
∣∣∣

m
(16)

RMSE =

√∑m
i=1( fi − yi)

2

m
(17)

RAE =

∑m
i=1

∣∣∣ fi − yi
∣∣∣∑m

i=1

∣∣∣ya − yi
∣∣∣ (18)

in which ya is the averaged value of the observed data.
Each model has been built by a k-fold cross-validation process, using a set of about 300 vectors.

The k-fold cross-validation involves the random subdivision of the original dataset into k subsets.
Subsequently, k − 1 subsets are used to train the model, while the k-th single subset is reserved for
testing and validating the model. The recurrent cross-validation procedure is carried out k times:
each of the k subsets is used once as the testing dataset. Finally, the k results are averaged to obtain a
single prediction. In this study, k = 10 has been assumed.

3. Results and Discussion

Different models were built to predict the equivalent diameter Deq after one time step, Deq+1,
after two time steps, Deq+2 and, after three time steps, Deq+3. In the same way, different models were
developed to forecast the aspect ratio AR after one time step, AR+1, after two time steps, AR+2 and,
after three time steps, AR+3.

Based on the input variables, three different models were built for the prediction of Deq and
AR. First, a model taking into account a greater number of variables that can affect the investigated
phenomena was developed, then two simpler models were built, based on some relevant parameters
for the evolution of the bubbles. Therefore, Model 1 is characterized by the following quantities
as input variables: bubble velocity Vb, bubble depth below the free surface hb, the bubble Weber
number Web, the bubble Froude number Frb, the bubble Reynolds number Reb, the Eötvös number
Eo, the initial equivalent diameter Deq0. Model 2 admits as input variables Web, Reb and Eo. Model 3
has the following input variables: Web, Reb and Frb. In addition, five variants of each model were
developed, changing the implemented machine learning algorithm.

Table 1 shows a comparison of the results provided by the different models. With regard to Deq+1,
all models showed good predictive capabilities. Model 1 showed the best forecast performance, in all
its variants. The Bagging algorithm proved to be the most accurate one in this case (R2 = 0.9749,
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MAE = 0.0974 mm, RMSE = 0.1434 mm, RAE = 13.42%), while the SVR-based variant led to less
accurate predictions (R2 = 0.9472, MAE = 0.1418 mm, RMSE = 0.2020 mm, RAE = 20.18%). RF and
K-Star showed a comparable performance, outperforming ARDS.

Table 1. Synthesis of the results of equivalent diameter (Deq) prediction models.

Model
Number Input Variables Algorithm R2 MAE

[mm]
RMSE
[mm] RAE

Deq+1

1
hb, Vb, Web, Frb,

Reb, Eo, Deq0

ARDS 0.9671 0.1132 0.1686 15.39%
Bagging 0.9749 0.0974 0.1434 13.42%
K-Star 0.9692 0.1111 0.1582 15.27%
RF 0.9734 0.1047 0.1489 14.33%
SVR 0.9472 0.1418 0.2020 20.18%

2 Web, Reb, Eo

ARDS 0.9640 0.1209 0.1748 16.31%
Bagging 0.9742 0.0973 0.1448 13.61%
K-Star 0.9629 0.1152 0.1717 16.29%
RF 0.9676 0.1138 0.1645 15.42%
SVR 0.9495 0.1466 0.2001 20.36%

3 Web, Frb, Reb

ARDS 0.8425 0.2710 0.3552 36.80%
Bagging 0.9269 0.1706 0.2461 23.38%
K-Star 0.9214 0.1749 0.2488 24.68%
RF 0.9512 0.1354 0.2032 18.52%
SVR 0.9546 0.1388 0.1931 19.10%

Deq+2

1
hb, Vb, Web, Frb,

Reb, Eo, Deq0

ARDS 0.9536 0.1495 0.1936 20.04%
Bagging 0.9650 0.1284 0.1675 17.35%
K-Star 0.9651 0.1278 0.1687 17.38%
RF 0.9637 0.1346 0.1715 18.15%
SVR 0.9413 0.1563 0.2123 22.12%

2 Web, Reb, Eo

ARDS 0.9499 0.1555 0.2009 20.77%
Bagging 0.9590 0.1403 0.1820 18.88%
K-Star 0.9481 0.1495 0.2003 20.86%
RF 0.9553 0.1507 0.1898 20.32%
SVR 0.9434 0.1655 0.2144 22.39%

3 Web, Frb, Reb

ARDS 0.9261 0.1899 0.2470 25.75%
Bagging 0.9168 0.1894 0.2610 26.04%
K-Star 0.9170 0.1843 0.2580 25.77%
RF 0.9386 0.1682 0.2254 22.85%
SVR 0.9410 0.1619 0.2147 22.58%

Deq+3

1
hb, Vb, Web, Frb,

Reb, Eo, Deq0

ARDS 0.9526 0.1437 0.1980 19.29%
Bagging 0.9695 0.1181 0.1589 15.84%
K-Star 0.9639 0.1272 0.1705 17.28%
RF 0.9713 0.1137 0.1541 15.38%
SVR 0.9399 0.1555 0.2153 21.92%

2 Web, Reb, Eo

ARDS 0.9451 0.1570 0.2107 21.10%
Bagging 0.9670 0.1204 0.1670 16.17%
K-Star 0.9422 0.1471 0.2094 20.86%
RF 0.9632 0.1285 0.1734 17.39%
SVR 0.9425 0.1645 0.2133 22.58%

3 Web, Frb, Reb

ARDS 0.8932 0.2189 0.2950 29.47%
Bagging 0.8845 0.2228 0.3036 30.51%
K-Star 0.9031 0.1971 0.2772 27.79%
RF 0.9170 0.1974 0.2623 26.45%
SVR 0.9416 0.1590 0.2162 21.74%

Model 2 exhibited forecasting capabilities very similar to those of Model 1. Furthermore, in this
case, the Bagging algorithm (R2 = 0.9742, MAE = 0.0973 mm, RMSE = 0.1448 mm, RAE = 13.61%) led to
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the best predictions, while SVR (R2 = 0.9495, MAE = 0.1466 mm, RMSE = 0.2001 mm, RAE = 20.36%)
was outperformed by all the other considered ones. RF showed an accuracy very close to that of
Bagging, while the ARDS-based variant of Model 2 slightly outperformed the homologous variant of
Model 1.

Model 3 was generally characterized by a significant decline in forecasting capabilities, however
overall performance was still good. Unlike previous models, the SVR-based variant (R2 = 0.9546,
MAE = 0.1388 mm, RMSE = 0.1931 mm, RAE = 19.10%) outperformed all the others. ARDS led
to significantly less accurate predictions (R2 = 0.8425, MAE = 0.2710 mm, RMSE = 0.3552 mm,
RAE = 36.80%), while RF ensured predictions comparable to those of SVR, outperforming both
Bagging and K-Star.

As for Deq+2, Model 1 led to slightly less accurate results than those relating to the prediction of Deq+1.
Again, the Bagging-based variant of Model 1 (R2 = 0.9650, MAE = 0.1284 mm, RMSE = 0.1675 mm,
RAE = 17.35%) led to the most accurate predictions. On the other hand, SVR was, again, the worst
performing algorithm (R2 = 0.9413, MAE = 0.1563 mm, RMSE = 0.2123 mm, RAE = 22.12%). RF and
K-Star showed a comparable performance and both slightly outperformed ARDS.

Again, Model 2 predictive capabilities were just below those of Model 1 and Bagging algorithm
led to the most accurate forecasts (R2 = 0.9590, MAE = 0.1403 mm, RMSE = 0.1820 mm, RAE = 18.88%),
whereas SVR (R2 = 0.9434, MAE = 0.1655 mm, RMSE = 0.2144 mm, RAE = 22.39%) provided the
least accurate outcomes. RF, ARDS and K-Star were characterized by their comparable forecasting
capabilities in this case.

Model 3 was again characterized by a remarkable decrease in accuracy of forecasts, compared to
Model 1 and Model 2, with a manifest increase in errors. As in the case of Deq+1, the SVR-based variant
(R2 = 0.9410, MAE = 0.1619 mm, RMSE = 0.2147 mm, RAE = 22.58%) led to the best results, while the
Bagging based variant (R2 = 0.9168, MAE = 0.1894 mm, RMSE = 0.2610 mm, RAE = 26.04%) provided
the worst performance. RF outperformed both ARDS and Bagging. Moreover, the ARDS-based variant
outperformed the homologous variant developed to forecast Deq+1.

Regarding Deq+3, the forecasting capabilities of Model 1 were in line with those of the homologous
forecasting model of Deq+2. In this case RF led to the best forecasts (R2 = 0.9713, MAE = 0.1137 mm,
RMSE = 0.1541 mm, RAE = 15.38%), while ARDS and SVR provided the least accurate results.
Once again, the predictions of Model 2 were slightly less accurate than those of Model 1. The variant
based on the Bagging algorithm (R2 = 0.670, MAE = 0.1204 mm, RMSE = 0.1670 mm, RAE = 16.17%)
proved to be the best performing, while those based on ARDS and SVR also in this case led to the least
accurate results. Model 3 confirmed itself as the worst performing model. Among the various variants
of Model 3, the one based on SVR (R2 = 0.9416, MAE = 0.1590 mm, RMSE = 0.2162 mm, RAE = 21.74%)
confirmed to be the most accurate, significantly outperforming all the others.

A comparative analysis of the three considered models, in all variants, showed that they do not
undergo a significant reduction in forecasting capability of the equivalent diameter of the bubble,
gradually passing from Deq+1 to Deq+2 and Deq+3. Therefore, with a good experimental dataset available,
an approach based on machine learning may allow us to predict, with good accuracy, the variation in
the bubble volume over time. Model 1 generally leads to the best predictions, but it requires a greater
number of input variables and, in particular, it needs to know the initial depth of the bubble. Therefore,
for practical purposes it may be better to use Model 2, whose high forecasting capabilities demonstrate
that, to predict the volumetric deformation of the bubble with satisfactory accuracy, it is enough to
know the initial values of the Weber, Reynolds and Eötvös numbers.

While it was established that, within Model 1 and Model 2, all the considered algorithms are
able to provide good predictions, the variants based on the Bagging algorithm led to the best results,
while those based on SVR provided the least accurate results. The latter algorithm, on the other hand,
is the one that provided the best results within Model 3. However, Model 3 proved to be less accurate
than the other two models: the absence of the number of Eötvös among the input variables significantly
reduced its effectiveness. Moreover, it should be noted that the SVR algorithm has consistently shown
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the same level of accuracy across all models and input variables. This result highlights its robustness,
as there is an indication that the algorithm is significantly sensitive to input parameters.

Figure 6 shows a comparison between the predicted and measured values of Deq+1, relative to
Model 1. In addition, it shows the relative error as a function of the measured Deq+1. Overestimation
errors were observed more frequently than underestimation errors in all Model 1 variants. Furthermore,
the maximum relative errors were observed for bubbles with equivalent diameters less than 2 mm.
These errors showed a tendency to decrease as the equivalent diameter grew and generally did not
exceed ±25%. The exception was represented by the SVR algorithm. If the bubble diameter was
less than 2 mm, SVR generally tended to overestimate the diameter itself and the error could also
exceed 30%, while, if the diameter was greater than 4 mm, SVR tended to underestimate the diameter,
with an error which did not exceed 15%. If the equivalent bubble diameter was between 2 and 4 mm,
the SVR-based model variant provided results comparable to those of the other variants.
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Figure 6. Cont.
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Figure 6. Equivalent diameter prediction “Model 1”: in the left column, predicted versus experimental
values, in the right column, residuals versus experimental values.

The comparison between the predicted and measured values of Deq+1 shown in Figure 7 relates to
Model 2. As in the previous case, the same figure also shows the relative error as a function of the
experimental Deq+1. The error distributions were quite similar to those of Model 1, while the maximum
relative errors were observed when Deq < 2.5 mm. In this case, both K-Star and SVR led to relative
errors, in some cases greater than 30% in the forecasts for smaller bubbles.
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Figure 7. Equivalent diameter prediction “Model 2”: in the left column, predicted versus experimental
values, in the right column, residuals versus experimental values.

An alternative effective representation of the models’ errors in predicting Deq+1, in terms of
residuals (i.e., absolute errors), is provided by the notched box plots in Figure 8. These plots show
the range of errors with respect to the experimental values. The lower end of each box plot denotes
the lower quartile Q1 (25th percentile), the upper end denotes the upper quartile Q3 (75th percentile),
the band inside the box represents the median of the data. The whiskers extend from the bottom of the
box to the smallest non-outlier and from the top of the box to the highest non-outlier in the dataset.
The box plots further confirm what was previously argued in terms of the accuracy of the different
models. It can also be noted that the variants of the models based on the Bagging and RF algorithms
have their residual distributions characterized by greater symmetry than the others.
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Figure 8. Equivalent diameter prediction: box plots of the residuals.

Figure 9 shows the Deq time series of two of the analyzed bubbles. Again, it can be observed that
all models’ variants provided predictions in good agreement with the experimental data. In addition,
it is interesting to note that higher errors were observed in correspondence with higher changes in the
experimental values between two consecutive time steps. Finally, it may be worth highlighting that
the algorithm that provided the most accurate predictions for a single bubble may be different from the
algorithm that was the most accurate in the entire dataset.
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Figure 9. Comparison among equivalent diameters by means of time series; (a) Model 1—bubble 1;
(b) Model 2—bubble 12.

The aspect ratio (AR) results are summarized in Table 2. The accuracy of the prediction models
was significantly lower than that of the analogous forecast models of equivalent diameter.

Table 2. Synthesis of the results of aspect ratio (AR) prediction models.

Model
Number Input Variables Algorithm R2 MAE RMSE RAE

AR+1

1
hb, Vb, Web, Frb,

Reb, Eo, Deq0

ARDS 0.5376 0.0244 0.0317 67.89%
Bagging 0.4651 0.0254 0.0342 69.85%
K-Star 0.3505 0.0277 0.0372 76.64%
RF 0.4002 0.0276 0.0384 72.71%
SVR 0.2976 0.0272 0.0373 76.96%

2 Web, Reb, Eo

ARDS 0.4795 0.0283 0.0372 72.86%
Bagging 0.3884 0.0286 0.0376 77.28%
K-Star 0.3573 0.0277 0.0369 77.11%
RF 0.3302 0.0303 0.0407 79.89%
SVR 0.3637 0.0279 0.0374 76.38%

3 Web, Frb, Reb

ARDS 0.1463 0.0400 0.0540 107.30%
Bagging 0.1957 0.0321 0.0429 85.76%
K-Star 0.2257 0.0311 0.0417 83.70%
RF 0.2038 0.0303 0.0406 84.40%
SVR 0.3023 0.0287 0.0387 79.55%

AR+2

1
hb, Vb, Web, Frb,

Reb, Eo, Deq0

ARDS 0.4628 0.0284 0.0385 72.66%
Bagging 0.3401 0.0294 0.0386 80.03%
K-Star 0.3783 0.0308 0.0420 77.99%
RF 0.3772 0.0300 0.0409 78.33%
SVR 0.4035 0.0280 0.0371 75.81%

2 Web, Reb, Eo

ARDS 0.3354 0.0332 0.0439 83.01%
Bagging 0.3659 0.0312 0.0404 80.95%
K-Star 0.4459 0.0315 0.0411 77.78%
RF 0.4416 0.0311 0.0417 76.21%
SVR 0.4242 0.0332 0.0432 80.22%

3 Web, Frb, Reb

ARDS 0.0557 0.0434 0.0547 105.91%
Bagging 0.3282 0.0349 0.0434 86.55%
K-Star 0.4226 0.0328 0.0411 80.80%
RF 0.3466 0.0344 0.0448 84.39%
SVR 0.4538 0.0334 0.0422 80.08%



Appl. Sci. 2020, 10, 3879 17 of 22

Table 2. Cont.

Model
Number Input Variables Algorithm R2 MAE RMSE RAE

AR+3

1
hb, Vb, Web, Frb,

Reb, Eo, Deq0

ARDS 0.1364 0.0358 0.0468 93.19%
Bagging 0.3394 0.0301 0.0393 80.06%
K-Star 0.1662 0.0345 0.0457 89.14%
RF 0.3065 0.0315 0.0413 81.96%
SVR 0.2293 0.0301 0.0403 83.25%

2 Web, Reb, Eo

ARDS 0.4327 0.0295 0.0388 75.35%
Bagging 0.3878 0.0302 0.0389 78.77%
K-Star 0.3258 0.0314 0.0399 84.21%
RF 0.3190 0.0315 0.0411 82.30%
SVR 0.3232 0.0294 0.0396 79.09%

3 Web, Frb, Reb

ARDS 0.0371 0.0406 0.0511 104.77%
Bagging 0.1654 0.0355 0.0449 92.77%
K-Star 0.2369 0.0337 0.0430 88.32%
RF 0.2354 0.0336 0.0430 88.87%
SVR 0.3501 0.0322 0.0411 83.04%

With regard to AR+1, Model 1 showed again the best prediction capability and the ARDS algorithm
was the most accurate one (R2 = 0.5376, MAE = 0.0244, RMSE = 0.0317, RAE = 67.89%), while all
the other considered algorithms showed comparable performances. Model 2 showed an appreciable
deterioration in forecasting capabilities compared to Model 1, except for the SVR-based variant.
The results of Model 3 were even less accurate, especially those of the ARDS-based variant.

As for AR+2, Model 1 outcomes were comparable to the results of the homologous predictive
model of AR+1, in some cases even slightly better. Model 2 predictions also had an accuracy similar
to that of Model 1. In particular, from the comparison with Model 1, by analyzing the results of the
different Model 2 variants, it could be observed that ARDS was characterized by the deterioration of the
predictive capabilities, while K-Star showed an improvement. For the other algorithms, the different
metrics led to conflicting results. Model 3 proved to be the less accurate once again, except for the
SVR-based variant, which outperformed the analogous variant of Model 2. As for AR+3, Model 2
outperformed Model 1 in all variants, while Model 3 led to the least accurate predictions, except for
the SVR-based variant, the results of which are comparable to the analogous variant of Model 2.

Figure 10 shows a comparison between the predicted and experimental values of AR+1,
with reference to Model 1. In addition, it shows the relative error versus the measured AR+1.
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Figure 10. Aspect ratio prediction “Model 1”: in the left column, predicted versus experimental values,
in the right column, residuals versus experimental values.

It is evident that the results which most negatively affect the metrics refer to AR < 0.3. In this
range, the model outcomes were particularly poor. This occurrence was mainly due to the scarcity of
training data falling within this range. However, it should be noted that the models’ predictions cannot
be considered satisfactory in the entire investigated experimental range. There was an important
limitation in the model, which did not include, among the input variables, a parameter that adequately
takes into account the stress state on the surface of the bubbles (i.e., pressure and shear stress in the
liquid surrounding the bubble). Unfortunately, measurements carried out via shadowgraph technique
are not able to overcome this limitation.
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For the sake of brevity, the diagrams relating to the similar Model 2 results and the poorer Model 3
results are not shown.

Figure 11 shows the notched box plots of the residuals in AR+1 predictions. The box plots also show
quite clearly that Model 1 outperforms Model 2, which, in turn, outperforms Model 3. Furthermore,
the number of outliers is significant. Finally, the distributions of the residuals are slightly asymmetric,
with a prevalence of positive values.
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Figure 11. Aspect ratio prediction: box plots of the residuals.

Figure 12 shows the AR time series of two of the analyzed bubbles. The results are better than what
was expected on the basis of the analysis carried out above. They confirm that the model evaluation
metrics have been significantly worsened by the results relating to bubbles characterized by very low
aspect ratios. Therefore, it is reasonable to believe that the forecast models based on machine learning
algorithms are able to provide accurate predictions of the aspect ratio of single bubbles, when used for
bubbles whose characteristics are comparable to those used for model training.
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Figure 12. Comparison among aspect ratios by means of time series; (a) Model 1—bubble 1; (b) Model
2—bubble 12.

Model 2, based on the numbers of Weber, Reynolds and Eötvös only, has proven to be able to
predict, with good approximation, the evolution of single bubbles, in terms of equivalent diameter and
aspect ratio, in a field of uncertain pressures originating from a plunging jet. The combination of Web,
Frb and Reb leads to an additional dimensionless parameter, indicated as Morton number Mo:

Mo =
We3

b

Fr2
b ·Re4

b

(19)

However, it is not useful to introduce a new parameter into prediction models that is a combination
of already considered parameters, nor is it possible to define a simple functional relationship between
the deformation of a single bubble and the Morton number. Therefore, this parameter has not been
considered in this study.
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Overall, preliminary elaborations have shown that, with regard to the equivalent diameter,
the number of tracked bubbles is sufficient for the convergence of the model. If a single bubble is
excluded from the training dataset, the developed models still lead to results quite close to those
obtained from the entire dataset. Instead, regarding the aspect ratio, a greater number of bubbles in
the AR < 0.3 range could improve the accuracy of the models.

4. Conclusions

A truthful prediction of the deformation of air bubbles in a water volume in the presence
of uncertain pressure field is an important aspect of the study of phenomena such as cavitation,
air entrainment and foaming. If suitable experimental data are available, machine learning algorithms
can provide powerful tools to obtain accurate predictions.

In this study, three different models were built to predict the equivalent diameter and aspect
ratio of air bubbles moving near a plunging jet. Five variants of each model were developed,
varying the implemented machine learning algorithm: Additive Regression of Decision Stump,
Bagging, K-Star, Random Forest and Support Vector Regression. The experimental data were obtained
from measurements carried out using a shadowgraph technique.

As for the prediction of the equivalent diameter, Model 1 provided the best predictions in most
cases, but it needs a higher number of input variables, including the initial depth of the bubble. Model 2
provided results comparable to those of Model 1, but requires only the Reynolds, Weber and Eötvös
numbers as inputs. The lower accuracy of Model 3 can be attributed to the absence of the number of
Eötvös among the input variables. Within Model 1 and Model 2, the variant based on the Bagging
algorithm led to the best results in most cases, while the variant based on SVR led to the least accurate
results. On the other hand, the SVR-based variant provided the best results under Model 3.

Regarding the forecast of the aspect ratio, the results of the three models cannot be considered
fully satisfactory in general, even if, for some bubbles, the models have provided very good predictions.
The unsatisfactory results can be attributed to the training dataset, which does not include an adequate
number of bubbles with low aspect ratio values, and probably to the limits of the models, whose input
variables do not adequately take into account the stresses acting on the surface of the bubbles.

From what is shown in this study, it is therefore clear that a combined approach based on a
shadowgraph technique and machine learning algorithms can certainly be considered to address
complex problems in the study of multi-phase flows.
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