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Abstract: Post-disaster recovery is a complex process in terms of measuring its progress after a
disaster and understanding its components and influencing factors. During this process, disaster
planners and governments need reliable information to make decisions towards building the affected
region back to normal (pre-disaster), or even improved, conditions. Hence, it is essential to use
methods to understand the dynamics/variables of the post-disaster recovery process, and rapid and
cost-effective data and tools to monitor the process. Google Earth Engine (GEE) provides free access
to vast amounts of remote sensing (RS) data and a powerful computing environment in a cloud
platform, making it an attractive tool to analyze earth surface data. In this study we assessed the
suitability of GEE to analyze and track recovery. To do so, we employed GEE to assess the recovery
process over a three-year period after Typhoon Haiyan, which struck Leyte island, in the Philippines,
in 2013. We developed an approach to (i) generate cloud and shadow-free image composites from
Landsat 7 and 8 satellite imagery and produce land cover classification data using the Random Forest
method, and (ii) generate damage and recovery maps based on post-classification change analysis.
The method produced land cover maps with accuracies >88%. We used the model to produce damage
and three time-step recovery maps for 62 municipalities on Leyte island. The results showed that
most of the municipalities had recovered after three years in terms of returning to the pre-disaster
situation based on the selected land cover change analysis. However, more analysis (e.g., functional
assessment) based on detailed data (e.g., land use maps) is needed to evaluate the more complex and
subtle socio-economic aspects of the recovery. The study showed that GEE has good potential for
monitoring the recovery process for extensive regions. However, the most important limitation is the
lack of very-high-resolution RS data that are critical to assess the process in detail, in particular in
complex urban environments.

Keywords: disaster; damage; recovery; monitoring; assessment; remote sensing; satellite imagery;
Landsat; Google Earth Engine; Typhoon Haiyan; cloud computing

1. Introduction

Natural disasters have devastating impacts on infrastructure, business sectors, and people in
the affected region. Between 1998 and 2017, more than 5.7 billion people were affected by disasters,
and more than one million people were killed by such events, while a total loss of USD 2.9 trillion was
reported [1]. Recovery starts after the immediate post-disaster response phase, mainly search and rescue
operations, have concluded. Post-disaster recovery is the process of reconstructing communities in all
their aspects (e.g., physical, economic, social, and environmental) in order to return life, livelihoods,
and the built environment to their pre-impact [2], or even better, states, as per the Sendai Framework [3].
Recovery can take years or even decades, and is the least studied phase of the disaster management
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cycle. Moreover, it has been considered as a proxy to evaluate resilience [4,5], with resilient communities
recovering faster after a disaster. However, a recent study argued that this assumption may not be true
in all cases, and there is a need for more studies to explore the relationship [6]. Accordingly, providing
information about the status of the damage and the reconstruction and recovery process after a disaster
is vital to support decision-makers and planners, but also to support post-event risk updating efforts.

Remote sensing (RS) data and techniques have been extensively used for different aspects of
disaster risk management (DRM) [5], from quantification of social [7] and physical [8] vulnerabilities,
to rapid damage assessments [9] using satellite [10], airborne [11], and Unmanned Aerial Vehicle (UAV)
images [12], and numerous data analysis methods have been developed. Conversely, only recently
have a small number of studies focused on the recovery phase [4,13]. Recently, RS data also started
to be used for disaster recovery monitoring; however, most of these studies used RS for physical
recovery assessment [5]. For instance, Brown et al. [14] developed an indicator-based methodology
to monitor and evaluate post-disaster recovery based on high-resolution RS imagery, particularly
IKONOS and QuickBird satellite images, in addition to field surveys and internet-based statistic data
sets. They implemented image processing techniques for change detection (i.e., land cover changes) and
building-based recovery/reconstruction analysis. They evaluated the potential of RS data for recovery
assessment. In a different study, Burton et al. [2] used the repeat photography method to evaluate
post-Katrina recovery in Mississippi. They took photographs every six months over a three-year
period. Then, by assigning scores to each scene in terms of change and recovery, they generated a
map for recovery assessment for the entire region. Night-time light satellite images have been also
used for damage and recovery analysis, and it has been demonstrated that there is a close relationship
between light intensity and economic activity [15]. However, the night-time light satellite images are
only useful for urban area recovery assessments.

Brown et al. [16] developed a model to assess the damage and early recovery using RS data and
ground survey tools after the 2008 Wenchuan earthquake in China. The recovery step of their study
included buildings, accessibility, power, and water livelihoods assessments. In their study, only the
Normalized Differential Vegetation Index (NDVI) computation was implemented automatically,
and other information, such as building change detection and accessibility assessments, were generated
manually. Costa Vieira and Kerle [17] studied urban recovery using geospatial data for the firework
disaster in Enschede, the Netherlands, 2000. They mainly employed very high-resolution aerial images
to extract information about the building morphology, such as building density, shape, and size,
and concentration of road networks as proxies. In addition they proposed a proxy to measure the
quality of housing based on the energy loss indicator of the buildings. Hoshi et al. [18] used ground
survey information in combination with RS, employing visual interpretation and binary classification
methods to monitor post-disaster urban recovery. Contreras et al. [19] integrated RS (high-resolution
satellite/aerial imagery) and ground observations to assess the recovery process in the Italian city of
L’Aquila after the 2009 earthquake. They showed that using RS data for recovery monitoring reduces
the required ground fieldwork.

Recent studies have focused on the extraction of proxies for post-disaster recovery assessment
by land cover and land use classification and change detection of very high-resolution images using
advanced machine learning methods [20]. Sheykhmousa et al. [4] implemented a Support Vector
Machine (SVM)-based method to produce land cover and land use classification maps for before,
event/just after, and years after the disaster. They assessed the recovery processes by monitoring
the changes in land cover and use maps. They also introduced the concept of positive and negative
recoveries based on the observed change patterns. Furthermore, Kerle et al. [6] developed a conceptual
framework for RS-based recovery monitoring and then integrated it with statistical economic analysis
to assess the resilience-centered development interventions. They hypothesized that the speed of
recovery is a proxy for resilience assessment; however, for some areas their results showed a negative
relationship between image-derived speed of the recovery and resilience calculated based on household
surveys. They employed the Extreme Gradient Boosting (XGBoost) method [21,22] to classify the very
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high-resolution images to extract RS-based proxies. They concluded that although RS can provide
useful information in addition to socio-economic survey data, the high cost of very high-resolution
images and the need for high computational processing power are the limitations of utilizing RS
data. Moreover, deep learning, in particular convolutional neural networks (CNN), has become
the state-of-the-art method in computer vision and RS data analysis, and has also been used for
post-disaster damage and recovery assessments [9,23,24]. For instance, a new image-patch generation
approach was developed to train a CNN-based network simultaneously with multi-temporal satellite
images and assess recovery [25]. In addition, free OpenStreetMap building footprints were employed
to automatically generate training data from very high-resolution satellite images for a pixel-level deep
learning method for post-disaster building database updating [26]. The study showed that the proposed
approach significantly decreased the manual work of training area collection, while maintaining the
accuracy of the detected damaged, reconstructed, and newly constructed buildings at a high level.
However, extensive computational power is needed to execute deep learning methods.

Most of the developed RS-based approaches in post-disaster damage and recovery assessments
focus on the use of costly very high-resolution data that require extensive digital storage and
computing capacity to make use of them. In recent years, freely available RS images made available
through platforms such as Google Earth have attracted the attention of researchers to extract useful
information [27,28]. In addition, cloud-based platforms such as Google Earth Engine (GEE) provide
free RS data and computing power with a coding environment to develop and implement user-defined
methods and process the data [29,30]. Freely available, low- to medium-resolution images by
data providers (e.g., Copernicus) are mainly collected in these platforms. The potential of such
systems has been studied for vegetation cover change analysis [31], land cover and land use
classification [32,33], change detection/analysis [34,35], wetland map generation [36,37], rangeland and
crop monitoring [38,39], and in the DRM domain for flood prevention and emergency response [40],
drought assessment [41], and wildfire progress mapping [42]. However, they have not yet been studied
to monitor the post-disaster recovery process. Furthermore, there is a need for higher spatial resolution
images for detailed analysis (e.g., functional assessments), especially in urban areas.

The aim of this study was to test the suitability of GEE for a large-scale post-disaster recovery
assessment. The big time series Landsat 7 and 8 data available on GEE were used to first generate
image composites for the before, event/just after, and post-disaster times (i.e., three time-steps after
the disaster) to obtain cloud-free images, by adapting the method developed by De Alban et al. [43].
Then, the Random Forest classifier available on the cloud computing platform was employed to classify
the generated images and monitor the land cover changes during the recovery process. The entire
Leyte island (with an area of ca. 7300 km2) in the Philippines was selected to test the developed
approach, and municipality-based damage and recovery maps for the entire island were generated
for the selected time epochs. Leyte region was hit by Super Typhoon Haiyan on 8 November 2013.
As one of the strongest typhoons on record worldwide, it resulted in more than 6000 fatalities, and total
damages were estimated at ca. USD 2.2 billion [44].

2. Materials and Methods

2.1. Case Study and Google Earth Engine Data

Leyte province, located in the Eastern Visayas, is the seventh largest island in the Philippines
(Figure 1). With a population of approximately 250,000, Tacloban is the biggest city and the capital
of Leyte, which in total houses ca. 1.7 million people. The region has a tropical climate with two
slightly different rainfall patterns during a year. While most of Leyte island has an even annual rainfall
distribution, some eastern parts have a pronounced maximum rainfall from November to January.
Typhoon Haiyan (also known as Typhoon Yolanda in the region) passed over Leyte island close to
Tacloban City on 8 November 2013. Tacloban was hit by the full force of the typhoon, which caused
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massive destruction in the city. A state of emergency was declared in Tacloban and the typhoon caused
a storm surge of up to 5 m [44].Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 15 
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Figure 1. An overview of the Philippines showing the path of Typhoon Haiyan and the location of
Leyte island. Pre-event image and an image acquired three days after the disaster for Tacloban.

Since Leyte island is a tropical region and is covered by clouds most of the time, we first aimed
at using Synthetic Aperture Radar (SAR) data. However, only Landsat images were available and
found suitable for our study in the GEE data sets for the time of the disaster and recovery processes.
Accordingly, atmospherically corrected surface reflectance Landsat 7 and 8 satellite images with 30 m
spatial resolution were used to map the selected land cover types and implement the developed
approach for post-disaster recovery assessment (Table 1). In total, 446 Landsat images were employed
in this study. In particular the potential of big geospatial time-series data (i.e., Landsat 7 and 8 images)
available on the cloud was used to generate the best-available-pixel image composites (explained in the
methodology section) for the pre-disaster, event time, and post-disaster time steps over Leyte island to
minimize/remove the cloud and shadow areas.

Table 1. Satellite images used in this study.

ID Timeline Acquisition Dates
Number of

Images
Collected

Satellite
Platforms

Spatial
Resolution

T0 Before Haiyan 2013-05-01 to 2013-10-28 68
T1 Event time 2013-11-10 to 2014-03-31 56
T2 Post-Haiyan 1 2014-06-01 to 2014-12-30 104
T3 Post-Haiyan 2 2015-06-01 to 2015-12-30 109
T4 Post-Haiyan 3 2016-06-01 to 2016-12-30 109

Landsat 7
ETM+ and

Landsat 8 OLI
30 m

2.2. Reference Data and Land Cover Classes

We defined the land cover classes based on the local knowledge of the authors about the study area,
and by considering the capacity/potential of the Landsat images (i.e., spatial and spectral resolutions)
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to identify different classes through field verification and visual interpretation of high-resolution
satellite imagery acquired from various platforms (i.e., WorldView1-3, GeoEye 1, Pleiades) and images
available from Google Earth Pro. We identified five land cover classes: forest/trees, built-up, crop
land, water body, and other (i.e., non-tree vegetation, bare land, and debris/rubble) (Table 2), and the
corresponding regions of interests (ROIs) were collected for training and testing of the classification
method using the tools available within GEE.

Table 2. Description of the selected land cover classes.

ID Land Cover Class Description
1 Forest/Trees All types of trees (e.g., forest, palm and banana), tree canopy coverage >30%
2 Built-up Any type of developed lands such as buildings, roads, impervious surfaces
3 Crop land Agricultural fields with any non-tree crop type plantation
4 Water body Bodies of water including lakes, oceans, rivers and flooded areas
5 Other All other land cover classes (i.e., non-tree vegetation, bare land, rubble and debris)

2.3. Methods

The developed approach for post-disaster recovery assessment has three main steps (Figure 2):
(i) land cover classification of the pre-disaster, event time, and post-disaster images, (ii) change detection
of pre-disaster and event time classified images to obtain the damage map, and (iii) change analysis
of the post-disaster classified images and the damage map to obtain the recovery maps at T2–T4.
Generating the land cover maps from the Landsat 7 and 8 satellite images with GEE consisted of three
main stages: image composite generation, image classification, and accuracy assessment.
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2.3.1. Image Composite Generation

We generated the best-available-pixel image composites for the T0–T4 time steps by extracting
the best observations from several Landsat 7 and 8 images for our case study (Leyte island), using
pixel-based image compositing within the GEE platform, and implemented using rule-based criteria
such as dates of acquisition and exclusion of clouds and shadows [45–48]. To do so, we adapted a script
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within the GEE environment provided by De Alban et al. [43]. The generated Landsat image composites
were exported for subsequent use in the image classification. The developed script needs user-defined
inputs and parameters: the coordinates and extent of Leyte island, the number of years, starting and
ending date range for the selected region (i.e., Leyte), the thresholds for cloud detection and masking
(10% or less) and shadows (z-score = −1), and the image collection used, (i.e., Landsat 7 ETM+ and
Landsat 8 OLI). Then the areas that were masked out in the previous step were filled by the median of
the selected image pixels [43,49]. The scripts developed for this study are provided as supplementary
materials in this paper.

In addition, we calculated five well-known indices from the Landsat composite images and added
to the available Landsat bands to be used in the classification step as follows:

Normalized Difference Vegetation Index (NDVI; [50]) using Equation (1):

NDVI =
NIR−Red
NIR + Red

(1)

The Soil-Adjusted Total Vegetation Index (SATVI; [51]) using Equation (2):

SATVI =
SWIR1−Red

SWIR1 + Red + 0.1
∗ (1.1− SWIR2/2.0) (2)

Enhanced Vegetation Index (EVI; [52,53]) using Equation (3):

EVI = 2.5 ∗
NIR−Red

NIR + (6.0 ∗Red) − (7.5 ∗ Blue) + 1.0
(3)

Land Surface Water Index (LSWI; [54,55]) using Equation (4):

LSWI =
NIR− SWIR1
NIR + SWIR1

(4)

Normalized Difference Tillage Index (NDTI; [56]) using Equation (5):

NDTI =
SWIR1− SWIR2
SWIR1 + SWIR2

(5)

where Blue is the blue band, Red is the red band, NIR is the near-infrared band, SWIR1 is the shortwave
infrared 1 band, and SWIR2 is the shortwave infrared 2 band of the Landsat image.

NDVI was shown to be a useful tool for distinguishing green vegetation areas from other land cover
types; LSWI is for detecting water bodies and when combined with NDVI improves the performance
of separating crop lands and forests [57]. SATVI, EVI, and NDTI have been shown to be effective tools
for identifying forest and crop types from other land cover classes [43,58].

2.3.2. Image Classification

The final stacked/combined images for each time step consisted of seven Landsat bands (i.e., Blue,
Green, Red, NIR, SWIR1, SWIR2, and TIR) and the computed indices (i.e., NDVI, EVI, SATVI, NDTI,
and LSWI). The combined images were stored under the “Asset” tab of the GEE code editor platform
to be later used for training and testing ROI selection/extraction.

We collected regions of interest (ROIs)/training areas from the images, using the tools within GEE
in a way that each class had at least 40 polygons. These selections were based on field verifications and
visual interpretations from high-resolution Google Earth Pro historical images and high-resolution
satellite images acquired by different sensors (i.e., WorldView1-3, GeoEye1, Pleiades), and Landsat
true- and false-color images to obtain final robust training and testing datasets. From the collected
ROIs, 70% were randomly selected for training the classifier method and the rest were used for
testing purposes. We used Random Forest, as an ensemble machine learning algorithm, to classify the
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images based on the collected training samples. Random Forest has been widely used in RS image
processing for different applications [59], including land cover and land use classification [60,61],
landslide detection [62], and hyperspectral image classification [63], due to providing efficient and
accurate results. It is also one of the machine learning-based methods available and ready to use
in GEE. This approach has also been used by other researchers and its ability to produce accurate
classification results has been demonstrated [64–67]. In addition, Random Forest was selected as the
best classifier among several advanced algorithms, including SVM and neural networks, for classifying
hundreds of different real-world datasets [68].

Random Forest grows multiple decision trees on randomly selected training subsets. In addition,
it takes the advantage of the bootstrapping approach to construct the decision trees from training
samples and input variables at every node. The constructed numerous decision tress then go through
the majority voting mechanism to obtain the final classification result. This strategy contributes to
overcoming the limitations of single tree-based classifiers such as overfitting, and makes it less sensitive
to noise. In the current study we executed Random Forest with 100 decision trees per class, a 0.5 fraction
number to bag per tree, and 10 for the minimum size of a terminal node.

2.3.3. Accuracy Assessment

The overall user’s and producer’s accuracies were calculated for each time step classified maps
(i.e., T0–T4) to assess the accuracy of the produced land cover classification results. A proportion of
30% of the collected ROIs for each class were selected using stratified random sampling for testing and
computing the accuracy measures [51]. To do so, we adapted the code script used by De Alban et al. [43]
and executed it within the GEE environment. Selecting the training and ground truth ROIs was
challenging for some classes due to similarities between the land cover classes (e.g., crop land and
vegetation classes). We tried to minimize the effect of these inaccuracies using different sources
(e.g., very high-resolution satellite images) in selecting the ROIs. In addition, considering debris/rubble
as the damaged area may cause inaccuracies, e.g., in the case of storm surge that may relocate/wash
debris to other regions covering the intact built-up area [13].

2.3.4. Change Analysis

Final damage and recovery maps were generated based on the amount of change in the forest,
built-up, and crop land classes. The changes were computed at the municipality level, and the damage
map was generated by comparing the T0 and T1 land cover classification results; also, the recovery
maps for each post-disaster time step (T2–T4) were computed by comparing the T1 and T2–T4 land
cover classification results.

3. Results and Discussion

The proposed approach produced overall accuracies of 92.8%, 88.6%, 93.8%, 94.6%, and 89.0%
for land cover classifications of the T0, T1, T2, T3, and T4 images, respectively (Table 3). In addition,
Figure 3 shows the original true-color image composites and the results of the land cover classification
for the T0–T4 time steps. Visual interpretation of the results and the high accuracy rates demonstrate
the robustness of the approach and the Random Forest classifier for land cover classification for the
defined classes in such a case study. However, the producer’s accuracy values of the built-up and the
other (including non-tree vegetation, bare land, and debris) classes for T1 and T4 images were 76.5%
and 75.4%, respectively, which shows the relatively high omission errors for those classes. Relocation
of palm tree fronds by the typhoon made distinguishing trees, crop land, and other (including debris)
classes more difficult for the event time, and resulted in the lowest overall accuracy of 88.6% for the T1
image classification. Furthermore, the generated composite images may still include cloud coverage.
For example, the presence of clouds in the T4 image even after image composition generation resulted
in some inaccuracies that produced the second-lowest overall accuracy of 89.0% among other images.
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The developed method produced accurate results in classifying built-up, water body, and forest/trees
classes in most of the images.

Table 3. The land cover classification accuracies for T0, T1, T2, T3, and T4 time epochs for Leyte island.
PA—producer’s accuracy; UA—user’s accuracy; OA—overall accuracy; Non-tv—Non-tree vegetation.

Time/Class Trees Built-Up Crop Land Water Body Other (Non-tv, Bare
Land, Debris)

UA(%) 90.7 100 93.0 100 86.7

PA(%) 87.3 100 84.6 100 85.8Pre-disaster
(T0) OA(%) 92.8

UA(%) 98.4 94.8 85.1 100 71.9

PA(%) 84.1 100 84.9 100 76.5Event time
(T1) OA(%) 88.6

UA(%) 96.4 89.1 90.6 99.9 90.3

PA(%) 88.4 95.7 90.6 99.8 96.4Post-disaster
(T2) OA(%) 93.8

UA(%) 95.7 98.5 84.8 100 86.5

PA(%) 93.1 97.8 98.7 100 91.3Post-disaster
(T3) OA(%) 94.6

UA(%) 90.1 81.0 86.3 99.5 86.7

PA(%) 96.6 75.4 93.3 99.9 82.6Post-disaster
(T4) OA(%) 89.0

Figure 4 shows the land cover class change trends extracted from the T0 to T4 images. Typhoon
Haiyan clearly had a significant impact on the forest/trees and built-up areas, reducing their coverage
by about 40% and 30% from T0 to T1 images, respectively. The increase of the other class from
T0 to T1 is mostly due to the debris and rubble caused by Haiyan and denuded trees, which led
to an increase in non-tree vegetation coverage even in (formerly) forested areas. The storm surge
during the typhoon resulted in the increase in water bodies in the T1 image. Monitoring three years
after Typhoon Haiyan for Leyte island demonstrates that most of the land cover changes returned
to their pre-disaster situation. However, there is an increase in the built-up class that is due to the
construction of resettlement sites (as safe zones) mostly around the eastern coastal cities (e.g., Tacloban
city—Figure 3).

Figure 5 shows the damage and recovery maps for the post-Typhoon Haiyan situation generated
at the municipality level for Leyte island. The damage map was produced based on the change analysis
of the land cover classes for the T0 and T1 times, and recovery maps (RC) (i.e., RC1, RC2, and RC3)
were produced based on change analysis of the damage map and the land cover classes of T2, T3,
and T4 times, respectively.
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In Figure 5, the darker red color shows more damage while, for the recovery maps, the darker
green color shows a higher level of recovery. The most damaged/impacted municipalities are located
in the center and northern part of the island. However, since Haiyan passed through the northern part
of the island, the municipalities in the southern parts have the lowest damage ratios, close to zero.
The most affected land cover classes were the forest/trees and built-up classes (Figure 4). Consequently,
the municipalities with more forest/trees and built-up coverage compared to other land cover types
have higher damage ratios. The change in the recovery maps (from RC1 to RC3) shows that the
municipalities with more forest/tree coverage recovered more slowly than the others, and eventually,
after a period of three years, most of the forest trees had recovered (RC3) (Figure 5d). Moreover,
the results reported in a previous study [4] show almost the same pattern of recovery in terms of
change in land cover classes at a small scale (i.e., Tacloban) in the post-Haiyan time. The only difference
is in built-up class, where our study shows growth in built-up areas three years after Haiyan, while
they reported that Tacloban city returned to almost the same level of built-up coverage four years after
the disaster. This is mainly because their focus was on central urban areas of Tacloban, not including
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the northern part of Tacloban in their analysis, in which the primary resettlement sites for the period
after Haiyan were built (Figure 3).

4. Discussion and Conclusions

The aim of this study was to assess the suitability of GEE for post-disaster recovery assessment
for a large-scale region after Typhoon Haiyan, which hit Leyte island in the Philippines in 2013.
We proposed an approach to monitor and quantify the recovery process using GEE, in particular
with Landsat images, based on land cover classification and subsequent change analysis, and then
producing municipality-based damage and recovery maps. The land cover classification results show the
robustness of the employed approach, including image composite generation and Random Forest-based
image classification. Furthermore, the change analysis and generated recovery maps clearly illustrate
the damage and recovery processes during the selected time epochs, i.e., three time-steps for recovery
assessment for three years after Haiyan. However, among the big geo dataset available in the platform
and considering the time of Typhoon Haiyan (i.e., November 2013), we only found Landsat images
suitable for this study. Hence, due to the limited spatial resolution of the data, detailed recovery
analysis was not possible (e.g., extracting more land-use classes, such as building use and crop types).
As also concluded by Sheykhmousa et al. [4], land cover maps can provide the main information for
decision-makers to have an overview of the damage and reconstruction/recovery processes, which
are critical in the early stages of recovery. However, a comprehensive recovery assessment needs
more details that can be obtained using land use maps extracted from very high-resolution images.
Little work has been done to date in damage and recovery mapping of the selected area, and none of this
previous research investigated the entire Leyte island. In addition, the available studies that focused on
some selected small areas were based on very high-resolution images with different class definitions.
Hence, the validation is only based on the accuracy assessment of the land cover classification results.
However, since GEE also allows to upload user images for processing, it might be used to upload a
very high-resolution image for validation purposes.

Moreover, the change in types of crops and trees, or any detail about the recovered trees, can provide
more information about the recovery process. For example, it is essential from the environmental
and ecological points of view to understand whether the same trees that were denuded by the
typhoon recovered, or whether the trees detected were newly planted after the disaster. More detailed
information on the age of the trees can provide significant additional insights into the post-disaster
recovery process.

In conclusion, further studies are needed to investigate the potential of the more recently available
higher resolution optical and SAR images (Sentinel 1 and 2 images) for most of the case studies
(i.e., disasters) that occurred after those platforms became operational. In addition, SAR data have been
shown to be a useful tool for extracting land cover and use classes such as distinguishing different crop
and tree types [43]. Hence, using higher resolution images and SAR data available in GEE will allow
the researchers to detect damage to the crops, contribute to detecting changes in tree types, and extract
more details for urban areas after a disaster [69–71].

Computer vision and image processing/classification methods deal with the actual image-based
pixel values and try to classify them to achieve the best accuracies. However, in post-disaster remote
sensing images, especially in water-related disasters, seeing actual damage and visually distinguishing
damaged and intact areas is nearly impossible in some cases, as some intact areas are often buried
under debris. Hence, assuming the debris area as the damaged class is not entirely correct, there is
a need for further studies to identify the debris types (e.g., [13]) or use proxies for distinguishing
between damaged and other classes [5] instead of only using direct image classification methods.

Evaluating the recovery process with more details (e.g., building use detection, crop type
classification) and several time epochs at such a large scale, and providing municipality level recovery
scores similar to those proposed in our study, can be further used for per-municipality resilience
assessment at large scales, assuming that the speed of recovery is a proxy for evaluating resilience.
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However, it has been shown that this assumption is not correct for all cases, and further investigation
is needed to clearly determine the relationship between the speed of the post-disaster recovery and
resilience [6].

Although the Random Forest-based image classification produced a high accuracy rate, using
more advanced methods (i.e., deep learning-based approaches) within the Google Earth API could
help to improve the accuracy and would allow executing more advanced image classification and
object detection tasks.
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