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Featured Application: The proposed intelligent medical system is applicable for a medical
diagnostic system, especially for the diagnosis of diabetic foot ulcer.

Abstract: One of the main challenges of employing deep learning models in the field of medicine is a
lack of training data due to difficulty in collecting and labeling data, which needs to be performed
by experts. To overcome this drawback, transfer learning (TL) has been utilized to solve several
medical imaging tasks using pre-trained state-of-the-art models from the ImageNet dataset. However,
there are primary divergences in data features, sizes, and task characteristics between the natural
image classification and the targeted medical imaging tasks. Therefore, TL can slightly improve
performance if the source domain is completely different from the target domain. In this paper,
we explore the benefit of TL from the same and different domains of the target tasks. To do so,
we designed a deep convolutional neural network (DCNN) model that integrates three ideas including
traditional and parallel convolutional layers and residual connections along with global average
pooling. We trained the proposed model against several scenarios. We utilized the same and different
domain TL with the diabetic foot ulcer (DFU) classification task and with the animal classification
task. We have empirically shown that the source of TL from the same domain can significantly
improve the performance considering a reduced number of images in the same domain of the target
dataset. The proposed model with the DFU dataset achieved F1-score value of 86.6% when trained
from scratch, 89.4% with TL from a different domain of the targeted dataset, and 97.6% with TL from
the same domain of the targeted dataset.

Keywords: transfer learning; deep learning; diabetic foot ulcer; classification; deep convolutional
neural network (DCNN)

1. Introduction

Over the last two decades, cases of diabetes mellitus (DM) have increased noticeably across
global public health systems [1,2]. In 1985, 2000, and 2010, there were 30, 177, and 185 million cases
respectively [3,4]. Epidemiological studies suggest that the estimated number of patients with DM
will be greater than 360 million by 2030. Patients with DM can acquire numerous complications such
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as DFU (diabetic foot ulcer) and this particular issue has shown an increasing trend in the past few
decades [5–7]. In general, the percentage of diabetic patients who suffer from DFU over their lifespan
is 15% [8].

Obtaining accurate figures related to the occurrence of DFU is a challenge, but it can be in the
range of 4–27% [9–11]. Currently, DFU is counted as a primary source of hospitalization and is the
most important cause of morbidity in diabetic patients [1,5,12,13]. The expectancy of DFU among DM
patients is around 20% of hospital admittances [14]. More specifically, once a patient acquires DFU,
there is an increased risk of ulcer evolution [14], which could finally lead to amputation. According to
earlier studies, the cost of a single ulcer treatment was around $17,500. In Europe and North America,
between 7 and 20% of the total expenditure on diabetes could potentially be attributed to DFU if all
costs are considered.

The process of evaluating DFU consists of different imperative tasks in premature diagnosis,
tracking progress, and several long-lasting activities during DFU management and treatment based on
each case. This evaluation process includes: a) evaluating the patient’s medical history, b) examination
of the DFU by a diabetic foot specialist and c) supplementary tests such as X-Ray, magnetic resonance
imaging (MRI), and computed tomography (CT) scans could be valuable for developing the treatment
plan. Thus, computer vision (CV) algorithms are needed to evaluate visual appearances like textures,
features and color descriptors.

Using automatic telemedicine systems for DFU recognition is still in its early stages. In 2015,
Liu et al. [15,16] employed 3D surface reconstruction, infrared thermal images, and spectral imaging
to develop a smart telemedicine system. Implementing such a system requires several cost-effective
devices as well as expert training in using these devices. For classification, an image-capture box
was utilized by Wang et al. [17] to determine the DFU area and to pick up image data. It was based
on a cascaded two-stage support vector machine (SVM). They presented a super-pixel method for
segmentation and they extracted several features to execute the two-stage classification. Note that
this system was not applied to a big dataset, although it reported favorable results. Furthermore,
to capture the images, a touching-base between the box surface and the patient’s feet was required.
However, according to the health setting, this was disallowed due to worries about controlling the
infection. Thus, the image-capture box was unworkable for image-data gathering. Goyal et al. [18]
have performed the DFU segmentation task. They have also surrounded skin on the full foot images.
Computer techniques constructed via image processing methods or manually engineered features
were developed to segment and classify various tissues in correlated skin lesions. For classification,
there are two stages for traditional machine learning. The first stage is to extract different features such
as color and texture descriptors on undersized outlined patches related to wound images. The second
stage is the classification of these patches into either normal or abnormal skin [19–22]. However,
skin color is based on the patient’s ethnicity group, while handcrafted features are influenced via the
lighting conditions in most CV systems. Overall, every skin lesion that belongs to an ulcer or wound
is currently named as the wound. From a medical viewpoint, ulcers and wounds are thought of as
different; an internal problem can be caused by an ulcer, while an external problem can be caused
by a wound. Deep learning (DL), which is a novel concept in computer intelligence, is significant
to researchers as it shows a superior capability to classical methods [23]. We have witnessed huge
progress in different CV and pattern recognition tasks due to the utilization of DL models [24–27]. Deep
convolutional neural network models (DCNNs) have been employed to classify DFU against normal
skin [28,29]. Although these methods have performed well, they still need to be optimized further.
These methods have also utilized small private DFU datasets, while deep learning models demand a
significant amount of training data to perform well. Additionally, collecting DFU images is challenging
due to both the acquisition time and the need for an expert to label them. Furthermore, to the best of
our knowledge, there is only one small diabetic foot ulcer (DUF) dataset that is available online [28].
The DUF classification task has a serious suffer from lack of data to train deep learning models and it is
the same situation with most of medical imaging classification tasks. Therefore, the lack of training
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needs to be addressed in case the performance is to be improved. One of the best solutions of the
lack of training data is transfer learning (TL). TL is a technique that stores knowledge obtained while
solving one task and applying it to a different task. Most medical imaging classification tasks that have
utilized TL employed it from models that trained on the ImageNet (consists of natural images such as
pen, cars, animals) dataset. In this case, this is an unrelated learning task to medical tasks. In order
to boost the performance, TL should be from a related task. For example, the knowledge obtained
while learning to classify lung diseases could apply when trying to recognize COVID19 in the lung.
In this paper, we employ TL to solve the lack of training data for DCNNs model then we investigate
the benefit of using the same and different sources of TL.

This paper is organized as follows: Section 2 reviews convolutional neural networks (CNNs) in
image classification and the state-of-the-art DCNNs models. Section 3 describes the challenges and
research problem. Section 4 lists the aims and the contributions of our work. Section 5 explains the
methodology. Section 6 presents the experimental results. Finally, the conclusion of the work is drawn
in Section 7.

2. Review of the State-of-the-Art

As there are very limited research papers related to deep learning applications in DFU, we review
the role of CNNs in image classification as explained in subsection A. In subsection B, we review several
deep convolutional neural networks (DCNNs) architectures and the advantage of each architecture.

2.1. CNNs in Image Classification

Image classification in the field of CV is a significant task that has been researched for several
years [30,31]. It is used as a primary task in different application areas including event detection [32],
scene understanding [33], and object tracking [34]. In terms of human accuracy [35], machine learning
is the most promising technique compared to other available approaches [31,36]. As deep learning
developed, CNNs were introduced as a new state-of-the-art concept in image classification [30,35,37].
This type of network can overcome several challenging issues in image classification such as occlusion,
deformation, background clutter, and changes in scale and viewpoint. The most interesting part of
CNNs is that the feature extractor and the classifier are put together. However, traditional machine
learning methods have two separate steps: the first step is the handcrafted techniques for feature
extraction; the second step is when extracted features are used to train the classifier such as K-nearest
neighbor (KNN) [36] and support vector machine (SVM) [38]. Another benefit of CNNs is that they
can work with binary or multi-class classification. CNNs have shown extraordinary achievements in
several pattern recognition and CV tasks [30,37] and have solved many problems in computer vision.

Krizhevsky et al. [30] developed the CNN further when they introduced the AlexNet network.
Subsequently, several architectures were introduced after the achievements of AlexNet, such as
VGG-Net [37], GoogLeNet [39], and ResNet [35]. Due to the success of these models, the majority
of recently proposed CNNs is often based on them and enhances performance by adding extra
convolutional layers [37,39]. In general, for classification tasks, CNN’s architecture involves several
convolutional layers (at the beginning) and fully connected layers (on the top) heaped one over the
other. These CNNs extract features via the convolutional layers and executes the classification tasks by
the fully connected layers [37,40,41].

The number of layers, or depth of the CNN, plays a critical role in a superior classification model
as its learning capacity is controlled by changing its depth [42]. Examining the proposed models in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) showed that accuracy is increased as the
model becomes deeper [30,35,37]. Thus, as the depth is enlarged, accuracy is enhanced up to saturation
level [35]. Afterward, increasing the depth (via stacking extra layers) will not enable the CNN model to
reduce the error [35]. As an alternative to the usual architecture of stacked layers, ResNet introduced a
less complicated structure with up to 152 layers (deeper network), while GoogLeNet introduced a
hierarchical structure of convolutional layers for classification.
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A significant fact is to distinguish a well-behaved architecture while considering learning forms
and model depth. The chosen CNN architecture must also be able to generalize the dataset, free from
overfitting and the proper learning ability for the existing dataset. Several attempts were considered in
classifying undersized datasets using CNN [43] and although these techniques significantly enhanced
performance, they faced the problem of overfitting due to direct training from scratch. Therefore, the
question of shallow architectures having sufficient ability to capture whole features for undersized
data cannot be answered. How deep must the CNN architecture be to train with undersized data?
Current CNN models avert direct training and enhance performance using TL techniques. TL helps to
address the problem of lack of training data.

2.2. Deep Convolutional Neural Networks (DCNNs)

CNNs with a large number of layers are defined as DCNNs [44]. The gain of these DCNNs is to
have better feature extraction to distinguish between classes [44]. DCNNs brought great attention to
the results of the ImageNet classification challenge [30]. DDCNs (as a feature extraction task) play an
essential part in different tasks of CV such as image retrieval [45], object recognition [46], and image
recognition [47]. In contrast, the architectural development of DCNN is still an engineering challenge,
especially in selecting several new configurations of network layers and hyper-parameters [46]. Hence,
studying and designing a better network is necessary [35,39]. The DCNN attained fast and excellent
advancements in different attributes involving activation function [48], regularization strategies [49],
and optimization techniques [50]. In particular, the latest designs of network architecture [37,51] show
that network classification performance is incredibly enhanced by redesigning the DCNN structure in
a way that facilitates deep feature learning. Furthermore, implementing expansion in terms of “depth”
with different degrees to the traditional network like AlexNet [30] and VGG [37], with the training of
a large dataset, will efficiently enhance their model representation power. However, a degradation
problem can occur if deeper networks are capable of beginning convergence (i.e., accuracy becomes
overloaded and begins degrading quickly if the depth of the network increases) [35]. Hence, it is not
always a solution to just increase the depth by itself. In recent years, GoogLeNet [39] and ResNet [35]
have tried to solve the optimization issue of ultra-deep networks by proposing bypass paths or
identity connection. In the meantime, numerous alternatives have been developed to improve ResNet
architecture such as ResNet in ResNet [52], and Wide ResNet [53]. Veit et al. [54] noted that ResNet
acts as an exponential ensemble of a moderately shallow network, whereas both GoogLeNet [37,55,56]
and ResNet [35,52,53] are a combination of several dependent networks. Veit et al. [54] also indicate
short-path aids ResNet to prevent the vanishing gradient issue, which is the same way to the analysis
in FractalNet [57] and deep fuse network [58]. Furthermore, the DenseNet network has an identity
connection that concatenates the layers within it. This network is capable of completely investigating
the network potential via a feature reprocess. Wang et al. [59] indicated that networks of several
branches are fused (either concatenation or summation) in the intermediate layers and have several
benefits such as (1) the ability to generate several base networks, including shared parameters; (2) the
ability to optimize the information flow; and (3) enhance the training process of the deep network.
For instance, the inspection module in GoogLeNet seems to be a fusion stage and several sub-networks
can concatenate with various lengths. Its architecture also comprises a series of inspection modules,
which can be considered as a type of deep concatenation fusion. Hence, except for a single branch
network like VGG and AlexNet, other networks like GoogLeNet, ResNet, and the recently introduced
Highway, are considered deep fused networks. The representative power of these models is effectively
enhanced. These DCNNs models are not able to achieve better performance without training with
a large amount of data. Thus, addressing the lack of training data issue is urgently needed. These
models like AlexNet, VGG, GoogLeNet, and ResNet have been fine-tuned for the various CV tasks
using their previous learning from the ImageNet dataset. Although these models have shown good
performance for different CV tasks, images of ImageNet as a source of TL are different from medical
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images which could not present a good benefit for the medical society. Therefore, to validate that issue,
we have implemented several experiments in this paper for that purpose.

Based on the study of the architectures mentioned above, we have designed our proposed model
combining different architectures inspired by GoogleNet and ResNet with some enhancements such
as adding the global average pooling layer. We also propose a solution to tackle the lack of training
data issue.

3. Challenges and Research Gap

In this section, we present the challenges of DFU classification and research problem of
employing TL.

3.1. Challenges in DFU Classification

The automatic classification of DFU has several challenges including:

• Lack of training data due to costly and time-consuming data collecting and labeling by experts.
• Patient’s ethnicity.
• Low contrast between target objects and background.
• Various image qualities (different capturing devices).
• Heterogeneous and complex shapes.
• Lack of a robust and effective deep learning model to differentiate between DFU classes.

3.2. Research Problem in Transfer Learning

It is difficult to obtain good performance with a deep learning approach due to the massive
number of images required for training. In image recognition and classification, a deep convolutional
neural network (DCNN) with many layers can achieve excellent results, sometimes better performance
than a human, if an enormous volume of data is obtainable [35,60,61]. However, these applications
demand large datasets to prevent overfitting and generalize DCNN models properly.

There is no minimum size for the dataset in training a DCNN, but training with small datasets or
using a DCNN with fewer layers prevents the model from being highly accurate because of under
or overfitting issues. Models with fewer layers are less accurate because they are unable to use the
hierarchical features of large datasets. Collecting labeled datasets is extremely cost-effective in fields
such as environmental science and medical imaging etc. [62].

In particular, in the field of medical image analysis, most crowdsourcing workers do not have the
required medical/biological knowledge to accurately annotate medical/biological images. For that,
machine-learning researchers frequently depend on the field specialists for labeling these images.
Indeed, this is an unproductive and costly process. Thus, producing enough amount of labels to
flourish deep networks becomes impracticable.

Researchers have used various techniques to overcome the lack of training data. One of the
most common techniques is data augmentation, where data is created virtually [63]. Although such
techniques enhance the data by creating further images, convolutional neural network (CNN) models
still struggle with overfitting issues due to repeated images in data augmentation. In recent years,
many researchers have employed a TL technique where deep learning models are trained on a large
dataset, then fine-tuned to train on a smaller targeted dataset [27]. Although TL improves performance
in many CV and pattern recognition tasks [64,65], it still has a fundamental challenge which is the type
of source data used for TL compared to the target dataset. For example, DCNN models trained on the
ImageNet dataset [60], which comprises of natural images, are utilized to enhance the performance of
the medical image classification task. These images of the ImageNet dataset are quite different from
medical images, which would not improve the performance of medical image classification. It has
been proven that different domain TL does not significantly affect performance on medical imaging
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tasks, with lightweight models trained from scratch perform nearly as well as standard ImageNet
transferred models [66].

4. Aim and Contribution

In this section, we list the aims and the contributions of our work.

4.1. Aim

The aims of this paper are:

• To address the issue of lack of training data for DFU classification.
• To test whether the type of images used for TL affects the performance or not.
• To improve the performance of the DFU classification task.
• To employ DCNN in the task of DFU classification.

4.2. Contributions

In this paper, we investigate the issue of same and different domain TL using DFU image
classification as a case study by implementing several experiments. We have utilized the same domain
TL with the DFU classification task. Then, we implemented the same procedure with TL from the
nature image dataset. The contributions of the paper are multi-folds:

• A new dataset has been collected which containing 1200 images of feet that have been manually
labeled by a DFU expert as normal and abnormal.

• A hybrid deep learning model has been designed that combines traditional and parallel
convolutional layers along with residual connections.

• Several training scenarios have been performed with the proposed hybrid model.
• Two pre-trained deep learning models (VGG19, ResNet50) have been trained with target datasets.
• It has been empirically proven that TL from the same domain of the target dataset can significantly

improve performance.
• The performance of DFU classification has been improved by attaining F1-score value of 97.6%.

5. Methodology

This section consists of four parts: datasets, CNN, transfer learning, the proposed model and
training scenarios.

5.1. Datasets

In this paper, we utilized four datasets. Two datasets represented the target datasets while the
other two datasets were employed for TL purposes.

5.1.1. Target Datasets

We presented two target datasets from different domains. Both datasets have approximately the
same number of images for a fair comparison. The aim of using these datasets is to test the concept of
TL from the same and different domain datasets. For both datasets, we divided them into 80% for
training and 20% for testing.

DFU Dataset (Dataset A): The dataset was gathered from Al-Nasiriyah Diabetic and Endocrinology
Center in Iraq and we obtained ethical approval and written consent from all relevant persons and
patients. The dataset had 1200 images of feet classified as normal and abnormal (DFU). We cropped
the region of interest to 224 × 224 as shown in Figure 1. The total number of cropped regions was 1477,
with 742 classified as normal and 735 classified as abnormal.
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Figure 1. Sample from diabetic foot ulcer (DFU) dataset (Dataset A) of normal and abnormal region
with a size of 224 × 224. The blue color is abnormal patch (DFU) class, green color is normal class.

Animal Dataset (Dataset B): This dataset had 1490 images of cows (766 images) and chickens
(724 images) [67]. All images were resized to 224 × 224 to fit the input size of the proposed model.
For a fair comparison, we took almost the same amount of data from the DFU dataset. Figure 2 shows
some samples of the dataset.

Figure 2. Samples from animal dataset (Dataset B) (first row is chicken class; second row is cow class).

5.1.2. Pre-Train Datasets

We collected large datasets from different sources. The first dataset (Dataset C) is in the same
domain as the first target dataset (Dataset A) while the second dataset (Dataset D) is in the same
domain as the second target dataset (Dataset B). The main purpose of these datasets was to pre-train
our model for target datasets. Both datasets have images that look similar in features such as color,
shape, and size to the target datasets. Dataset C is similar to Dataset A while Dataset D is similar to
Dataset B. All images of both datasets were used for training for TL purpose.

Medical Dataset (Dataset C): we collected the dataset from different sources although all images
were in the same domain as the DFU dataset. The first source had 594 images that were classified
into 15 wound categories including abdominal wounds, burns, epidermolysis bullosa, extravasation
wounds, foot ulcers, hemangioma, leg ulcers, malignant wounds, meningitis, miscellaneous, orthopedic
wounds, pilonidal sinus, pressure ulcers (a), pressure ulcers (b), and toes [68]. The second source
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had 2700 different wound images that were collected from the internet. The third source contained
1000 images of clinical skin diseases that were collected from [69]. The last source had 37,364 images of
skin cancer including melanoma, melanocytic nevus, basal cell carcinoma actinic keratosis, benign
keratosis, dermatofibroma, and vascular lesions [70,71]. All images were resized to 224 × 224. Some of
the images were divided into two or three sub-images. The final total of images was 50,103. Figure 3
shows some samples of the dataset.

Figure 3. Samples from the medical dataset (Dataset C).

Large Animal Dataset (Dataset D): This dataset consisted of several classes of animals that were
collected from different sources. The first source had eight classes of animals including dog, cat,
horse, spider, butterfly, sheep, squirrel, and elephant [69]. The total number of images was 21,215.
The second source had 8000 images of cats and dogs that were added to those in the first source [72].
The third source had 2099 different types of birds [73]. The fourth source had images of animals such
as chimpanzee, ox, deer, etc., [74]. The total number of images was 3000. The last source included
16,643 images of wild animals such as panda, zebra, gorilla, giraffe, camel, tiger, bear, lion, elephant,
and kangaroo. All images were collected from the internet. The overall number of images in this
dataset was 50,957 and they were resized to 224 × 224. Figure 4 shows some samples of the dataset.

Figure 4. Samples from the large animal dataset (Dataset D).
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5.2. Convolutional Neural Networks (CNNs)

Currently, CNN is considered the best machine-learning (ML) algorithm for analyzing medical
images [27–29]. The reason behind this is that after filtering the input images, CNN preserves the
spatial relationships. These relationships are extremely significant in the field of radiology and other
medical tasks. CNN has several types of layers such as convolution, pooling, rectified linear unit
(ReLU), and fully connected layers [23]. Generally, its structure consists of a convolutional layer
followed by a ReLU layer, a pooling layer, one or more convolutional layers, and one or more fully
connected layers, respectively. The key feature that characterizes CNN apart from a normal neural
network is its image structure during processing. The CNN’s main layers are described below.

5.2.1. Convolutional Layer

The convolutional layer is identified following the convolution operation. Convolution in
mathematics is defined as an operation executed on two functions that yield the third one.

The third function is a convoluted (modified) form of one of the two previous functions.
The resultant (third) function yields as an amount function that translated one of the previous
functions in the case of pointwise multiplication integral of the previous functions.

The convolutional layer is composed of neuron groups that form kernels. All kernels are often the
same depth as the input and are low in size. The receptive field is a small input area that the kernel
neurons are connected to. In the case of images (high dimension inputs), it is useless to connect whole
neurons to whole previous outputs. For instance, if the input layer has 100 neurons and an image of
10,000 pixels (a size of 100 × 100), this yields one million parameters. Thus, a neuron contains the
weights of only the kernel input dimension, instead of having weights for the input full dimension.
The kernels slip crosswise to input height and width for extracting high-level features and producing a
2D activation map. The kernel stride is represented as a parameter. The resultant activation maps
are stacked to form the output of the convolutional layer, which will be used for defining the next
layer input. For example, by considering an image of 32 × 32, an activation map of 28 × 28 will result
when operating a convolutional layer over it. Applying extra convolutional layers will reduce the size
further and, in turn, the size of the image will significantly be reduced. This produces a vanishing
gradient problem as well as a loss of information. To overcome this problem, padding is used. Padding
enlarges the input data size via packing across input data with constants. These constants have zero
values; hence, this operation is called “zero paddings”. When the spatial dimensions of the output
feature are similar to the feature map of the input, then it is called “the same padding”. This applies
equally to padding right and left. Consequently, if the added columns are odd, a further column to the
right is added. No padding is equivalent to “valid padding”.

On the other hand, a kernel passes over image pixels without including them in the output due to
strides. If extra complex kernels and a larger image are utilized, strides obtain how a convolutional
task operates with a kernel. More specifically, the kernel employs the stride parameter for obtaining
the number of positions to be skipped when it slides the input. Usually, convolutional layers are
followed by the ReLU layer, which enlarges its nonlinear properties but does not decrease the network
size. It also operates the activation function max_(0, x).

5.2.2. Pooling Layers

The pooling layer has two primary jobs. The first is reducing the number of computations
performed in the network and reducing the spatial dimensions of the representation. The second is
controlling the overfitting issue. There are three common types of pooling layers. The first type is
average pooling, which applies the average operation on a selected window. The second type is max
pooling, which takes the maximum value of the selected window. The third type is the global average
pooling layer, which reduces the whole input into one value. It helps reduce the spatial dimensions of
a three-dimensional tensor to a one-dimensional tensor. Average and max-pooling layers use a sliding
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window (such as 2 × 2; 3 × 3) to reduce the size. However, the global average pooling layer performs a
more extreme dimensionality reduction by turning the whole size to one dimension [75] as illustrated
in Figure 5. This layer is more robust to spatial translations and helps avoid overfitting.

Figure 5. Pooling operations.

5.2.3. Batch Normalization

Training a network with modifications to parameters and weights will change the real data
distribution of the total inputs of the whole layers in the DNN. This matter makes them either too
small or too large and in turn, makes them incomprehensible for training the network, particularly
with activation functions that apply nonlinear saturations like tanh and sigmoid. In 2015, the concept
of batch normalization was proposed by Iofee and Szegedy [58]. It enhances the accuracy of the DNN,
as well as the training time. For each mini-batch, batch normalization updates the inputs to have both
zero-mean and unit variance.

5.2.4. Dropout

A limited number of solutions are used to reduce the risk of overfitting. One of these solutions is
the dropout layer [57]. In this layer, the units are arbitrarily chosen and their weights are nullified
and output; therefore, they do not influence the backpropagation or forward pass. Other techniques
involve the use of regularization and enlargement of the training dataset utilizing the techniques of
label preserving. Compared to regularization, dropout performs well in accelerating the process of
training, as well as reducing the overfitting risk.

5.2.5. Fully Connected Layers

These layers are similar to those found in a regular neural network. Each output of the preceding
layer is linked to each neuron of the fully connected layer. All tasks behind the fully connected layer
are similar to that of the convolutional layer; hence, the exchange between the two layers is possible.

5.2.6. Loss Layers

If there is any deviation out of the expected output, the network is penalized by employing these
layers, as they represent the last layer of the network. Several types of loss layers are available such as
sigmoid cross-entropy and Softmax. Sigmoid is utilized for predicting multi-independent probabilities
(in the interval of [0, 1]) while Softmax is employed for predicting a class from multi-disjoint classes.

5.3. Transfer Learning

The lack of training data is a common problem in deep CNN. The common solution is transfer
learning. More specifically, training the models for one task encapsulates relations in the data category
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that can be used again for various tasks in a similar field. The learning process can be similar to
the parameters of the highest likely solution for the considered task by employing the reprocessed
features of an initially trained model. In other words, TL is the concept of employing knowledge
gained for a specific task to resolve other correlated tasks as well as to overcome the separated learning
paradigm [33].

TL helps obtain accuracy for image classification tasks by offering a large dataset for learning
features as in [33]. Many researchers have demonstrated that the use of TL in medical image
classification tasks is effective and efficient [25,27]. Additionally, training a CNN model from scratch
(invaluable dataset) will not achieve significant outcomes. As an alternative, the solution for improving
outcomes is transfer learning.

Solving complicated issues in deep learning models requires a massive amount of data. Supervised
models demand large amounts of labeled data, which is an extremely difficult task due to the effort
and time taken to collect and label data. Thus, this issue established the motivational basis for TL and
its outstanding performance in the medical sector inspired us to utilize it.

In traditional machine learning, the common learning process is separate and only performed on
certain models, datasets, and tasks. Hence, knowledge is neither preserved nor transferred between
models. Conversely, in deep learning, TL can employ knowledge such as weights and features of the
pre-trained model to train a new model, as well as undertake issues in the novel task that has a smaller
amount of data. TL with deep learning models is more rapid, has improved accuracy, and/or needs
less training data. The TL concept is to utilize a trained network on different tasks for different source
data then adjust it for the target task as explained in Figure 6. There are a series of steps to fine-tune
the proposed model and pre-trained models which are:

• The proposed model has trained on transfer learning datasets (Dataset C once then Dataset D) for
transfer learning purposes.

• The pre-trained model has been loaded.
• The final layers have been replaced with new layers to learn features specific to the target task.
• The fine-tuned model has trained with the target dataset.
• The model accuracy has been assessed.
• The results have been deployed.

Figure 6. The concept of the transfer learning.

The procedure of transfer learning explained in Figure 7. The pre-trained models (VGG, ResNet)
fellow the same procedure except for the first point.
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Figure 7. Transfer leaning pipeline.

5.4. Proposed Model

We have designed our hybrid model based on the study of previous state-of-the-art architectures
and the advantages of each architecture. It integrates three different ideas involving traditional
convolutions, parallel convolutions, and residual connections. The total number of layers of the
proposed model is 91, which are explained in Table 1 and Figure 8.

At the beginning of the model, we used two traditional convolutional layers with a filter size of
3 × 3 and 5 × 5 to reduce the input size of the input image. We chose these two filters to avoid losing
small or large features. Picking a small filter size, such as 1 × 1, would act as a bottleneck that prevents
large features passing through, which could help distinguish between classes; picking a large filter size,
such as 11 × 11, would ignore small details that could lead to false classification. Therefore, we adopted
average filter sizes. All convolutional layers in the model were followed by batch normalization and
ReLU. Batch normalization speeds up the training progress, while the ReLU layer aids in reducing the
effect of the vanishing gradient problem.

Traditional convolutional layers are followed by five blocks of parallel convolutional layers. Each
block consists of four parallel convolutional layers with four different filter sizes (1 × 1, 3 × 3, 5 × 5,
7 × 7). The output of these four layers is combined in the concatenation layer to pass to the next block.
The blocks are connected with long and short connections. The benefits of this type of combination
are that it can integrate different levels of features and learn both small and large details, as having a
variety of filter sizes. Furthermore, this structure is very helpful for gradient propagation as the error
can backpropagate from multiple paths.

We employed a global average pooling layer on top of the five blocks of convolutional layers.
Subsequently, three fully connected layers with two dropout layers were employed. Lastly, Softmax
was adapted to produce the output. The global average pooling and dropout layers were used to
overcome the issue of overfitting.

5.5. Training Scenarios

We utilized different training scenarios.

1. Scenario 1: Training the proposed model from scratch with original images from target datasets.
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• Training with Dataset A
• Training with Dataset B

2. Scenario 2: Training the proposed model with Dataset C for TL purpose then fine-tuning the
model to train it with A and B from Scenario 1.

3. Scenario 3: Training the proposed model with Dataset D for TL purpose then fine-tuning the
model to train it with A and B from Scenario 1.

4. Scenario 4: Fine-tuning two pre-trained state-of-the-art models (VGG19, ResNet50) then training
them with A and B from Scenario 1. These two models had previously been trained with the
ImageNet dataset containing nature images.

Table 1. Our model architecture, C refers to convolutional layer, B refers to batch normalization Layer,
R refers to rectified linear unit layer, CN refers to concatenation layer, G refers to global average pooling
layer, D refers to dropout layer, F refers to the fully connected layer.

Name of Layer Filter Size (FS) and Stride (S) Activations

Input layer - 224 × 224 × 3
C1, B1, R1 FS = 3 × 3, S = 1 224 × 224 × 16
C2, B2, R2 FS = 5 × 5, S = 2 112 × 112 × 16
C3, B3, R3 FS = 1 × 1, S = 1 112 × 112 × 16
C4, B4, R4 FS = 3 × 3, S = 1 112 × 112 × 16
C5, B5, R5 FS = 5 × 5, S = 1 112 × 112 × 16
C6, B6, R6 FS = 7 × 7, S = 1 112 × 112 × 16

CN1 Five inputs 112 × 112 × 80
B1x Batch Normalization Layer 112 × 112 × 80

C7, B7, R7 FS = 1 × 1, S = 2 56 × 56 × 32
C8, B8, R8 FS = 3 × 3, S = 2 56 × 56 × 32
C9, B9, R9 FS = 5 × 5, S = 2 56 × 56 × 32

C10, B10, R10 FS = 7 × 7, S = 2 56 × 56 × 32
CN2 Four inputs 56 × 56 × 128
B2x Batch Normalization Layer 56 × 56 × 128

C11, B11, R11 FS = 1 × 1, S = 1 56 × 56 × 32
C12, B12, R12 FS = 3 × 3, S = 1 56 × 56 × 32
C13, B13, R13 FS = 5 × 5, S = 1 56 × 56 × 32
C14, B14, R14 FS = 7 × 7, S = 1 56 × 56 × 32

CN3 Five inputs 56 × 56 × 256
B3x Batch Normalization Layer 56 × 56 × 256

C15, B15, R15 FS = 1 × 1, S = 2 28 × 28 × 64
C16, B16, R16 FS = 3 × 3, S = 2 28 × 28 × 64
C17, B17, R17 FS = 5 × 5, S = 2 28 × 28 × 64
C18, B18, R18 FS = 7 × 7, S = 2 28 × 28 × 64

CN4 Five inputs 28 × 28 × 272
B4x Batch Normalization Layer 28 × 28 × 272

C19, B19, R19 FS = 1 × 1, S = 1 28 × 28 × 128
C20, B20, R20 FS = 3 × 3, S = 1 28 × 28 × 128
C21, B21, R21 FS = 5 × 5, S = 1 28 × 28 × 128
C22, B22, R22 FS = 7 × 7, S = 1 28 × 28 × 128

CN5 Six inputs 28 × 28 × 800
B5x Batch Normalization Layer 28 × 28 × 800

C23, B23, R23 FS = 5 × 5, S = 4 28 × 28 × 16
C24, B24, R24 FS = 3 × 3, S = 2 28 × 28 × 16

G1 - 1 × 1 × 800
F1 400 FC 1 × 1 × 400
D1 Dropout layer with learning rate:0.5 1 × 1 × 400
F2 200 FC 1 × 1 × 200
D2 Dropout layer with learning rate:0.5 1 × 1 × 200
F3 2 FC 1 × 1 × 2

O (Softmax function) Normal, Abnormal 1 × 1 × 2
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Figure 8. The proposed model architecture.
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We achieved the visualization stage by showing what the first convolutional layer learned in
our model trained in Scenario 2, Dataset A. Figure 9 shows learned filters of the abnormal class.
Figure 10 shows the learned filter of the normal class. The training process was accomplished using
stochastic gradient descent with momentum set to 0.9. The mini-batch size was 64 and MaxEpochs
was 100, with a learning rate that was initially set to 0.001. We implemented our experiments on
Matlab2019 as software and a processor from Intel (R) Core TM i7-5829K CPU @ 3.30 GHz, 32 GB RAM,
and 8 GB GPU.

Figure 9. Learned filters of the abnormal class (DFU).

Figure 10. The learned filter of the normal class.

6. Experimental Results

The evaluation stage was achieved by calculating recall, precision, and F1-score, where TP refers
to true positives, FP refers to false positives, and FN refers to false negatives. These parameters are
defined as:

Recall = TP/ (TP+FN) (1)

Precision = TP/ (TP+FP) (2)

F1 score = 2 × ((Precision × Recall) / (Precision + Recall) (3)

We started by evaluating the proposed model performance with target datasets trained with
Scenario 1, as reported in Table 2.
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Table 2. Results of two target datasets with Scenario 1.

Target Dataset Precision (%) Recall (%) F1-Score (%)

Dataset A 84.8 88.6 86.6
Dataset B 82.9 87.5 85.1

The results of the proposed model with Dataset A are slightly higher than those with Dataset B,
achieving 84.8%, 88.6%, and 86.6% for precision, recall, and F1-score, respectively. The proposed model
with Dataset B achieved 82.9% for precision, 87.5% for recall, and 85.1% for the F1-score. Although
the performance of the proposed model with Dataset A was higher than the proposed model with
Dataset B, both still roughly had the same performance.

In Scenario 2, TL from medical sources (Dataset C) was adopted and the results are listed in
Table 3.

Table 3. Results of two target datasets with Scenario 2.

Target Dataset Precision (%) Recall (%) F1-Score (%)

Dataset A 96.8 98.6 97.6
Dataset B 81.8 86.7 84.1

The results of the proposed model with Dataset A were significantly higher than those with Dataset
B, achieving 96.8%, 98.6%, and 97.6% for precision, recall, and F1-score, respectively. By comparing the
performance of the proposed model with Dataset A in Scenario 2 to Scenario 1, there was a remarkable
improvement in the performance of Scenario 2 due to the TL from the same domain of Dataset A.
On the other hand, the situation was different with Dataset B in Scenario 2 compared to Scenario 1.
Employing TL from a medical source for animal classification (Dataset B) degraded the performance
due to differences in learned features. The proposed model with dataset B achieved 81.8% for precision,
86.7% for recall and 84.1% for the F1-score. In these situations, training from scratch is preferable as in
Scenario 1.

In Scenario 3, the source of TL was in the same domain of Dataset B, which boosted the results to
91.6%, 96.9%, and 94.1% for precision, recall, and F1-score, respectively. By comparing the performance
of the proposed model with Dataset B in Scenario 3 to that of Dataset B in Scenarios 1 and 2, it was clear
that the same domain transfer played a big role in enhancing performance. Although the performance
of the proposed model with Dataset A was less than that with Dataset B in Scenario 3, the results of the
proposed model with Dataset A slightly improved compared to the results from Scenario 1. It achieved
86.5% for precision, 92.7% for recall and 89.4% for the F1-score. These results are still less than the
results from Scenario 2. The results of the proposed model with Datasets A and B trained in Scenario 3
are listed in Table 4.

Table 4. Results of two target datasets with Scenario 3.

Target Dataset Precision (%) Recall (%) F1- score (%)

Dataset A 86.5 92.7 89.4
Dataset B 91.6 96.9 94.1

In Table 5, we employed two state-of-the-art models trained on the ImageNet dataset,
which consists of natural images including animals. Both the ImageNet dataset and Dataset B
are in the same domain. For that reason, the results of Dataset B were higher than the results of Dataset
A with a score 89.3% for precision, 95.2% for recall and 92.1% for the F1-score with VGG19, while it
scored 93.7% for precision, 98.9% for recall, and 96.2% for the F1-score with ResNet50. The results
of ResNet50 with Dataset B were considered the dataset’s highest results due to training with the
ImageNet dataset as source of TL and the results of the proposed model in Scenario 3 were the second
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highest. It showed the importance of the same domain of transfer learning. On the other hand,
the results of these models on Dataset A improved compared to Scenario 1 by achieving 86.4% for
precision, 90.5% for recall and 88.4% for the F1-score with VGG19, while it achieved 88.2% for precision,
93.1% for recall and 90.5% for the F1-score with ResNet50. Although these models (VGG19, ResNet50)
were trained with one million images, they were not from the same domain as the medical images.
Therefore, a fewer number of images for TL in the same domain is better than a million images in a
different domain. In Scenario 2, TL from the same domain significantly improved performance with
fewer images than the million images that VGG 19 and ResNet50 were trained with.

Table 5. Results of two target datasets with Scenario 4.

Models Target Dataset Precision (%) Recall (%) F1- score (%)

VGG19
Dataset A 86.4 90.5 88.4
Dataset B 89.3 95.2 92.1

ResNet50
Dataset A 88.2 93.1 90.5
Dataset B 93.7 98.9 96.2

7. Conclusions

In summarizing this paper, there are six main highlights: (i) the issue of the lack of training has
been tackled using transfer learning; (ii) a hybrid deep learning model has been proposed combining
different structures including traditional and parallel convolutional layers along with residual links.
Due to this type of structure, the proposed model has the advantage of better feature representation;
(iii) a DFU dataset was collected and labeled as normal or abnormal by an expert in the field and
utilized for experiment; and (iv) four training scenarios were designed including training from scratch
and training scenarios representing the same and different domain TL for target datasets. Four datasets
were employed for the training scenarios including two target datasets and two other datasets for TL
purposes; (v) the same domain TL was proven to be more beneficial for addressing the lack of training
issue. It was found that fewer images in the same domain of the target dataset were better than a large
number of images from a different domain; (vi) the proposed model with the DFU dataset (Dataset A)
achieved an F1-score of 86.6% with training from scratch, 89.4% with TL from a different domain of the
target dataset, and 97.6% with TL from the same domain of the target dataset. As the idea of the same
domain TL improved performance, we plan to adopt it in other applications.
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