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Abstract: The cloud computing paradigm has the ability to adapt to new technologies and provide
consistent cloud services. These features have led to the widespread use of the paradigm, making it
necessary for the underlying computer infrastructure to cope with the increased demand and the high
number of end users. Platforms often use classical mathematical models for this purpose, helping
assign computational resources to the services provided to the final user. Although this kind of model
is valid and widespread, it can be refined through intelligent techniques. Therefore, this research
presents a novel system consisting of a multi-agent system, which integrates a case-based reasoning
system. The resulting system dynamically allocates resources within a cloud computing platform.
This approach, which is distributed and scalable, can learn from previous experiences and produce
better results in each resource allocation. A model of the system has been implemented and tested on
a real cloud platform with successful results.
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1. Introduction

Cloud computing (CC) has undergone rapid growth since users began to notice its great advantage
over traditional IT systems. This is because this paradigm facilitates the development of distributed
computing systems, data management and computing resources through a scalable network, data
processing centers and web services [1]. Hence, this technology is leading the revolution of distributed
computing and has resulted in the rapid growth of private and public platforms [2–5]. There is no doubt
that the general social acceptance of this paradigm [6] has largely contributed to its development, due to
the economic interests of large technology companies that underline the purely technical aspects [7,8].

The marketing model used in the CC paradigm is also innovative, as it is based on a pay-as-you-go
concept [7] for utility services such as water, gas, etc. In the utility computing paradigm [9], users are
required to first negotiate and establish a service level agreement (SLA) to have access to the goods [10].
Having established a contract for the computing-based goods, both users (who pay fees on a regular
basis) and the CC system (through service maintenance) are obliged to comply with the agreement.
This marketing model contractually requires CC platforms to maintain the quality of services (QoS) as
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previously agreed upon, which makes it necessary for the internal architecture to monitor and adapt to
the demand dynamically. In this respect, the novelty is reflected in the range of innovative underlying
technologies, such as web services and microservices, virtualization, dynamic resource allocation
or service farms, among others, which have made it possible for services to be offered dynamically,
regardless of existing user demand [11–13].

The resources of a CC environment are distributed among all of the services. Each service has
specific characteristics and requirements; thus, computational resources are assigned dynamically
to each service in accordance with the demand. In order to do so, these platforms use a system
for the management (monitoring and control) of the underlying computational infrastructure and
for the implementation of algorithms that allow for greater elasticity in the amount of resources
dedicated to each service, depending on the instant demand. Therefore, if a specific service has,
for example, established a specific set of SLAs with its end-users, the system must be able to satisfy
the pre-established agreement regardless of existing demand. That is, it must be able to add new
resources as demand increases and, likewise, to remove these resources when the demand decreases.
In other words, the main objective of elastic algorithms is to allocate the appropriate amount of
computational resources to a specific service according to the instantaneous demand of those services.

At the technological level, a CC platform is mainly based on virtualization technology, which is
a software layer that can abstractly visualize the underlying infrastructure as virtual computing
nodes. The main advantage of virtualization is that the assignment of computational resources can
be dynamically reconfigured, giving rise to an abstract or virtual view, which is homogeneous and
can be easily controlled, unlike the real hardware environment [14]. Therefore, given that the services
offered by a CC environment are distributed in different computational nodes, the assignment or
withdrawal of resources is based on adding or eliminating computational nodes to/from a specific
service. In any case, although the process of managing the infrastructure is simplified as a result of
virtualization, the new generation of algorithms should not only provide an elastic model (increasing
and decreasing) for allocating resources, but it should also reduce operational costs in the CC
environment. Current state-of-the-art research is based on methods that use centralized algorithms
focused on mathematical and heuristic models [15–17], neither of which ensures the efficiency of
the system, or even its availability in the case of a system failure. In general terms, these algorithms
add or eliminate the resources assigned to a particular computational service, according to the SLA
established with the end user, the consumption of energy in the CC environment, and the actual state
(available resources) of the CC environment [18].

Because of these shortcomings derived from centralization (unavailability, bottlenecks, bandwidth
consumption, etc.), new techniques need to be explored for the development of CC models with
elasticity of services. This research suggests that the application of models based on artificial intelligence
(AI) as a CC is distinguished by its large distribution, its heterogeneity and its high level of uncertainty,
and it is precisely in this area that the application of AI techniques offers considerable opportunities.
The incorporation of proactivity, self-adaptation and learning capacity is the reason for the evolvement
of such elastic management algorithms for the allocation of computational resources. In this research,
agents and multi-agent systems (MAS) [19] have been selected from among all the available AI
techniques due to their distributed nature and ability to adapt to different environments, such as
CC systems, which are open systems. MAS are considered particularly effective because they can
provide advanced and innovative solutions [20] by exploiting differentiating elements as part of
the strategy defined for the provision of customer satisfaction, providing flexibility, capability and
response speed [21]. This approach allows existing models to evolve toward a model in which different
distributed agents are represented within an uncertain environment, causing them to interact and
share information with their peers [22]. This would make it possible for the algorithms that manage
the resources to be distributed over the whole system, which would ease their use regardless of the size
of the data center. The MAS-based structure proposed in in this paper offers a self-adaptive and dynamic
model for the deployment of computational resources in a CC. This framework has learning capabilities
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through the implementation of a case-based reasoning (CBR) system [23], a model which, to the best
of our knowledge, has not been applied before in distributed systems with these characteristics.
These reasoning systems use past experience to solve new problems; their intelligent model resembles
human intelligence.

Consequently, we have developed a computational resource distribution model to be used in
distributed environments, capable of managing resources according to past experiences, and of
dynamically adjusting the resources allocated to each service. Using such a model makes it possible
to achieve appropriate responses to demand and to increase the degree of effectiveness/efficiency of
the solution and the state of the CC. Therefore, managing the functions of the nucleus of a CC system
through an agent-based model and a CBR approach makes it possible to create a much more efficient,
scalable and adaptable platform than the current ones.

This paper is structured as follows: the next section describes the context of the current work
and the state-of-the-art approaches related to the presented one. Section 3 focuses on the MAS-based
platform that supports the technical proposal. Section 4 presents the resource allocation algorithms
applied in each agent, while Section 5 presents the evaluation and validation of the proposal. Finally,
the last section draws conclusions from the conducted research.

2. Related Technologies and State-of-the-Art Approaches

Usually, in a CC environment, the term hardware infrastructure refers to the virtualized
infrastructure [24,25], which means that there is a layer of abstraction between the actual hardware
infrastructure and the computation nodes. In this way, each of the offered services is deployed in virtual
nodes belonging to that layer of abstraction, and these are called virtual machines (VMs). Therefore,
services are usually distributed and this distribution of services in the different nodes requires a system
that provides the necessary load balance to distribute the requests among the different computer nodes
that attend them.

Each VM has a set of dedicated hardware resources and is completely independent, making it
possible to run different operating systems, where the software is completely independent.
With this hardware in any given physical equipment, the virtualization process allows one to share
and encapsulate the physical resources among a set of VMs by following a pattern similar to
the master-slave model [26], in which the (real) server hosts different VMs. This capability, made
possible by the virtualization technology, allows the computational resources in the virtualization
layer to be considered unlimited resources, while the physical resources or hardware infrastructure are
limited to the real infrastructure. The only disadvantage of this technology is that the management of
the virtual environment requires a highly-specialized software called hypervisor [27]. This component
is responsible for managing the hardware abstraction in each physical node, and this also consumes
resources [28]. Nevertheless, this computational consumption depends on the selected virtualization
model. Currently, the additional cost does not pose any significant problem as it does not exceed 2%
of the computational power of the physical environment [24,29]. However, it is necessary to have
dedicated hardware, which is also widely extended as a result of technologies such as INTEL-VT or
AMD-V [25].

Virtualization techniques greatly simplify both the management and control of IT resources at
the infrastructure level, supporting the dynamic creation or removal of VMs on demand or even
enabling the migration of a VM from one physical machine to another at runtime, without stopping or
pausing the machine or service. Therefore, thanks to virtualization technology, this complex problem is
actually simple to solve, since it is only based on the efficient redistribution of physical (real) resources
among the different computational (virtual) nodes. Due to its complexity and its contemporaneity,
this problem has attracted the attention of the scientific community, which has led to the proposal of
many different solutions.
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Current Approaches to Allocated Computational Resources

There are two main approaches to resource distribution in the state-of-the-art systems [8]. The first
one involves the search for the cheapest and most efficient provider in terms of resource usage. Thus,
this approach follows a model in which a broker or resource manager, usually an external one, is in
permanent and simultaneous contact with various providers, and selects the most appropriate one
for each client at any given moment. The key technologies employed in this approach are service
discovery, negotiation, etc. However, this approach is not the focus of this research and thus will not
be considered any further.

The second approach is within the scope of this study, as it is concerned with the efficiency of
resources within a CC provider’s data centers. In this case, the problem can be contemplated from
two different perspectives [30,31]. On the one hand, a large-scale CC resource provider with different
distributed data processing centers throughout the world must process client requests according to
two variables: the distance from the data center, and the current workload at each center. This makes it
easier to reduce the latency of giving a response to clients. This model is known as a time-drive adaptive
mechanism [31]. On the other hand, a small-scale resource provider is one that distributes resources
from an individual data center, regardless of its size. The task of distributing resources is performed by
a component usually referred to as the resource allocation system (RAS). Regarding this perspective,
the state-of-the-art systems presents two major approaches [8]:

• QoS-aware, or the market-oriented approach [8]. This approach is related to a customer-oriented
resource and service distribution model, seeking to minimize computing risks in order to
distribute computing resources, following the SLA and a pay-per-use model. In this model,
computer resource management techniques aim to comply with these agreements at all times,
thus providing the quality of service requested by the end user. In line with this approach,
the state-of-the-art systems include proposals such as RAS-M [15], which is a model based on
the market economy. Its aim is to redistribute resources that will lead to a fair market price.
Other studies address the distribution of resources on a mathematical basis, such as game
theory [32,33], or the maximization of an optimization function, based on linear programming
techniques, given that it simply involves the optimization of resources [34–36].

• Energy-aware approach [8]. In this second case, the distribution of resources considers both energy
consumption and the pre-established SLA, which implies compliance with both. This approach
has less published research because it is more recent. This includes a variety of techniques such
as the application of energy savings policies in physical machines and VMs [16,37], the efficient
redistribution of VMs according to the consumption of each physical machine [38], or models that
are based on optimization techniques [17,39]. Each of these can be found in an incipient state of
development, which makes their application in large computing centers more complicated.

In the light of the examination of the most recent studies, it is essential to build a model for
the distribution of computer resources that will consider energy consumption as a key variable.
The objective of including this variable is to seek to reduce energy consumption to the point that
it satisfies the SLAs that have been established with the users of the environment. Moreover,
all algorithms presented in this section follow centralized approaches, which use mathematical and
economic theory models to provide the best suited algorithms depending on the type of problem.
This research follows a novel approach, different from the usual ones, as it is based on AI and
optimization techniques, which allows one to distribute resources following a distributed and scalable
model, thus allowing the system to learn during a long period of time. To this end, the system is based
on a MAS architecture, which makes it possible to interact among the different platform components
and permits the introduction of advanced reasoning algorithms to facilitate the development of
autonomous and distributed models able to dynamically self-adapt to changes in the environment.
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3. Proposed Intelligent Model

On the basis of the analysis described above, where the strengths and weaknesses of the related
work have been analyzed, we intend to propose a completely different model, based on CBR and
with a MAS architecture to allocate resources and manage CC. The MAS architecture is called +Cloud
(multi-agent system cloud) and it is designed specifically for the monitoring and control of a CC
infrastructure. This MAS has been designed to leverage some of the most important characteristics of
this type of system [39,40] (autonomy, pro-activity, intelligence, learning, organization, mobility, etc.)
with the aim of implementing a distributed control strategy that allows for the design of decentralized
algorithms for the management and control of cloud infrastructures.

+Cloud has been described at length in previous works [40,41] and it has been validated that it is
an adequate system for the implementation of decentralized algorithms that allow for the allocation of
computational resources [42]. Thus, this article is only going to focus on the contributions we add
to this architecture. Specifically, a decentralized algorithm has been developed that incorporates
a case-based reasoning model. This model gives priority to the distribution of responsibilities
and to the limited knowledge of the system regarding each of the MAS components. Thus,
this section describes the key components that allow to extend the operation of the elastic algorithms
to resource distribution.

However, it should be noted that since the proposed MAS is a distributed system by its own
definition, all the agents involved in resource distribution tasks may be located making efficient
use of the CC environment. In other words, a distributed approach is used in the monitoring and
control of the CC system. The cloud environment obtains the data from all of the CCs, both from
the services it provides and from the infrastructure itself, thus having a distributed model oriented
towards monitoring, which allows existing resources to be instantly adapted to the characteristics
sought for in the CC environment. In this way, the demands of each service are satisfied in an agile
way, meeting the objective of reducing energy consumption and SLA agreements.

Figure 1 presents the primary agents in charge of the distribution of computational resources.
The main difference between a CC environment and previous technologies is that it has the ability
to offer the demanded services through a pay-per-use model [7]. +Cloud has been designed using
the GORMAS methodology [43]. The model followed in the design of this MAS differs from
the traditional control models employed in the development of this type of platforms, where decisions
are usually taken centrally [8]. In this regard, monitoring and decision-making related responsibilities
have been distributed throughout all the components of the platform (servers, services, etc.). Thanks to
this model, it is possible to decide where the information is collected on the basis of local knowledge,
which has allowed for the design of agile control processes based on uncertainty and interaction
between peers.

In general terms, when a service k is demanded by a process or user, the service must fulfill it with
the agreed SLA. This issue is controlled by the two types of agents associated with each service (service
monitor and service supervisor) and with the sub-organization of resource consumption. The service
monitor agent (SMA) is in charge of monitoring each of the services offered by the system, collecting
data regarding the requests being made and measuring parameters of their quality, performance, errors,
etc., in addition to having access to the demand history. There is an agent for each of the services
offered by the CC and it is located in the node that balances the requests. The service supervisor
agent (SSA) ensures that the previously established SLA agreements are being complied with, taking
appropriate action in the event of detecting deficiencies. The SSA is also responsible for ensuring
the high availability of the service, making sure that there are at least a certain number of nodes
working in independent physical teams.
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Figure 1. Distribution of agents on the cloud computing platform.

The services are deployed on servers, which represent the system’s computer resources. Three roles
(local monitor, local supervisor and global manager) associated with the sub-organization that provides
resources are also deployed here. The local monitor agent (LMA) is in charge of collecting data
regarding the state of the local resources of each physical server—including its virtual machines—(PRi)
and transforming these data into adequate information for decision making. The local supervisor
agent (LSA) is in charge of the control and distribution of the physical machine’s computer resources,
and is able to redistribute resources among the instances of execution, launch or shut down of virtual
machines. Its objective is, therefore, the efficient management of the individual resources of the physical
server between the different nodes it hosts, maximizing its use, but without diminishing the quality
of the services being provided; and, ensuring that the physical machine always has the minimum
resources to perform the tasks of coordination and control. Its work is carried out in close collaboration
with the server’s local monitor agent. The SLA and the local monitor have total knowledge of each
individual server, but at the same time uncertainty regarding the rest of the infrastructure. The global
manager (GMA) is the role in charge of making decisions about how to distribute the computer
resources among several nodes of the CC platform, and not only at a local level as in the case of
the LSA’s role. In order to provide assistance to the decision-making process regarding the means
of distributing resources, they use a partial knowledge base (provided by the LMA role) and past
experiences stored in the usage history repository, which is achieved by relying on the CBR model [23].
The GMA’s role is to determine how and with what characteristics the new service-associated virtual
machines will be instantiated. Additionally, it is also responsible for the process of compacting
the existing virtual machines into a smaller number of servers, so that it is possible to shut down
physical servers and reduce energy consumption. Given that it is possible to stop and start execution
nodes, it is also possible that these agents enter and leave the system dynamically, linking their life
cycle to that of the server they monitor or control.

All these agents have a local knowledge base, but they also store historical information on
a centralized nonSQL server, based on MongoDB. When the agents enter the system, they retrieve
specific information about the history of the specific service or server where they are located. Concretely,
there are three centralized repositories (resources, SLAs and historical), as can be seen in the structural
view according to the GORMAS methodology given in Figure 2. This figure also shows the detail of
the activity model according to GORMAS for the infrastructure control service.

The next section provides a detailed description of the reasoning model designed to allocate
computational resources by means of agents within a distributed and heterogeneous environment
where the level of uncertainty is high.
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4. Intelligent Model for Allocating Resources

The redistribution of resources is performed by the GMAs located in each physical server,
which have greater authority than the LSAs and can request them to add/remove virtual nodes to
a specific service k with specific characteristics. The GMA is a highly specialized agent which is in
charge of providing the CBR architecture [23,44]. This reasoning process is performed simultaneously
in all physical machines with available resources. In the last part of the distributed algorithm, a new
VM, with specific characteristics of virtual CPUs (vcpu) and Memory (M) is instantiated to meet current
demand (see Figure 3). The part associated with the reasoning of CBR at each physical node is based on
the experience gained in storing similar cases. The knowledge base (KB)—or case memory—is shared
with the whole CC environment; the global knowledge of the system can be shared with each of
the GMAs. Since this memory can grow considerably as a maintenance strategy, a high-speed,
schema-free database, based on MongoDB, is used to provide rapid access to the stored data.
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Figure 3. When a service experiences difficulty, more resources must be added by means of a new
virtual machine (VM).

The reallocation process is initiated by the SSA associated with the service that is experiencing
difficulties in responding to demand, as shown in Figure 4. This figure shows a hypothetical case
of communication among the agents presented in Figure 3, where service k is deployed on virtual
nodes hosted by three servers (PR1,2 and i) that have been represented as vertical lines. The servers host
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their agents and processes as described. The communication between agents and other processes is
indicated by arrows. The aim of the communication is to find a solution—S(P)—to service demand.
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Figure 4. Diagram of the collaborative agents shown in Figure 2 communicating to reach a solution
S(P) to the request carried out by the service k.

When a service k is experiencing difficulties, the associated SSA alerts all physical machines
(that host the nodes of the service) that a new allocation of resources is required to handle the demand,
as shown in the messages m2 sent from the SSA to the remaining agents of the service in Figure 4.
The message is received by the GMA from each physical server of the service, GMAs of PR1, PR2 and
PRi in Figure 4. The GMAs that received the message alert the remaining GMAs in the CC environment,
as shown in the message m2 sent from the GMA of PR1 to PR2 in Figure 4.

These agents ask the LMA of each machine to evaluate the level of usage of the internal resources.
Each LMA generates a matrix (It

PRi
) with the information for the time t in order to evaluate the amount

of available resources. Communication occurs between the GMA and LMA of each PRi, which implies
the message sequence

{
rq1,1, rq1,2, rp1,3, rp1,4

}
for the case of PR1 in Figure 4. This snapshot structure

gathers instantaneous information (It
PRi

) on the complete state of resource assignment at a specific time
t in the resource PRi (See Table 1).

Table 1. Summary of information on physical servers.

Processing Memory

vcpumax vcpumin vcpuused Mmax Mmin Mused Masigned

VM1
VM2
VMm
PRe1

With this information, the GMA determines whether the physical machine can enter the decision
process. If the amount of resources in each physical machine is greater than the minimum indispensable
resources required to instantiate a node associated with the service, then the reasoning process is
initiated to determine the amount of resources that can be reserved for each execution node as requested
by the SSA for that service. Figure 4 shows the messages rp1,5 and rq2,5 sent by CBRs in GMAs from
PR1 and PR2, respectively, to the SSA. However, if there are no available resources, or if there are fewer
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resources than those demanded by the service, the GMA determines that the physical node is not part
of the global assignment process (see message rq3,5 of unavailable resources sent from the GMA in PR3

to the SSA, Figure 4). If there is no physical machine that could respond to the increased service needs,
a new physical server is requested to start up in order to instantiate a VM according to the minimum
characteristics defined in the service level.

When the machine has enough computational resources (cases PR1 and PR2 in), the GMA initiates
the process based on the definition of the concept of the following case: C =

{
P, S(P), E

}
where:

• P represents the description of the problem, with a matrix-matched representation directly
related to the instantiation of resource use, It

PRi
, along with the description of the service level

that is instantiated and the temporary indicator (timestamp) that identifies the instant in which
the problem has been detected, where VMk

t is the description of the minimum resources, in terms
of memory M and vcpu, that are needed by the service.

P =
(
It
PRi

, VMk
t , timestamp

)
(1)

• S(P) represents the solution to the P: S(P) = (M, vcpu) in terms of vcpu and memory.
• Finally, E represents the efficiency which is measured from two perspectives: micro and macro.

# Firstly, the efficiency at the micro level (Em) is associated with the level of the efficiency
of the solution proposed within the physical server where the VM has been deployed.
The LMA proposes this level of efficiency according to the processor usage rates and
the allocated memory.

Em =

(
pvcpu,Mused

Massigned

)
, (2)

where Mused and Massigned are the used and total allocated memory, respectively.
# The efficiency at the macro level (EM) is associated with the degree of efficiency from

the point of view of the service and is calculated if the proposed solution requires
the process of infrastructural resource distribution to be initiated at a macro level.
In this sense, the degree of efficiency measures the number of additional nodes n required
by the service.

EM = n (3)

Therefore, the efficiency is given by the following expression E = (Em, EM)

The CBR (Case-Based Reasoning) starts by retrieving similar cases from the case memory. The most
similar cases are selected as explained below, and the formal algorithm is given in Algorithm 1:

1. Select the cases with similar characteristics to the physical machines and a degree of efficiency
greater than 90%. The similar physical machines are evaluated according to the benchmark
parameter, which characterizes each physical machine.

2. On the basis of this subset of retrieved cases, a vector Ci is configured for each case that contains
the same number of VMs that are in the case, and the free resources available Ci = (n, M, vcpu).

3. The cases selected from this subset are those that had previously used the same service, and for
a similar period of time. This is determined by analyzing a network usage pattern over a period
of one week.

During the reuse phase, a solution to the problem is prepared, based on the cases that have been
retrieved:

• If the case base does not contain a similar past case, the solution to the problem is associated with
the minimum resources determined at the level where the service is instantiated:

S(P) = (Mmin, vcpumin)
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• If similar cases were recovered, the solution to the problem would be the case closest to the new
one, multiplied by the efficiency of the most similar case:

S(P) = (M’ × (Em (1) + EM (1)), vcpu’ × (Em (2))) (4)

• In the case where there are not many resources available and the values assigned to the previous
solution are higher than the values assumed by the machine, the result of the case would be
the maximum amount of resources available in the machine.

S(P) = (PR (Mmax), PR (vcpumin)) (5)

When the solution to the case is calculated, it is sent to the SSA. This agent reactively chooses
the node that would provide a higher amount of resources at the VM level. In the subsequent review
stage, the new node is deployed, and its use is evaluated from both a micro and macro perspective.
In this way, the efficiency of the solution is obtained. Finally, in the last step of the CBR, both the case
and the value of the efficiency are stored so that they can be reused in future executions.

The proposed adaptation model is distributed, which makes it possible to improve the high
availability of the system, since the decision-making process is made throughout the entire CC system.
Furthermore, this model can distribute the strength of the calculation, which requires obtaining
the solution; as a result, the impact that the search for a solution has on the CC environment is reduced.

Algorithm 1. Steps performed by the case-based reasoning algorithm involved in each global manager to
allocate resources demanded by a service.

CBR Algorithm
INPUT: P, the description of the problem (case) to solve for a service k.
OUTPUT: S(P), the solution to problem P.
REQUIRE: KB: the knowledge base, d: dissimilarity metric of cases, E: compute the solution efficiency of
a case, #vm: VM number for a case, ar: the available resource amount, ur: the used resource amount, Service:
used service, T: service use period. ρ : dissimilarity metric of the service use period

01. % Retrieve all cases similar to the case with feature P in a
02. % set SC1(P)
03. SC1(P) :=

{
Pi ∈ KB d(P, Pi) ≤ mp AND E(Pi) > 90

}
% where mp is a

04. % threshold (i.e., midpoint, mean, etc.) stating similarity
05. % between cases.
06. % Select all cases in SC1 with the same number of virtual
07. % machines and with available resources.
08. Assign a vector vi := (ni, mi, vcpui) to each Pi of the set:
09. SC2(P) :=

{
Pi ∈ SC1(P)/#vm (P) = #vm(Pi)AND ar ≥ ur (P)

}
10. % Select cases that have used the current service k and for a
11. % period similar to case P.
12. SC3(P) :=

{
Pi ∈ SC2(P)/Service (Pi) = k AND p(T(P), T(Pi) ≤ t

}
% where t

13. % is the threshold stated for period similarity.
14. If SC3(P) = ∅ then S(P) := (Mmin, vcpumin)

15. else
16. Q := argimin

{
d(P, Pi)/Pi ∈ SC3(P)

}
17. M := M(P) := M(Q) × (Em(1) + EM(1))
18. vcpu := vcpu(P) := vcpu (Em(2))
19. If M(P) ≤M(PRi) and vcpu (P) ≤ vcpu (PRi) then S(P) := (M, vcpu)
20. else S(P) := (PRi(Mmax), PRi(vcpumin))

21. end else
22. end if
23. end.
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Compaction

The proposed model uses the key characteristics of virtualization technology, which involves
migration of machines between physical servers. In fact, this characteristic is very effective when
compacting VMs into the smallest possible number of servers. This allows one to turn off/switch to
sleep mode the set of physical servers that have not yet been assigned a machine, which significantly
increases energy efficiency.

However, problems occur when the machines are widely dispersed, which can happen when
a SSA associated with a specific service detects various nodes that are at the highest priority level
(they have a high quality of results) and requests the random elimination of one of these nodes.

The compaction process is simple and is applied by the specialized GMA as follows:

1. A virtual server with a very low number of VMs (the number is determined by the system
administrator) asks other servers to host its VMs so that it can go into sleep mode and not use
any resources.

2. The nodes with available resources at the time of the request evaluate the snapshop (It
PRi

) provided
by the LMA to determine whether it can host another machine with the given characteristics.

3. If there are resources available, the configuration is sent to the GMA that has made the request,
and the migration process is initiated. If this agent receives various confirmations simultaneously,
it randomly initiates the migration process with one of the machines. The process is random since
the agent does not know all the internal details of the machine that hosts the new virtual node.

This simple process makes it possible to compact the set of VMs without affecting the quality of
service, since the individual resources of each machine are not modified. The system then goes into
a compact state.

5. Evaluation of the Proposed Model

In order to evaluate and validate the model proposed in this article, a CC platform designed and
developed by the BISITE research group (http://bisite.usal.es.) has been used. This CC platform was
deployed in the HPC (High Performance Computing) environment, which offers numerous services
and is composed of 15 machines that support virtualization in hardware with the use of Intel-VT
technology and the KVM (Kernel-based Virtual Machine) virtualization system. MAS is implemented
using the Python programming language because of its power, ease of maintenance and flexibility
in handling data structures. In this regard, the data exchange format is based on JSON (JavaScript
Object Notation). The web service layer has been implemented using the Tornado web development
framework because of its ability to manage a large number of client connections.

With regard to the distribution of the initial resources (see Figure 5), a Cloud service—the file
storage service—is deployed in different virtual nodes (VM1 and VM2), each one hosted by a different
physical machine (PR1 and PR2, respectively). The result obtained with this deployment is that
the service is highly available (deployed in two servers), and it is also deployed in two physical machines
with different computational loads, something that happens in real environments, since the two physical
machines host other virtual machines that correspond to other services of the CC platform. In other
words, the physical server PR1 has many available and unallocated resources, while PR2 has no
available resources and the machines it hosts have a high computational load.

An amount of 10 to 40 threads were launched which, every 3 s, consulted specific methods
of the service (GetSize and GetFolderContent). The acceptable QoS level for the GetSize function in
this experiment remains at 1.5 s, while the threshold QoS level for GetFolderContent is set at 0.5 s.

The process starts once the Service Supervisor detects a decrease in performance, at this time
it directly executes the adaptation process. This type of adaptation occurs when the demand for
the service is much greater; an increase in the computational load results in a more rampant increase in
the load. The process for exchanging messages among agents during the adaptation of the infrastructure
is shown in Figure 6. The specialized Service Supervisor agent that initiates the service also sends

http://bisite.usal.es
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an alert (step 1, Figure 6) to the Global Manager agent for each of the physical machines that host
the service nodes. It should be noted that the GMA is a specialized agent using a CBR reasoning
process [23,44] in order to allocate resources at the macro level. After receiving the first alert, the agents
forward the alert message to the rest of the GMA in the CC (step 2, Figure 6).Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 18 
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The next process is carried out in parallel in each physical node of the CC system. Each GMA that
has received an alert message requests the LMA of the machine in which they are located to instantiate
the state of the system (It

FR). The agent uses this information to determine if there are available
resources to instantiate a new node associated with the service requesting resources. If the machine,
in response to the instantiation, detects that the physical server does not have any available resources,
it does not perform any action. This process is conducted in parallel for each of the machines that have
available resources.

This problem description is used to retrieve similar cases from the case memory. Each GMA
individually determines which resources can relinquish to the new node that has just been instantiated.
This new provision of resources is itself the solution to the current problem, S(P). The solution
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provided by each of the CBR agents from each physical server with available resources is then sent
to the Service Supervisor agent that initiated the process because of its own performance difficulties
(step 3, Figure 6). Once it has received the set of proposed solutions from the different CBR-BDI agents,
the agent overseeing the service sends an acceptance message to the GMA that offers the greatest
amount of resources for the new node that must be instantiated (step 4, Figure 6). Finally, the GMA
that receives the request asks the LMA (step 5, Figure 6) from its machine to instantiate a new virtual
node on the level of the VM associated with the service, according to the proposed problem solution.

Once the new execution node has been launched, it is then necessary to evaluate the proposed
solution. The LMA evaluates the solution according to the degree of underused resources in the node
that has just been instantiated. If a new resource distribution process must be conducted at the macro
level, the SSA completes the evaluation performed by the LMA in order to penalize the solution.
In both cases, the efficiency of the proposed solution is evaluated according to the amount of underused
resources of the new instantiated node.

Results in terms of QoS are represented in Figures 7 and 8, showing also the increase in quality
once the adaptation is finished.
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((top left) increase in request; (top right) time response of request; (bottom) the whole adaptation
process).

Subsequently, another set of experiments has been conducted for the distribution of infrastructure
resources. In these experiments, we intended to perform numerous consecutive executions in
the adaptation process, because a single execution of the proposed algorithm to perform the adaptation
automatically could not satisfy the demand for the services. The result of the tests carried out from
the point of view of the adaptation model was positive since it showed that it performed correctly,
always within the limits of the case study and keeping the SLA level within the established limits.
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It is not possible to make an empirical comparison of the proposed model with other existing
approaches in the state-of-the-art systems, as it is difficult to recreate the computer and/or simulation
environments in which they have been evaluated. However, it is possible to make a theoretical
comparison of the proposed approach with respect to other existing works in the state-of-the-art
approaches. Firstly, it is observed that the proposed model follows a distributed approach to solving
the problem, which totally differentiates it from existing works in the state-of-the-art approaches [16,38].
This approach, which has been shown to be valid for the distribution of computational resources
in this type of CC environment, has advantages with respect to their availability, since there is no
single component in charge of the distribution of resources, but rather the system (society) itself is
reorganized as a whole through the individual adaptation of its components (agents).

In the state-of-the-art approaches, as detailed in particular by Goudarzi and Pedram [45],
the execution of allocation algorithms is a complex task that requires a large amount of computational
power and time. However, the proposed model simplifies the search for an adequate solution to
the problem, as (i) the computational needs are distributed among different nodes; (ii) the value space
to be considered is smaller since each node must only consider the data regarding its own resources
and, furthermore, it is not necessary to have global knowledge of the platform; and, finally, (iii) each
node can autonomously apply a partial solution to the problem, eliminating the coordination needs at
the global level of the platform.

Finally, the clear advantage of the proposed model with respect to other works is its capacity
for learning. In the macro-level infrastructure distribution model, it has been used as an adaptation
algorithm based on a case-based reasoning system that is integrated into a specialized agent in
the +Cloud organization. Thanks to this approach, as has been demonstrated, it is possible for



Appl. Sci. 2020, 10, 4361 15 of 18

the system to learn from past experiences, achieving greater efficiency in adaptations as it learns,
memorizing both positive and negative experiences. Among the state-of-the-art approaches, there is
no similar approach in which the distribution of computational resources is based on the results
obtained in past adaptation processes.

6. Conclusions

This research is one of the first to propose the use of a MAS in the framework of control and
surveillance systems in CC environments. The main result of this work is the proposal of a new
architectural model based on a MAS with a clearly integrating purpose. To achieve this, a set of
algorithms for the distribution of computing resources in CC environments has been developed,
evaluated and assessed. The main innovation of the proposal lies in the dynamic capacity of the system
to adapt autonomously to demand and to learn from previous experiences.

With the new proposal, it has been possible to demonstrate that a control and surveillance
system in CC environments can be designed using MAS as the basis, and it is also the key element
of the architecture. This is clearly due to the distributed nature of MAS, which makes it possible to
implement elastic algorithms to support the services that require distribution. Another key aspect is
the distribution of responsibilities. Thanks to the use of this type of algorithm, it is possible not only
to make decisions in the place where the problems actually arise, but also to distribute the necessary
calculation capacity to obtain an efficient solution among all the instances that comprise the CC
environment. This type of solution directly contradicts the way in which current centralized models
solve the problem of elasticity. As this study has demonstrated, the use of a distributed approach is
undoubtedly a viable option that should be considered when designing elastic algorithms.

This strategy ensures that each process is independent when making decisions in the software
layers where many actions are running. It is undeniable that if the capabilities offered by the underlying
technology change, it will also require that certain aspects be changed in the reasoning models used,
just as would be done in any traditional strategy. However, in this case, the MAS architecture
overcomes these challenges; thanks to its adaptive design, it is possible to modify the individual agents
that carry out specific actions in the MAS. This approach ensures independence between the software
layers in which decisions are made and those in which the decisions are executed. In a CC environment,
such separation of responsibilities is particularly important because today’s platforms are highly
dependent on the technological environment (virtualization tools, load balancers, distributed file
systems, etc.). This dependence constitutes a great limitation and hinders the platform’s evolution,
since a change in some of the hardware or software components also makes it necessary to alter
the algorithms and techniques that make the system elastic. In the proposed MAS, implementation is
made using communication ports according to the GORMAS methodology. Thanks to this methodology,
dependence on the environment is limited to the port itself, i.e., interface for communication with
the environment. There is no doubt that a change in the capabilities offered by the underlying
technology would also make it necessary to modify the proposed reasoning models, as in a traditional
design approach. However, organizational models also offer an adequate response to this difficulty.
In a system such as that being proposed, the agents who are part of society are given one or more
specific roles. Each role is an abstract definition of the objectives, responsibilities and privileges of
the individual who assumes it. Following this high-level definition, in the case of the introduction of
new technological capacities, the work of adaptation would consist in modifying the individual or
individuals who carry out the concrete tasks and those who play roles in the organization. Therefore,
since it would not be necessary to alter society as a whole and only the individual entities; the proposed
architecture is also above other existing platforms in the market.

The proposed model has been designed to address the problem of excess energy consumption
by proposing solutions that consider the degree of efficiency. As part of the problem, this study
proposes a compaction model of VMs. This model makes it possible to define the problem of excess
energy consumption within the framework of the CC platform. However, the learning capability
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of the proposed adaptation model is undoubtedly the key characteristic that can cogently improve
the existing state-of-the-art approaches: while current models use mathematic algorithms and statistical
systems, the proposed system develops specific solutions to a given problem on the basis of the degree
of efficiency that the same or similar solutions have had in the past. Given that the system has learning
capacities, its response and ability improve over time. Thus, this approach can continually increase
the efficiency of the solutions it proposes. Moreover, the system’s learning abilities are extremely
important in an environment where there is some uncertainty, as is the case of CC. This is because when
the context or environment of the CC platform changes at any given time, the adaptation model must
likewise evolve and adapt all the proposed solutions so that the efficiency of the proposed solution
is maximized.

In conclusion, the use of MAS enables us to continue researching techniques, tools and
methodologies that will have intelligent characteristics, such as autonomy and pro-activity.
In this regard, future lines of research will be proposed to continue extending the capacities of
the proposed system, firstly, by incorporating the capacity provided by containers to improve
the granularity in the distribution of resources and to achieve a much more precise resource allocation.
Likewise, we also intend to extend the capacities of the MAS to distribute computing responsibilities
beyond the cloud computing environment, within the framework of the edge computing paradigm,
so that it can be integrated in an Internet of things environment and communication can be carried out
at the edge.
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