
applied
sciences

Article

Cross-Site Scripting Guardian: A Static XSS Detector
Based on Data Stream Input-Output
Association Mining

Chenghao Li 1,†, Yiding Wang 1,†, Changwei Miao 1,† and Cheng Huang 1,2,*
1 College of Cybersecurity, Sichuan University, Chengdu 610064, China; 2017141531008@stu.scu.edu.cn (C.L.);

2016141043006@stu.scu.edu.cn (Y.W.); 2017141472035@stu.scu.edu.cn (C.M.)
2 Guangxi Key Laboratory of Cryptography and Information Security, Guilin 541004, China
* Correspondence: codesec@scu.edu.cn
† These authors contributed equally to this work.

Received: 7 June 2020; Accepted: 2 July 2020; Published: 9 July 2020
����������
�������

Abstract: The largest number of cybersecurity attacks is on web applications, in which Cross-Site
Scripting (XSS) is the most popular way. The code audit is the main method to avoid the damage of
XSS at the source code level. However, there are numerous limits implementing manual audits and
rule-based audit tools. In the age of big data, it is a new research field to assist the manual auditing
through machine learning. In this paper, we propose a new way to audit the XSS vulnerability in
PHP source code snippets based on a PHP code parsing tool and the machine learning algorithm. We
analyzed the operation sequence of source code and built a model to acquire the information that
is most closely related to the XSS attack in the data stream. The method proposed can significantly
improve the recall rate of vulnerability samples. Compared with related audit methods, our method
has high reusability and excellent performance. Our classification model achieved an F1 score of 0.92,
a recall rate of 0.98 (vulnerable sample), and an area under curve (AUC) of 0.97 on the test dataset.

Keywords: vulnerability detection; code audit; cross-site scripting; machine learning

1. Introduction

With the rise of communication technology such as 5G technology, data transmission ability has
been greatly improved and web technology has been more widely used. The browser and server (B&S)
architecture is highly convenient in that it can free the steps of the installation. Thus, applications
of B&S architecture are constantly developing. Predictably, more and more services will tend to be
part of a Web application. However, it is well known that attacks on web applications represent the
largest number of threats and this will take on more network attacks. Due to the lack of security
awareness and the around usage of Web Application Firewall (WAF) technology, it is common for
developers to ignore the vulnerability on the source code level. Although WAF technology can usually
intercept a considerable number of malicious attacks, a secure Web application should not rely solely
on WAF technology to secure it [1]. If the source code is not reasonably modified, threats will always
exist. In fact, according to Web Applications vulnerabilities and threats statistics for 2019, 82% of the
vulnerabilities are in application code, which indicates the vulnerability audit itself is not negligible [2].

A traditional code audit is usually done manually, which leads to large human resources
consumption and high false rates. Thus, several automatic auditing tools have been developed
to assist auditors. However, a great number of current tools are matched by a large library of rules and
regulations which indicates they are somehow lacking of flexibility. With the increasing demand for
data analysis, the efficient acquisition of knowledge through machine learning has gradually become

Appl. Sci. 2020, 10, 4740; doi:10.3390/app10144740 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-5871-946X
http://dx.doi.org/10.3390/app10144740
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/14/4740?type=check_update&version=2

Appl. Sci. 2020, 10, 4740 2 of 20

the main driving force. “How to make a deep analysis of complex and diverse data” becomes the main
direction of research [3]. At present, researches on code vectorization make it possible for machine
learning technology to be applied in a code audit [4].

Contributions

We assume that machine learning model can learn to mine the specific association between the
filters and the I/O context to prevent XSS attacks. Then, we can detect XSS vulnerabilities in PHP
source code based on this association.

In summary, the contributions of this paper are as follows.

(1) Cross-Scripting Guardian: A novel PHP source code vulnerability detector. According to our
experimental evaluation, this detector performs better in vulnerability identification compared
with related methods. It has guiding significance for the follow-up research of machine learning
applied to XSS code audits.

(2) Algorithms for input-output pattern mining: We analyzed the I/O patterns in XSS-related
PHP source code and design an algorithm to identify the specific path of the data stream.
With this algorithm, it will be more efficient to mine the I/O context and build the precise and
consistent TOKEN sequence for representation.

(3) A novel adapted open-sourced PHP code parsing tool [5]: We modify the source code of the
VLD to enable it to output richer and more structured parsing information of the PHP source
code, which can facilitate the work of parsing and serializing PHP source code.

The following sections are organized as follows: in Section 2, we introduce the background of
the research, the current work, and results related to the code audit. In Section 3, we develop the
approaches and theoretical methods of the framework. In Section 4, the experimental goal, process,
results, and evaluation are presented. In the last section, we summarize our work and list several
prospects for future work.

2. Research Background and Significance

2.1. Background

According to OWASP (Open Web Application Security Project) data [6], XSS vulnerabilities have
been top-10 among all Web application vulnerabilities for years, while nearly 80% of Web application
servers have been built with PHP.

Nowadays, SQL injection has become increasingly tight. XSS attacks are the preferred way for
more hackers to exploit vulnerabilities. It is highly harmful, has a wide range of influence, and can
be combined with other forms of attack, which indicates that the prevention of XSS attacks in Web
applications is urgent.

With the development of 5G technology, the ability of data transfer will be further improved.
As the Web application has entered the third generation [7], more and more services will be carried
out in the form of a Web application soon. XSS is one of the most common approaches of attack
in Web applications, and the corresponding defense measures should be further emphasized [8].
Although defense against XSS has become an important part of WAF, a robust Web application
should not rely solely on an external firewall to ensure security. This security threat will never be
eliminated without fixing the corrupted code portion. Therefore, auditing the vulnerability of Web
applications from the source code level is an essential part and a new research direction of cybersecurity.
Considering the popularity of the PHP language in Web deployment, our research revolves around
PHP code.

Appl. Sci. 2020, 10, 4740 3 of 20

2.2. Related Work

2.2.1. Code Auditing with Machine Learning

In the past years, code auditing in web applications was mostly done manually, making it difficult
to ensure efficiency and accuracy. It wastes more time and manpower facing large-scale projects [9].
Therefore, several tools have been developed to help and supplement the audit work. However, most
of the current PHP code vulnerability auditing tools are based on the predetermined detection rules.
They match the code blocks by using the regular matching through a huge rule base, which has a large
improvement space [10]. With the development of code vectorization, auditing models of machine
learning are proposed and optimized [11,12].

AST&CFG: Code vectorization is prior research on machine learning-based code auditing.
Abstract Syntax Tree (AST) and Control Flow Graph (CFG) are the most popular technologies and
classic code analysis methods. They abstract code logic and give serialization results, which are quite
suitable for the input of machine learning models. The approach of code vectorization based on AST
and CFG was first proposed by Michael et al. [13]. These two special data structures represent the
source code and eliminate the noise caused by the different code styles of programmers. However,
the drawback is that they all complicate the original code structure into another data structure. The new
complicated data structure requires additional methods to parse, which will undoubtedly increase
the workload of researchers. To some extent, it may lose some important information due to different
parsing methods.

Based on this approach, auditing tools, such as RIPS [14], Cobra [15], etc., proposed code-based
context detection ways. RIPS focuses on the tracking and analysis of sensitive function calls and data
stream. Cobra parses the source code into AST based on lexical analysis, then determines whether there
are vulnerabilities according to the controllability of the parameters of sensitive functions. However,
these mainstream tools have a high rate of false positives, i.e., they misreport relatively more safe code
blocks as vulnerabilities. In our tests, Cobra only found less than 50 XSS vulnerabilities in the results of
scanning the WordPress project (version 1.5) [16], while the commercial version of Fortify found 450.

Tokenization: With the development of Natural Language Processing (NLP), tokenization of code
and sequence analysis has become a new direction in auditing. Inspired by NLP-related technologies,
the tokenizer parses the source code into a token sequence. One advantage is that the sequence
retains strong contextual semantics of the source code. The second is that it cleans up the data noise
which was caused by the coder’s personal habits such as dependent variable names and indentation.
In the meantime, the tokenized source code (TOKEN) can use the language model (LM) for vector
space embedding. With the combination of neural network structure and algorithm with time series
characteristics such as long short-term memory (LSTM), the model can achieve good performance [17].
Besides, the tokenization method avoids the introduction of additional and more complex data
structures. This method is currently relatively reasonable and worth further study. It is also one of the
focuses of our article.

The TAP tokenizer [18] proposed by Fang et al. is an effective method to tokenize PHP source
code. Based on the self-defined rules, they finished the audit for various vulnerabilities on the CWE
dataset. In their tests, the TAP method reached the highest accuracy of 0.9787 and the AUC 0.9941.
However, the recall rate of vulnerable code blocks still needs to be improved, which is a common
problem in other studies of the same category. The recall rate in experiments described in this paper
reached 0.7970 under the proposed TAP algorithm and LSTM model, 0.84 under the bidirectional
LSTM model.

In the work of Shigang Liu et al., they presented a system for Cross Domain Software Vulnerability
Discovery (CD-VulD) using deep learning and domain adaptation [19]. They converted the
cross-domain program representations into token sequences by AST tools, then used token sequences
to build a classifier for vulnerability detection. Experimental results show that CD-VulD outperforms
the state-of-the-art vulnerability detection approaches by a wide margin.

Appl. Sci. 2020, 10, 4740 4 of 20

Their work proved that tokenization is an effective approach and potential research direction in
the field of code auditing with machine learning.

In the study [20] of Mukesh et al., they summarized the detailed comparison of indicators in
recent researches on source vulnerability auditing using machine learning, as shown in Table 1.

Table 1. Methodology and assessment indicators for other studies.

Authors Features Vulnerabilities Algorithm Performance

Shar et al. Static/Dynamic code attributes SQL, XSS Logistic regression, MLP Recall > 78%

Roccardo et al. Unique-words, Uni_tokens General NB, Radom Forest, SVM et al. Recall = 82%

Mukesh et al. Proposed_tokens XSS Random Forest, SVM, J48 et al Recall = 88%

Yong Fang et al. TAP_tokens XSS, SQL LSTM Recall = 79.7%

Due to the universality of XSS threats, using machine learning technology to find XSS vulnerability
in source code is a critical research direction. The trigger of XSS often comes from the user input.
In XSS-sensitive code blocks, the general code logic is that data from the user input is reviewed or
filtered, and finally appears somewhere on the web page [21]. However, there is a problem with
both traditional methods and many current machine learning methods: once a filter function used
to sanitize the input is detected, the whole code block is considered safe. It ignored the vulnerability
caused by an invalid filter. Another extreme situation is that the previously filtering rules set by the
coder supposed the use of only one or two cleaning functions is invalid. Then, a large number of filters
need to be used to prevent all possible occurrences.

In dynamic Web applications, user input may be output in different locations on HTML pages.
That means XSS attackers need to construct specific payloads to accomplish the attack. To intercept
attacks from different locations, it is critical to choose a corresponding filtering strategy. An effective
filter can greatly reduce the possibility of an XSS attack. However, there will be no help at all if several
irrelevant filter functions are used to sanitize the input. In previous studies, researchers focused
on source code vectorization and machine learning models themselves. However, they ignored the
context information [22] in the source code. This dynamic response and combination reveal that for
XSS vulnerability detection in the source code, the context information is more vital, especially the
relationship between the filter functions and output locations.

2.2.2. XSS Vulnerability Detection

In the research of Bisht et al., they conclude that filtering is useful as a first level of defense against
XSS attacks [23]. However, how to identify the effectiveness of the filter functions remains a challenge.
Therefore, they proposed another method detect the content of HTTP response.

Web applications are written implicitly assuming benign inputs and encode programmer
intentions to achieve a certain HTML response on these inputs. Maliciously crafted inputs subvert
the program into straying away from these intentions, leading to an HTML response that may cause
XSS-attacks. In their approach, the main idea for discovering intentions is to generate a shadow
response for every (real) HTTP response generated by the web application. The purpose behind
generating the shadow response is to elicit the intended set of authorized scripts that correspond to
the HTTP response. Whenever an HTTP response is generated by a web application, the model will
identify the set of scripts present in the (real) response.

Checking response can effectively prevent malicious script from being inserted into HTML, but the
shortcomings of this solution are also obvious. First, the deployment of this scheme must maintain
a unique database for each different web application, lacking scalability and flexibility. Besides, this
kind of HTTP traffic-based detection will increase the burden of network transmission, and may
not work under the influence of network conditions such as DDoS attacks. In contrast, the source
code level protection has no impact on the real-time performance of the network, and will not cause

Appl. Sci. 2020, 10, 4740 5 of 20

mechanism failure due to bad network conditions [24]. Especially when machine learning technology
is combined with real-time processing, problems such as delay, memory, batch processing. will cause
greater overhead [25]. The cost of source code audit is so lightweight that almost all websites can apply
this program. Thus, it can improve the cybersecurity more generally.

Researchers represented by Rodriguez et al. proposed another XSS detection method [26].
This type of solution determines whether XSS vulnerabilities exist by actively sending various requests
(which is very similar to fuzzing) or passively monitoring the HTTP traffic of the target site and
analyzing the XSS sensitive payload in the request and response data. This is an effective approach,
since the occurrence of XSS and the conditions under which the vulnerability is exploited can be
accurately determined based on the real HTTP message content. However, this method may be
difficult to perform well in reality. In addition to the above-mentioned real-time-related factors,
persistently monitoring and collecting numerous packets will lead to excessive data redundancy.
Moreover, for the data samples are likely to be extremely unbalanced, the combination with machine
learning will also be hindered.

Besides, fuzzing is currently the most popular vulnerability discovery technique. Conceptually,
a fuzzing test starts with generating massive normal and abnormal inputs to target applications,
and try to detect exceptions by feeding the generated inputs to the target applications and monitoring
the execution states [27,28]. Fuzzing requires little knowledge of targets and could be easily scaled up
to large applications, and thus has become the most popular vulnerability discovery solution.

However, considering that fuzzing is a dynamic vulnerability mining method, dynamic program
analysis needs to execute the target programs in real systems or emulators. In addition to the
construction of the running environment, the analysis of the payload and the runtime environment
when the program is abnormal also have high complexity, which indicates fuzzing-related work
requires personnel with strong technical skills [29]. This is not friendly to programmers, and coders
are more willing to see problems in the source code pointed out directly. Moreover, in this regard,
the dynamic nature of fuzzing also leads to code coverage issues is inevitable [30].

In contrast to dynamic analysis, code audit is a representative method of static analysis in
vulnerability discovery. Static analysis is the analysis of programs that is performed without actually
executing the programs. Unlike fuzzing, static analysis is usually performed on the source code.
By analysis on the lexical, grammar, semantics features, data flow analysis, and model checking,
static analysis could detect potential vulnerabilities [31]. The advantage of static analysis is the high
detection speed. An analyst could quickly check the target code with a static analysis tool and perform
the operation timely. However, static analysis endures a high false rate in practice. Due to the lack
of easy to use vulnerability detection model, static analysis tools are prone to a large number of false
positives. Thus, identifying the results of static analysis remains a tough work.

3. Methodology

Based on the practical significance of the source code vulnerability audit and the comprehensive
consideration of the current mainstream research results, our goal is to improve the performance,
especially recall rate of the machine learning model for the detection of vulnerable code block samples,
that is, to find as many vulnerabilities in source code samples as possible.

3.1. Overview of This Section

This section contains the theoretical underpinnings of the study and an introduction to the various
processes. The overall framework is divided into three parts: The first part describes how we process
the source code and extract its key information, the second part describes how we introduce the XSS
triple into the opcode sequence. The third part describes the theoretical background related to machine
learning modeling. Figure 1 shows the framework of our work.

Appl. Sci. 2020, 10, 4740 6 of 20

Figure 1. The architecture of the proposed model.

3.2. XSS Triggering in Source Code

The source of XSS triggers often comes from user input. In XSS-sensitive code blocks, the source
of data flows is the user inputs, which need to be checked and sanitized [23,32]. Generally, the XSS
vulnerability triggering in PHP source code is attributed to inadequate or inappropriate sanitizing
(filter) of the user input (source) for a specific output (sink) location [33]. In most cases, “source”
is usually an external input from users. What really matters in the source code is the filter–sink
corresponding relationship. Evaluations need to be done to judge if the sanitizing of user input is
effective, or there could be an XSS vulnerability. However, if an entire project requires auditing,
the “source–filter–sink”, i.e., the XSS triples, needs to be considered as a whole [34].

Listing 1 shows a typical code block of handing with the input. At line 6, the program takes
data from the user using the $_GET array. The code that receives user input is defined as “source”.
At line 9, the program replaces single quotes in user’s data by a regular expression. This is because,
in many payloads that trigger XSS, quotes are used to close the original content of the document
before injection. Functions that sanitize user input like this to prevent XSS triggering are represented
by “filter”(or “sanitizer”). At line 11, the data processed by the filter is output in the body tag by
the echo function, and the final position written into HTML document is called “sink”. At last,
the user’s input is written to HTML document. As the sink is located in the BODY tag, the attacker
can easily insert the script tag in the HTML document with “get” parameter. The way that the
single quotation mark is removed does not sanitize it. For example, if the attacker writes payload
“<script>alert(document.cookie)</script>” in the get parameter, a JavaScript bullet window with
the cookie of this website will appear in the web page.

Listing 1: A simple PHP example.

1 <!DOCTYPE html>
2 <body>
3 <?php
4 $array = array();
5 $array[] = ’safe’;
6 $array[] = $_GET[’userData’];
7 $array[] = ’safe’;
8

9 $tainted = preg_replace(’/\’/’, ’’, $tainted);
10

11 echo $tainted;
12 ?>
13 </body>
14 <html>

Appl. Sci. 2020, 10, 4740 7 of 20

The source part that receives user input is easy to classify, mostly through PHP’s Super Global
Variables, as shown in Table 2.

Table 2. Common mode of receiving inputs by PHP.

Super Global Variable Description

$_GET
An associative array of variables passed to the current script via the
URL parameters

$_POST
An associative array of variables passed to the current script via the
HTTP POST method when using application/x-www-form-urlencoded or
multipart/form-data as the HTTP Content-Typein the request

$_COOKIE An associative array of variables passed to the current script via HTTP Cookies

$_REQUEST
An associative array that by default contains the contents of $_GET, $_POST
and $_COOKIE

$_FILES
An associative array of items uploaded to the current script via the HTTP
POST method

$_HTTP_RAW_POST_DATA A global variable that contains the raw POST data

To extract the “source–filter–sink” from source code without being interfered with by code style,
we need to parse the code into another universal form. In our work, a PHP extension called VLD
parses PHP source code into internal representation blocks, named OPCODEs.

The output results not only show the operation sequence, but also trace and analyze the data
flow, program entry, branch execution, and variable assignment in detail. Unfortunately, VLD does not
provide a programming friendly output format. In the use of VLD processing bulk PHP source code, it
can not acquire accurate information that we need even with the help of regular matching. In response
to it, we perform a secondary development of VLD, adding a programming friendly output format
branch. With the aid of the secondarily developed VLD, it is convenient to extract the opcode sequence
of a code block.

OPCODE removes some of the unrelated noise from the source code but does not retain the
filter-sink content we need. In Figure 2, as the code section of the filter with sink, i.e., the filter_var
function call with the output position of the echo (in the function setinterval) is simplified for init_fcall
and echo, missing the key information. Therefore, the subsequent detailed processing for OPCODE
is necessary. In this paper, we obtain the function list directly from the supplementary information
of the oprands column in the VLD analysis results, which contains the filter function the code block
used. However, for complex programs, OPCODE contains more function call information. Moreover,
these consistent ECHOs need to be optimized detailed to classify different sinks. Thus, we need to
construct a way to effectively recognize the filter functions. The relevant algorithms will be detailed in
the following sections. We take one of the OPCODE sequences as an example.

Appl. Sci. 2020, 10, 4740 8 of 20

Figure 2. Source versus opcode correspondence.

3.3. OPCODE Sequence Clipping and Optimization

In actual PHP applications, there are usually many function calls. If no distinction is made,
connecting the corresponding OPCODE sequences directly according to the function call chain will
make the input sequence quite verbose and have a bad influence on the model identification and
judgment. To improve the information density of the final input sequence as much as possible, this
article uses an OPCODE clipping algorithm for the PHP function call chain.

Filter function: In this paper, the filter function refers to a function that attempts to eliminate
potential XSS threats by performing certain processing on untrustworthy input data from users.
These functions clean the cross-site script payload that may exist in the input data, effectively
preventing the occurrence of XSS. For the XSS payload, from the input point (i.e., source) to the output
point (i.e., sink) function cycle, there are only OPCODEs for the data filtering function. The detection
model we propose provides effective information.

Filter function recognition algorithm: In the data preprocessing, we can obtain OPCODE
sequence information including the complete function call chain with the modified VLD tool. Next,
the algorithm determined whether each function in OPCODE belongs to the filtering function,
following the whitelist strategy. That is, a function does not contribute to XSS payload cleaning
if it does not meet any of the conditions we propose. Here, we list three conditions that related to XSS
attacks before the Algorithm 1 [35].

Algorithm 1: isFilter(block).
input : block is a function block in internal representation
output : true or f alse

1 if block contains encoding or escaping then
2 return true
3 else if block contains filtering or replacement then
4 return true
5 else if block contains type conversion then
6 return true
7 else
8 return f alse
9 end

(1) Encoding/Escaping: The malicious payloads in most XSS attacks are constructed to add extra
tags or attributes to HTML documents, then perform specific operations. In this case, ensuring
that payloads from untrusted sources will be output as normal document content is the primary

Appl. Sci. 2020, 10, 4740 9 of 20

idea. PHP provides a series of builtin functions for this type of work [36]. By encoding
or escaping string data, these functions are intended to make them normal text rather than
executable code. For example, the function htmlentities converts characters to HTML entities,
and the function addslashes add backslashes before symbols such as quotation marks and slashes.
Besides, in different scenarios, urlencode, htmlspecialchars can also play this role [37].

(2) Filtering/Replacement: Some developers prefer to use some rules set by themselves to filter or
replace the XSS payload that may exist in the input data. For example, the function filter_var
is a filter function commonly used by developers. It can match the specified content through
specific expressions. The regular replacement represented by the function preg_replace is also a
common method to remove XSS vulnerabilities. Such functions are called filtering functions.
Analyzing these functions in the code can further audit the effectiveness of the filtering process.

(3) Type conversion: In the major of cases, the program expects user input to be specific datatype
to ensure its safety. Thus, function like intval will be used to compulsorily receive a numeric.
However, using this method to force data type conversion of input may drop appropriate input,
which is similar to a whitelist strategy.

Depth-first function scanning algorithm: To process a function call chain with multiple layers,
this algorithm follows the depth-first strategy and scans every function in the chain recursively.
The algorithm is described as follows.

This Algorithm 2 can effectively reduce the function blocks involved in the analysis in the PHP
code when processing deep-level function call chains, which increases the information density of the
final input sequence. Therefore, we can acquire a simplified and optimized opcode list.

Algorithm 2: scan(block, seq).
input : block is a function block in internal representation
output : seq is the tokens sequence

1 is_ f ilter ← f alse;
2 if isFilter(block) then
3 is_ f iltr ← true
4 end
5 foreach line ∈ block do
6 if is_ f ilter then
7 /* tokenize(line) transforms the line in internal representation to token

*/
8 seq← seq + tokenize(line)
9 end

10 if line invokes a function call then
11 jumps to new function block;
12 scan(new_block, seq)
13 end
14 end

3.4. Proposed Theory of Sink Identification

The effects of filter–sink source code sequence can be divided into three situations:

(1) User input is output without any filtering. This is the most likely scenario to trigger an
XSS vulnerability.

(2) User input is filtered to some extent, but the filtering is insufficient or the filtering function is
used incorrectly. Sometimes this approach can prevent part of the XSS attacks, but if the attacker

Appl. Sci. 2020, 10, 4740 10 of 20

uses an advanced bypass method, it can bypass the restriction of filter function and trigger
XSS vulnerability.

(3) The code fully considers all the filtering conditions of the relevant output and sets excessively
strict filtering functions. In this case, it is impossible for an attacker to trigger an XSS vulnerability.
However, this kind of situation is very rare in real web applications.

The most ideal way is to use corresponding effective filter functions for various sink types in
the code of the program. The research of this paper focuses on the second type, that is, we expect to
establish the relationship between various types of filters and sink, and evaluate the defense ability
of these pairs against XSS. In Section 3.2, we extract all kinds of filter functions through the scanning
algorithm in the rewritten VLD tool. The types of sink are also varied Listing 2 shows several example
of sink. However, due to the characteristics of the VLD tool itself, it does not contain the relevant
content of the output location. Only an echo type function call symbol as its analysis result. In the
analysis of the XSS trigger process, the location of page where the contaminated data will be output is
an important factor, so this condition limits our research. In the study by Mukesh et al., the sinks were
coarsely classified into 16 types. However, the granularity and accuracy of this manual identification
are yet to be evaluated. Thus, we proposed a new filtering algorithm for classifying sinks.

Listing 2: Examples of sinks.

1 <script> echo $tainted; </script>
2 echo "<".$tainted."href=\"/bob\"/>";
3 echo "x=\"".$tainted."\"";
4 echo "body {color:\"".$tainted."\";}";
5 echo "alert(\""/$tainted."\")";
6 echo "<div id=’".$tainted."’>content</div>";
7 echo "div onmouseover=\"x=\"".$tainted."\"\>";

Based on the classification results of Mukesh et al., and combined with the report of an XSS
vulnerability in CVE/CWE [38], we suppose that the identification of sink type needs to be considered
based on the following points [39].

The location of output content in the document: Due to the different code logic, untrustworthy
input may reach anywhere on the page and be broken through a specifically constructed payload.
Based on this, we first classify sink into three categories: (1) HTML, which is the most common type.
The user’s input will be applied to a certain part of the HTML document. (2) CSS. Some web pages
allow the users to change the CSS layout of the page through some options, such as background
color, which is often ignored as the XSS vulnerability. (3) JavaScript, in which some untrustworthy
parameters will be introduced into the script to participate in the execution. In this case, the code
injected by the attacker is easier to break through the original logic and would be more harmful.

HTML tag type of output context: The design of a web page based on the tag makes XSS’s
payload needs to be carefully constructed to make use of the tag structure of its trigger position.
Whether the output position is within the braces of the “style” tag or the content of the “div” tag cannot
be generalized. Therefore, the context tag where the output content is located is also an important
basis for classification.

Location of output in relation to contextual HTML tags: Based on the second point, the position
of the output content in its context needs further analysis. For example, a common example is
contaminated data output within a pair of span tags, and sometimes this data will be applied to the “a”
tag’s “href” attribute. Even in some programs, page tag names or attribute names are designed to be
changed by untrustworthy sources. Therefore, these situations deserve a classified discussion.

How the output content is closed: For programmers, what they expect is that the normal user
input will be inserted into the corresponding page position. Therefore, the data from the user is

Appl. Sci. 2020, 10, 4740 11 of 20

often closed by the original quotes, brackets, and other symbols in the document. For attackers, their
constructed payload needs to use the corresponding symbols to close the original symbols in advance,
and then insert the part they want to execute. In many cases, preventing attackers at output content
closing positions in advance can effectively prevent XSS attacks. For example, the function addslashes
can add escape characters to quotation marks in data submitted by attackers to convert them into
normal text.

Based on four points above, we distinguish the sink type easily. The identification result is shown
in Table 3, self-defined OPCODEs are used to replace the single “ECHO”.

Table 3. Kinds of sinks.

Example Description OPCODE

<script>$output_var</script>
Output directly in the content
part of the script tag DATA_SCRIPT

<div $output_var=......>
Output variable as attribute name
of tag ATTR_NAME

<$output_var attr=......> Output variable as tag name TAG_NAME

<div id=$output_var>content</div>
Numeric attribute
value ATTR_VAL_NO_QUO

<div attr=’$output_var’>content</div>
Single quote closed attribute
value ATTR_VAL_SG_QUO

<div attr="$output_var">content</div>
Double quote closed attribute
value ATTR_VAL_DB_QUO

body{attr:$output_var;}
Numeric attribute value in
CSS block CSS_PROP_VAL_NO_QUO

body{attr:’$output_var’;}
Single quote closed attribute
value in CSS block CSS_PROP_VAL_SG_QUO

body{attr:"$output_var";}
Double quote closed attribute
value in CSS block CSS_PROP_VAL_DB_QUO

js_function($output_var);
Bare parameter in JavaScript
function JS_FUNC_ATTR_NO_QUO

js_function(’$output_var’);
Numeric quote closed
parameter in JavaScript function JS_FUNC_ATTR_SG_QUO

js_function("$output_var");
Double quote closed parameter
in JavaScript function JS_FUNC_ATTR_DB_QUO

<div onclick="$output_var"> Event handler variable EVENT_HANDLER_DB_QUO

; Inline css style CSS_INLINE_STYLE

3.5. OPCODE Sequence Embedding

Operand sequences are a type of discrete text, and the simple encoding of such text for subsequent
classification can cause major difficulties in the gradient optimization process. Therefore, we need
suitable methods to map the discrete text into a continuous vector space.

Referring to some methods in the natural language processing field, each opcode sequence can be
treated as a document. In this way, an embedding algorithm can transfer the opcode sequence to a
vector array.

“Word2vec” [40] is a commonly used pre-training model applied in the field of natural language
processing, which can be used to generate a text vector order with contextual properties. It integrates
the CBOW, Skip-Gram two language models as well as the MLP neural network structure, which can
generate its separate fixed dimension vector for each word in the corpus.

Appl. Sci. 2020, 10, 4740 12 of 20

Compared to natural language, the corpus we need to train is the full set of OPCODE tokens.
For such a small corpus, the selection of some word2vec hyperparameters requires some fine-tuning.
The parameter “window” represents the number of words that are contextually linked. The larger
the value, the more context the model will associate. For an opcode sequence that embodies the
source code execution process, it includes a whole from input to output, and this data flow is more
contextually relevant than natural language. Therefore, we believe that the “window” value should
be set large enough that it is reasonable to take a value in the range of 10–20. Besides, we need to
reasonably set the dimensional size of each operand token so that it minimizes the dimensionality of
the overall operand sequence without losing the amount of information.

3.6. Bi-LSTM Classifier Construction

We implement the Bi-LSTM network to learn the relationships of (source–filter–sink) triples from
token sequences.

In the field of natural language processing, the LSTM network [41] is a common neural network
structure. However, there is a problem in modeling sequence with LSTM: it cannot encode the
information from the back to the front. In our problem, the filter function in the opcode sequence
is always in front of the sink. In this situation, LSTM may not be able to acquire the pattern that
using the rules of filter function from the sink. Bidirectional LSTM [42] can capture the bidirectional
semantic dependence of sequence better by concatenating the network structure of LSTM. The Bi-LSTM
structure is shown in Figure 3.

Figure 3. The bidirectional long short-term memory (Bi-LSTM) structure.

In the forward network (LSTM Left), we input “ASSIGN”, “CONCAT”, and “ATTR_NAME” and
get three vectors {L0, L1, L2}. In the backward network (LSTM right), we input “ATTR_NAME”,
“CONCAT”, and “ASSIGN” and get three vectors {R0, R1, R2}. Finally, the forward and backward
hidden vectors are concatenated and we get {[L0, R0], [L1, R1], [L2, R2]} as {H0, H1, H2}. By doing
this, the neural network can learn the context information of the two directions in the whole
sequence processing.

For the classification task completed in this paper, we suppose the bidirectional LSTM network is
the optimal NN structure since it can deal with all the information of forward and backward.

Appl. Sci. 2020, 10, 4740 13 of 20

In our case, due to the different functions of the code, each PHP source code will have different
lengths of operation code after conversion to the sequence of operations code. After the embedding
process, each word will become a sequence of vectors of unequal length, which does not conform to
the input rule of the neural network. We uniformly specify each vector sequence length as L when
processing the vector sequence of the sample when L needs to be larger than the maximum sample
sequence length. The insufficient parts will be filled with float numeric value 0. The mask layer is
used in the front layer of the neural network to mask out the shadow of the 0 values on subsequent
calculations. After that, the neural network will access the bidirectional LSTM layer, which contains
a two-direction LSTM network structure. The sequence genus of two directions can be learned after
concatenating the input sequence. Finally, we append a dense layer as well as a softmax layer to obtain
the classification results of the input samples.

Besides, as the MLP network has been used in the word2vec pre-training model for
semisupervised learning of the smaller corpus of opcode sequences, we do not import more complex
deep neural networks to the classifier for increasing the complexity of the model.

4. Experiments and Performances

4.1. Experiments Setup

In the experiment shown below, we first carried out experiments on different classifiers and
compare their performances. Second, for the different degrees of refinement of XSS triples in the
OPCODE, we did some comparative experiments on the classifier with the best performance (i.e.,
the Bi-LSTM classifier) to prove the importance of the triples for PHP source-level XSS vulnerability
detection. In the meantime, we gave the curve of loss-accuracy of the validation set and the confusion
matrix on the test set throughout the training and evaluating process. At last, we compared the
performance of our proposed XSS Guardian with the study done on the same data set to highlight its
excellent performance.

Data: We ran experiments on different levels of proposed XSS Guardian. The Common Weakness
Enumeration (CWE) is a category system for software weaknesses and vulnerabilities. We adopted
CWE-079 as our dataset, which includes 10080 XSS-related PHP source code samples. To be precise,
CWE-079 contains 5278 safe code blocks and 4352 unsafe ones. Before these experiments, we have
removed possible interference from the code samples, such as extra blank lines and code comments.

Model Training and metric selection: In the neural network training and validating, we use a
validation split of 10% in each epoch. As for the traditional machine learning algorithms, we use 10
fold cross-validation for model training and selection of optimal hyperparameters. For the numbers
given below, we use the highest experimental metrics on the validation set (no cross with training set).

Hardware: In order to carry out these experiments effectively and precisely, our hardware
environment is Intel core i7-9750H, 16 GiB memory, and an Nvidia GTX1660Ti (6GiB).

Evaluation Metrics: Accuracy, F1-Score, Precision, Recall, ROC-AUC, and The Confusion Matrix.

4.2. Comparative Experiment under Different Factors

4.2.1. Comparison of Different TOKEN Sequences

As we mentioned in Section 3, the XSS triples, i.e., SOURCE–FILTER–SINK XSS, can represent the
whole I/O data streams of an entire code block. Based on the OPCODE sequence of VLD output, we set
up three groups of comparative experiments to measure the impact of triples on XSS vulnerability
detection using different combinations of SOURCE, SOURCE+FILTER, and SOURCE+FILTER+SINK.
We use two-way LSTM network as a basis to build the classifier. To be more precise, we use the
LSTM network with 128 units and make it two-way concatenating. The recurrent dropout probability
of this Bi-LSTM layer would be set to 0.25. After this, the network will be connected to three full
connection layer activated by the ReLU function to improve its generalization ability. Finally, the upper

Appl. Sci. 2020, 10, 4740 14 of 20

layers are connected to a 2-classes-output full connection layer with softmax. The whole network is
optimized by the cross-entropy loss function. Such a bi-LSTM classifier structure will also be used in
the subsequent experiments.

We trained the classifier to convergence in a group of experiments. The criterion of convergence
is that the validation loss of verification set in 10 rounds of training does not decrease any more.

From the experimental results shown in Table 4, in our control group (raw opcode) metrics,
the recall rate of vulnerable samples has reached 94.93%, i.e., the sequence structure of opcode has
high recognizability for XSS vulnerability identification. However, its recall rate of safe samples only
reaches 53.48%, which is close to random guess. This phenomenon indicates that using only the raw
opcode sequence without any processing will produce many false positives, that is, normal samples
are predicted to be vulnerable samples.

Table 4. Performance of different experiments.

Experiments
Precision Recall

Macro F1 Mean AUC
Safe Vulnerable Safe Vulnerable

OPCODE 0.9402 0.6211 0.5348 0.9493 0.7146 0.7615

OPCODE+SOURCE 0.9408 0.6209 0.5345 0.9495 0.7148 0.7633

OPCODE+SOURCE+FILTER 0.9435 0.6968 0.7062 0.9236 0.7991 0.8483

OPCODE+SOURCE+FILTER+SINK 0.9813 0.8659 0.8739 0.9785 0.9216 0.9726

In the second group, we added source information based on opcode to reflect the way of user input.
Yet from the results, there is almost no difference between this group and the control group. Each group
of metrics is floating up and down at 0.05%. We conclude that this is due to the subtle difference
in neural network convergence points. The comparison shows that the SOURCE is not enough to
help distinguish the two samples. This is related to that each sample in our dataset only involves one
input and output stream. When the code involves the cross processing of multi-file association and
multi-data flow, the determination of the input SOURCE will play a more important role.

In the third group and the fourth group, the addition of FILTER improved the F1 score and AUC by
about 8%, and SINK made both metrics break through 90%, and the recall rate of vulnerable samples
reached 0.9785. It can be seen that the addition of FILTER and SINK enables the Bi-LSTM-based
classifier to learn the characteristics of combination and association of different SOURCE-FILTER-SINK
in the source code context, which greatly improves the prediction of XSS vulnerability.

4.2.2. Comparison of Different Classifiers

We also test the performance of the task on different classifiers. In this part, we use the
optimization method of SOURCE-FILTER-SINK, that is, to add all the information of XSS triples
into the opcode sequence for classification prediction.

Due to the limitations of traditional classifiers on the dimension of input data, we flatten these
two-dimensional word vectors and use them as input for classifiers. For random forest classifiers,
we use the default parameters in the official Python-sklearn interface. We set an estimator starting
value of 4 and a step size of 2 to select the estimator parameter based on the F1 score in the 10-fold
cross-validation. The results show that when the number of estimators is greater than 10, the F1
score will reach its convergence and no longer increases. For the support vector classifier, we use the
polynomial kernel (K(x, z) = (γx · z + r)d) as the kernel function of the classifier. Compared with
radial basis functions, polynomial kernel functions can also produce excellent classification results
for nonlinear data distributions without introducing exponential operations of higher powers while
reducing time complexity. Plus, we select the “degree” parameter of the polynomial kernel function in
cross-validation by setting the degree of 2 and increasing by step of 1. The F1 score converges and
reaches its highest value at the degree of 8.

Appl. Sci. 2020, 10, 4740 15 of 20

The neural network classifier can directly use the input of two-dimensional word vectors.
However, unlike traditional machine learning classifiers, the time complexity of training to convergence
for DNN tends to explode as the number of layers increases linearly. Considering this factor, for the
convolution network used in the experiment, we set 2 Conv1D layers and 1 maximal pooling layer as
a group. By increasing the number of groups gradually and recording the change of F1 score, the F1
score converges when the number of groups equals 3. For classifiers consisting of LSTM networks,
we implemented the network structure of the above experiments and recorded the change curves of
accuracy and loss. The visualization of experimental data for the hyperparameter selection of each
classifier is given by Figures 4 and 5.

0 4 8 12 16 20 24
0.8

0.82

0.84

0.86

0.88

estimator

F1
Sc

or
e

(a) Hyperparameter Selection of RF “Estimator”

0 2 4 6 8 10 12
0.8

0.82

0.84

0.86

0.88

degree

F1
Sc

or
e

(b) Hyperparameter Selection of SVM “Degree”

Figure 4. Hyperparameter selection A.

0 2 4 6 8
12

15

18

21

24

27

group

C
on

ve
rg

en
ce

Ep
oc

hs

(a) Performances on Different CNN Structure

0 64 128 256 512
36

38

40

42

44

46

degree

(b) Performances on Different LSTM Units

0 2 4 6 8
0.8

0.82

0.84

0.86

0.88

0 64 128 256 512
0.9

0.91

0.92

0.93

0.94

F1
Sc

or
e

Figure 5. Hyperparameter selection B.

The results show that the classifiers with time series attributes (LSTM and Bi-LSTM) have reached
a high metric, showed in Table 5. It only shows the metrics under the best hyperparameter combination.
Additionally, the Bi-LSTM classifier has the ability of two-way sequence learning, which can be used to
deduce the combination of FILTER and SOURCE from SINK. Thus, it has reached the highest among
all metrics. It is worth noting that the SVM-based classifier (SVC) also achieves an excellent score in
this experiment. That is closely related to the strong fitting ability of the kernel learning mode of SVC
to nonlinear high-dimensional data.

Appl. Sci. 2020, 10, 4740 16 of 20

Table 5. Performance of different algorithms.

Algorithm AUC F1 Precision Recall Vulnerability Recall

Random Forest 0.86 0.82 0.83 0.82 0.90

SVM 0.94 0.89 0.88 0.89 0.94

CNN 0.93 0.87 0.87 0.86 0.87

LSTM 0.95 0.90 0.89 0.90 0.95

Bi-LSTM 0.97 0.92 0.92 0.92 0.98

On the other hand, we consider that the time consumption of neural networks in the
training process is significantly higher than the traditional classifier. For the classifier based on
a one-dimensional convolutional neural network, the network will reach its converge point after 20
rounds of training. For the classifier based on the LSTM network, we notice that its convergence time
is often longer and more hardware resources are consumed. However, the purpose of the static code
audit is to make coders improve the efficiency of vulnerability checks. Unlike the XSS attack load in
network traffic, the static audit does not require that high instantaneity. Besides, the neural network
classifier based on Bi-LSTM performs significantly better than other classifiers on our evaluations. As a
conclusion, we suppose such a time consumption is reasonable and acceptable. Besides, the code audit
is generally performed after the program source code is finished, which will not affect the application
in the production environment. Therefore, the model does not require real-time performance at the
network transmission level.

4.3. Generalization Capability Assessment

4.3.1. Evaluation on the Test Dataset

We selected data samples (approximately 20%) from the dataset that did not cross training sets
or validation sets for testing. We use the proposed XSS Guardian classifier, that is, Bi-LSTM classifier
with the XSS triples optimization to run the test. The results are given in the form of a standardized
confusion matrix in Figure 6. For these safe samples, XSS Guardian still has an FPR of 11.76%,
yet relatively small proportions. In the meantime, for the XSS-vulnerable samples, XSS Guardian has
minimized the number of FNR to 2.83%.

0.9717P′

P

0.0283

N

P′

0.1176N′

P

0.8824 N′

N

True label

Predicted label

Figure 6. Standardized Confusion Matrix.

4.3.2. Comparison with Similar Studies

We believe that the TOKEN method proposed by Mukesh et al. is quite effective for the
vulnerability detection of XSS. However, they did not give the published experimental code resources

Appl. Sci. 2020, 10, 4740 17 of 20

in the paper, only descriptive pseudocode for reference. Therefore, it is a pity for us not to reproduce
their work here. However, the data set used in their paper was consistent with ours. The only
enhancement we made on the dataset is to clean the spelling errors and useless code comments.
Thus, we briefly cite the experimental data of this article here and make a rough comparison with the
metrics of XSS Guardian in Table 6.

We found that all metrics of XSS Guardian had a certain degree of increase. Among these the
recall rate had increased by 11.23%, and the F1-Score had also increased by 7.29%, due to the more
detailed TOKEN sequence generation algorithms and the more advanced deep learning classifiers.
The accuracy and loss curve of the XSS Guardian (Bi-LSTM model) is shown in Figure 7.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

epoch

accuracy
validation accuracy

loss
validation loss

Figure 7. Accuracy and loss curve.

Table 6. Performance of different methods.

Method Precision Recall F1 Accuracy

Mukesh’s method 0.8870 0.8300 0.8590 0.8890

XSS Guardian 0.9200 0.9232 0.9216 0.9237

Improvements +3.72% +11.23% +7.29% +2.36%

5. Conclusions and Future Work

In this paper, we proposed the “Cross-Site Scripting Guardian”—a novel approach to detect
XSS vulnerability in PHP source code based on machine learning. Using our rewritten VLD, we can
extract the detailed operation code and the XSS triples that describe how the code dealing with the
user input. Thus, our method can be easily implemented and further extended by researchers in the
follow-up research. In the experiment on the test dataset, the recall rate for vulnerability samples is
as high as 98%, which also shows the importance of learning the opcode sequence and the pattern of
input–output in the data stream.

Besides, compared with traditional static analysis tools, the way of using a machine learning
model to build a code audit detector would not be affected by the strong dependence of detection tools
on matching rules. Users can constantly enrich the training samples to further improve the detection
ability of the model.

In future work, two directions might be further explored: First, the impact of our method on
more complex data flow sources is limited. However, some hard-to-find vulnerabilities have multiple

Appl. Sci. 2020, 10, 4740 18 of 20

execution branches and multiple file associations. Thus, the analysis of the multiple execution branch
source code vulnerability analysis is a meaningful research direction. Second, we also try to extend
our method to other web application vulnerability audits, such as SQL injection vulnerability mining.
However, to improve accuracy and efficiency, we need to propose an approach that is highly related to
the characteristics of that vulnerability. Only in this way, machine learning technology can be further
widely used and more in-depth in the field of code audit.

Author Contributions: Conceptualization, C.H., C.L., and Y.W.; methodology, C.H., C.L., and Y.W.; validation,
C.L., Y.W., and C.M.; formal analysis, Y.W.; investigation, C.L.; data curation, C.L., Y.W., and C.M.;
writing—original draft preparation, C.L. and Y.W; writing—review and editing, C.L., Y.W., C.M., and C.H.;
supervision, C.H.; project administration, C.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China (No.61902265),
the Key Research and Development Plan Project of Sichuan Province (No.2020YFG0047), Sichuan University
Postdoc Research Foundation (No.2019SCU12068), and Guangxi Key Laboratory of Cryptography and Information
Security (No.GCIS201921).

Acknowledgments: This work was completed under the guidance of Cheng Huang of Sichuan University, China.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nirmal, K.; Janet, B.; Kumar, R. It’s More Than Stealing Cookies-Exploitability of XSS. In Proceedings of the
2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai,
India, 14–15 June 2018; pp. 490–493.

2. Web Applications Vulnerabilities and Threats: Statistics for 2019. Available online: https://www.ptsecurity.
com/ww-en/analytics/web-vulnerabilities-2020/ (accessed on 20 February 2020).

3. Chen, H.; Huang, B.; Chen, W.; Liu, F . Machine Learning Principles and Applications; University of Electronic
Science and Technology Press: Chengdu, China, 2017.

4. Chen, X.; Li, M.; Jiang, Y.; Sun, Y. A Comparison of Machine Learning Algorithms for Detecting XSS Attacks.
In Proceedings of the International Conference on Artificial Intelligence and Security, New York, NY, USA,
26–28 July 2019; pp. 214–224.

5. Miao, C. VLD with JSON Format Output Support. Available online: https://github.com/ChanthMiao/vld
(accessed on 20 February 2020).

6. Top 10 Web Application Security Risks. Available online: https://owasp.org/www-project-top-ten/
(accessed on 20 February 2020).

7. Aghaei, S.; Nematbakhsh, M.A.; Farsani, H.K. Evolution of the world wide web: From WEB 1.0 TO WEB 4.0.
Int. J. Web Semant. Technol. 2012, 3, 1–10. [CrossRef]

8. Gupta, K.; Singh, R.R.; Dixit, M. Cross site scripting (XSS) attack detection using intrustion detection system.
In Proceedings of the 2017 International Conference on Intelligent Computing and Control Systems (ICICCS),
Madurai, India, 15–16 June 2017; pp. 199–203.

9. Yamaguchi, F.; Lindner, F.; Rieck, K. Vulnerability extrapolation: Assisted discovery of vulnerabilities using
machine learning. In Proceedings of the 5th USENIX Conference on Offensive Technologies, San Francisco,
CA, USA, 8 August 2011; p. 13.

10. Lingzi, X.; Zhi, L. An Overview of Source Code Audit. In Proceedings of the 2015 International Conference
on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration,
Wuhan, China, 3–4 December 2015; pp. 26–29.

11. Choi, Y.H.; Liu, P.; Shang, Z.; Wang, H.; Wang, Z.; Zhang, L.; Zhou, J.; Zou, Q. Using Deep Learning to Solve
Computer Security Challenges: A Survey. arXiv 2019, arXiv:1912.05721.

12. Liu, S.; Lin, G.; Han, Q.; Wen, S.; Zhang, J.; Xiang, Y. DeepBalance: Deep-Learning and Fuzzy Oversampling
for Vulnerability Detection. IEEE Trans. Fuzzy Syst. 2019, 28, 1329–1343. [CrossRef]

13. Alon, U.; Zilberstein, M.; Levy, O.; Yahav, E. code2vec: Learning distributed representations of code.
Proc. ACM Program. Lang. 2019, 3, 1–29. [CrossRef]

14. Dahse, J.; Schwenk, J. RIPS-A static source code analyser for vulnerabilities in PHP scripts. In Seminar Work
(Seminer Çalismasi); Horst Görtz Institute Ruhr-University Bochum: Bochum, Germany, 2010.

https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/
https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/
https://github.com/ChanthMiao/vld
https://owasp.org/www-project-top-ten/
http://dx.doi.org/10.5121/ijwest.2012.3101
http://dx.doi.org/10.1109/TFUZZ.2019.2958558
http://dx.doi.org/10.1145/3290353

Appl. Sci. 2020, 10, 4740 19 of 20

15. Source Code Security Audit. Available online: https://github.com/WhaleShark-Team/cobra (accessed on
20 February 2020).

16. WordPress Version 1.5. Available online: https://github.com/WordPress/WordPress/tree/1.5-
branch(accessed on 20 February 2020).

17. Guo, N.; Li, X.; Yin, H.; Gao, Y. VulHunter: An Automated Vulnerability Detection System Based on Deep
Learning and Bytecode. In Proceedings of the International Conference on Information and Communications
Security, Beijing, China, 15–17 December 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 199–218.

18. Fang, Y.; Han, S.; Huang, C.; Wu, R. TAP: A static analysis model for PHP vulnerabilities based on token
and deep learning technology. PLoS ONE 2019, 14, e0225196. [CrossRef] [PubMed]

19. Liu, S.; Lin, G.; Qu, L.; Zhang, J.; De Vel, O.; Montague, P.; Xiang, Y. CD-VulD: Cross-Domain Vulnerability
Discovery based on Deep Domain Adaptation. IEEE Trans. Dependable Secur. Comput. 2020, 1. [CrossRef]

20. Gupta, M.K.; Govil, M.C.; Singh, G. Predicting Cross-Site Scripting (XSS) security vulnerabilities in web
applications. In Proceedings of the 2015 12th International Joint Conference on Computer Science and
Software Engineering (JCSSE), Songkhla, Thailand, 22–24 July 2015; pp. 162–167.

21. Yan, F.; Qiao, T. Study on the Detection of Cross-Site Scripting Vulnerabilities Based on Reverse Code Audit.
In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning,
Yangzhou, China, 12–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 154–163.

22. Steffens, M.; Rossow, C.; Johns, M.; Stock, B. Don’t Trust The Locals: Investigating the Prevalence of
Persistent Client-Side Cross-Site Scripting in the Wild. In Proceedings of the NDSS Symposium, San Diego,
CA, USA, 24–27 February 2019.

23. Bisht, P.; Venkatakrishnan, V. XSS-GUARD: Precise dynamic prevention of cross-site scripting attacks.
In Proceedings of the International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, Paris, France, 10–11 July 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 23–43.

24. Di Mauro, M.; Di Sarno, C. A framework for Internet data real-time processing: A machine-learning
approach. In Proceedings of the 2014 International Carnahan Conference on Security Technology (ICCST),
Rome, Italy, 13–16 October 2014; pp. 1–6.

25. Batyuk, A.; Voityshyn, V. Apache storm based on topology for real-time processing of streaming data from
social networks. In Proceedings of the 2016 IEEE First International Conference on Data Stream Mining &
Processing (DSMP), Lviv, Ukraine, 23–27 August 2016; pp. 345–349.

26. Rodriguez, G.; Torres, J.; Flores, P.; Benavides, E.; Nuñez-Agurto, D. XSStudent: Proposal to Avoid Cross-Site
Scripting (XSS) Attacks in Universities. In Proceedings of the 2019 3rd Cyber Security in Networking
Conference (CSNet), Quito, Ecuador, 23–25 October 2019; pp. 142–149.

27. Manès, V.J.M.; Han, H.; Han, C.; Cha, S.K.; Egele, M.; Schwartz, E.J.; Woo, M. The art, science, and
engineering of fuzzing: A survey. IEEE Trans. Softw. Eng. 2019. [CrossRef]

28. Falana, O.J.; Ebo, I.O.; Tinubu, C.O.; Adejimi, O.A.; Ntuk, A. Detection of Cross-Site Scripting Attacks
using Dynamic Analysis and Fuzzy Inference System. In Proceedings of the 2020 International Conference
in Mathematics, Computer Engineering and Computer Science (ICMCECS), Ayobo, Ipaja, Lagos, Nigeria,
18–21 March 2020; pp. 1–6.

29. Li, Y.; Ji, S.; Lv, C.; Chen, Y.; Chen, J.; Gu, Q.; Wu, C. V-fuzz: Vulnerability-oriented evolutionary fuzzing.
arXiv 2019, arXiv:1901.01142.

30. Marashdih, A.W.; Zaaba, Z.F.; Suwais, K.; Mohd, N.A. Web Application Security: An Investigation on Static
Analysis with other Algorithms to Detect Cross Site Scripting. Procedia Comput. Sci. 2019, 161, 1173–1181.
[CrossRef]

31. Li, J.; Zhao, B.; Zhang, C. Fuzzing: A survey. Cybersecurity 2018, 1, 6. [CrossRef]
32. Yusof, I.; Pathan, A.S.K. Preventing persistent Cross-Site Scripting (XSS) attack by applying pattern filtering

approach. In Proceedings of the The 5th International Conference on Information and Communication
Technology for The Muslim World (ICT4M), Kuching, Malaysia, 17–18 November 2014; pp. 1–6.

33. Mohammadi, M.; Chu, B.; Lipford, H.R. Automated Repair of Cross-Site Scripting Vulnerabilities through
Unit Testing. In Proceedings of the 2019 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), Berlin, Germany, 27–30 October 2019; pp. 370–377.

34. Yan, X.X.; Wang, Q.X.; Ma, H.T. Path sensitive static analysis of taint-style vulnerabilities in PHP code.
In Proceedings of the 2017 IEEE 17th International Conference on Communication Technology (ICCT),
Chengdu, China, 27–30 October 2017; pp. 1382–1386.

https://github.com/WhaleShark-Team/cobra
https://github.com/WordPress/WordPress/tree/1.5-branch
https://github.com/WordPress/WordPress/tree/1.5-branch
http://dx.doi.org/10.1371/journal.pone.0225196
http://www.ncbi.nlm.nih.gov/pubmed/31738786
http://dx.doi.org/10.1109/TDSC.2020.2984505
http://dx.doi.org/10.1109/TSE.2019.2946563
http://dx.doi.org/10.1016/j.procs.2019.11.230
http://dx.doi.org/10.1186/s42400-018-0002-y

Appl. Sci. 2020, 10, 4740 20 of 20

35. Elkhodr, M.; Patel, J.K.; Mahdavi, M.; Gide, E. Prevention of Cross-Site Scripting Attacks in Web Applications.
In Proceedings of the Workshops of the International Conference on Advanced Information Networking and
Applications, Caserta, Italy, 15–17 April 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1077–1086.

36. Zubarev, D.; Skarga-Bandurova, I. Cross-Site Scripting for Graphic Data: Vulnerabilities and Prevention.
In Proceedings of the 2019 10th International Conference on Dependable Systems, Services and Technologies
(DESSERT), Leeds, UK, 5–7 June 2019; pp. 154–160.

37. Papagiannis, I.; Migliavacca, M.; Pietzuch, P. PHP Aspis: Using partial taint tracking to protect against
injection attacks. In Proceedings of the 2nd USENIX Conference on Web Application Development, Portland,
OR, USA, 15–16 June 2011; Volume 13.

38. CWE-79: Improper Neutralization of Input During Web Page Generation (Cross-site Scripting). Available
online: https://cwe.mitre.org/data/definitions/79.html (accessed on 20 February 2020).

39. Gupta, S.; Gupta, B. A robust server-side javascript feature injection-based design for JSP web applications
against XSS vulnerabilities. In Cyber Security; Springer: Berlin/Heidelberg, Germany, 2018; pp. 459–465.

40. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.
arXiv 2013, arXiv:1301.3781.

41. Calzavara, S.; Conti, M.; Focardi, R.; Rabitti, A.; Tolomei, G. Machine Learning for Web Vulnerability
Detection: The Case of Cross-Site Request Forgery. IEEE Secur. Priv. 2020, 18, 8–16. [CrossRef]

42. Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural
network architectures. Neural Netw. 2005, 18, 602–610. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://cwe.mitre.org/data/definitions/79.html
http://dx.doi.org/10.1109/MSEC.2019.2961649
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://www.ncbi.nlm.nih.gov/pubmed/16112549
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Research Background and Significance
	Background
	Related Work
	Code Auditing with Machine Learning
	XSS Vulnerability Detection

	Methodology
	Overview of This Section
	XSS Triggering in Source Code
	OPCODE Sequence Clipping and Optimization
	Proposed Theory of Sink Identification
	OPCODE Sequence Embedding
	Bi-LSTM Classifier Construction

	Experiments and Performances
	Experiments Setup
	Comparative Experiment under Different Factors
	Comparison of Different TOKEN Sequences
	Comparison of Different Classifiers

	Generalization Capability Assessment
	Evaluation on the Test Dataset
	Comparison with Similar Studies

	Conclusions and Future Work
	References

