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Abstract: Glaucoma is a major global cause of blindness. As the symptoms of glaucoma appear, when
the disease reaches an advanced stage, proper screening of glaucoma in the early stages is challenging.
Therefore, regular glaucoma screening is essential and recommended. However, eye screening is
currently subjective, time-consuming and labor-intensive and there are insufficient eye specialists
available. We present an automatic two-stage glaucoma screening system to reduce the workload of
ophthalmologists. The system first segmented the optic disc region using a DeepLabv3+ architecture
but substituted the encoder module with multiple deep convolutional neural networks. For the
classification stage, we used pretrained deep convolutional neural networks for three proposals
(1) transfer learning and (2) learning the feature descriptors using support vector machine and (3)
building ensemble of methods in (1) and (2). We evaluated our methods on five available datasets
containing 2787 retinal images and found that the best option for optic disc segmentation is a
combination of DeepLabv3+ and MobileNet. For glaucoma classification, an ensemble of methods
performed better than the conventional methods for RIM-ONE, ORIGA, DRISHTI-GS1 and ACRIMA
datasets with the accuracy of 97.37%, 90.00%, 86.84% and 99.53% and Area Under Curve (AUC) of
100%, 92.06%, 91.67% and 99.98%, respectively, and performed comparably with CUHKMED, the top
team in REFUGE challenge, using REFUGE dataset with an accuracy of 95.59% and AUC of 95.10%.

Keywords: glaucoma; retinal images; optic disc segmentation; deep learning; DeepLabv3+; deep
activated features; ensemble classifier; support vector machine

1. Introduction

The World Health Organization estimated that, in 2016, 64 million people were living with
glaucoma and that it will increase to 95 million by 2030 [1]. Glaucoma is an eye disease, which
damages the optic nerve and can lead to blindness if left untreated. It is currently the main cause of
irreversible vision loss and is caused by high intraocular pressure pushing against the optic nerve in
the eye [2]. The damaged nerve fiber leads to a larger optic cup region and thinning of the inferior
rim around the optic nerve. Progression of the disease can lead to ‘pale disc’ and disc hemorrhage.
Angle-closure glaucoma and open-angle glaucoma are the two common glaucoma types and present
different warning signs. Angle-closure glaucoma causes very noticeable symptoms, for example,
blurred vision, severe eye pain, sudden sight loss, light halos and more. On the other hand, open-angle
glaucoma slowly progresses and shows no symptoms, until peripheral vision is lost thus it is called “the
sneak thief of sight”. Therefore, regular eye examination once per year is essential and recommended
for early glaucoma screening, particularly for people, over 40 years old, as the number of patients
increases sharply with age and for people with early warning signs. Clinically, intraocular pressure
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measurement, visual field testing optic nerve head assessment are currently used to screen glaucoma,
but only optic nerve head assessment can detect early stage glaucoma [3]. Thus, optic nerve assessment
in retinal images becomes an essential and standard test for glaucoma detection. Glaucoma affects the
optic disc (OD) region, and causes OD abnormalities, for example enlarging cup to disc ratio, a pale
color, hemorrhage or changes in the vicinity of the OD. Figure 1 shows the noticeable differences of the
OD in a healthy and a glaucoma eye. Various stages of glaucoma can be observed in Figure 2.
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Figure 1. Images of a healthy retina (left) and one with glaucoma (right).
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Figure 2. Grading of glaucoma diseases: (a) healthy OD; (b) Mild Glaucoma; (c) Moderate Glaucoma
and (d) severe glaucoma.

In routine clinical examinations, glaucoma can be detected by examining the abnormalities
of OD in direct or indirect ways [4]. An ophthalmologist can directly examine the eye using an
ophthalmoscope. Alternatively, a trained technician uses a fundus camera to capture fundus images
and then an ophthalmologist visually examines the digital image. Glaucoma screening is expensive,
labor-intensive, time-consuming and prone to human errors. It needs specialists with a high degree
of expertise. In developing countries and rural areas, generally, there are insufficient eye specialists
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available. To deal with a large number of data and reduce human errors in screening, it is important
to develop an automatic glaucoma detection system, which can deliver affordable, accurate, fast and
interpretable diagnoses.

To develop an automated system a large set of retinal images is required. Nine datasets are
readily available: REFUGE [5], ACRIMA [6], ORIGA [7], RIM-ONE [8], DRISHTI-GS1 [9], HRF [10],
SiMES [11], SCES [12] and SiNDI [13]. The key characteristics of each dataset are listed in Table 1.

Table 1. Datasets for glaucoma detection.

Dataset
Number of Images

Ground Truth Information Source Avail
Norm Glau Total

REFUGE 1080 120 1200

Pixel-wise annotations of
OD and OC

Localization mask of Fovea
Classification labels of

normal and glaucomatous

Orlando et al. [5] Online

ACRIMA 309 396 705 Classification labels of
normal and glaucomatous Diaz-Pinto et al. [6] Online

ORIGA 482 168 650

Segmentation masks of OD
and OC

Classification labels of
normal and glaucomatous

Zhang et al. [7] Online

RIMONE 92 39 131

Manual segmentation
masks of OD

Classification labels of
normal and glaucomatous

Fumero et al. [8] Online

DRISHTI-GS1 31 70 101

Manual segmentation
masks of optic nerve head

for 50 training images
Classification labels of

normal and glaucomatous

Sivaswamy et al. [9] Online

HRF 15
* DR 15 15 45

Segmentation masks of
field of view (FOV), blood

vessels and OD
Classification Labels of

Normal, DR and
Glaucomatous

Budai et al. [10] Online

SiMES 482 168 650 Classification labels of
normal and glaucomatous Foong et al. [11] Private

SCES 1630 46 1676 Classification labels of
normal and glaucomatous Sng et al. [12] Private

SiNDI 5670 113 5783 Classification labels of
normal and glaucomatous Fu et al. [13] Private

Note: DR—diabetic retinopathy; Norm—normal; Glau—glaucoma; Avail—available.

Automated retinal image analysis to detect glaucoma has been researched intensively in recent years
with variable success. The methods vary from simpler machine learning approaches to sophisticated and
advanced deep learning approaches. Most glaucoma detection algorithms have two common steps—the
region of interest segmentation and classification for the presence of glaucoma. The simpler machine
learning approach may first segment OD and Optic Cup (OC) regions, and then measure cup to disc ratio
(CDR) or extract hand-crafted features to determine whether the image contains glaucoma or not [14–19].
Cheng et al. [14] segmented the OD region, using superpixel based segmentation, and then CDR was
computed based on the change of intensity within the cropped OD image. The method was tested on two
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datasets, SiMES dataset and SCES dataset, separately and achieved AUC of 83% and 88%, respectively.
Chakravarty et al. [15] used Hough transform to detect OD region, extracted the texture of projection and
bag of words features from the detected OD, and finally trained SVM classifier to discriminate between
healthy and glaucoma OD. They obtained an accuracy of 76.8% and AUC of 78.0% on DRISTI-GS1 dataset.
Karkuzhali et al. [16] used superpixel segmentation to retrieve OD and OC regions, and measured CDR,
inferior-superior-nasal-temporal (ISNT), distance between central OD and optic nerve head, the area
of blood vessels inside optic nerve head and intensity value between central OD and optic nerve head.
Neural networks were trained using the measurements as the attributes to identify the abnormality and
obtained 100% accuracy on 26 images. However, their results were hampered by validating on a small
number of images. Mohamed et al. [17] preprocessed images to remove noise and enhance the contrast,
then segmented the OD and OC regions using simple linear iterative clustering superpixels. Finally,
CDR was computed to determine the presence of glaucoma. They reported the value of CDR between
0.4 and 0.6 for the class of non-glaucomatous images and greater than 0.6 is for glaucomatous image.
Selvathi et al. [18] directly extracted the features using a 2-D discrete wavelet transform from the entire
image and fed them to train a neural network. They experimented on 45 images from HRF dataset and
obtained 95.8% accuracy. Maheshwari et al. [19] applied wavelet transform method to decompose the
retinal image, then extracted 12 core entropy features from four different color channels—red, green,
blue and grayscale. Finally, the obtained features were input to least squares support vector machine.
The accuracy of 81.3% was reported on RIM-ONE dataset.

These studies required domain knowledge from experts to design hand-crafted features. Recently,
deep learning techniques have the ability to discover intricate structures directly from high dimensional
data and have been applied in many automated detection systems in medical images. deep learning
using convolutional neural network (CNN) was applied to glaucoma identification [3,5,6,20–25], with
or without OD extraction. The studies in [3,5,20,21,25] classified glaucomatous images in two steps:
the OD regions were first extracted and used them as input to deep CNN models. For instance,
Fu et al. [3] segmented the OD region first using a U-shaped CNN, then the cropped region was
transformed into a polar coordinate system and resized to 224 × 224 pixels, the input size of pre-trained
networks from the ResNet model. Finally, an ensemble method was applied using a majority vote.
They achieved accuracy of 83.2% for the SCES dataset and 66.6% for the SINDI dataset. Orlando et al. [5]
described the methods used by 12 qualified teams that took part in the online REFUGE challenge,
which focused on glaucoma classification and OD and OC segmentation, using 1200 images from the
REFUGE database. The best performance team, CUHKMED, presented a two-stage approach: firstly,
OD region was coarsely segmented, using ResNet-50, then the corresponding region was cropped
and input to an ensemble learner of ResNet-50, ResNet-101, ResNet-152 and ResNet-38 models via a
majority vote. Sensitivity of 97.5% and AUC of 98.8% were reported. Guo et al. [20] first segmented
OD and OC regions using U-net, then extracted eight morphologic features and fed them as an input to
a random forest classifier. They tested using ORIGA dataset and obtained accuracy of 76.9% and AUC
of 83.1%. Bajwa et al. [21] identified OD region in three steps; region proposal network was applied
first to randomly generate a number of rectangular objects then fed the filtered images to a CNN to
find the object with the highest score and finally, the bounding box regression was used to locate and
extract the OD region. In the second stage, a CNN model was used to classify the OD image. On the
ORIGA dataset, they achieved sensitivity of 71.2% and AUC of 87.4%. Juneja et al. [25] first applied a
U-net model to segment the OD and OC and then computed CDR using DRISHTI-GS dataset; they
reported only OD and OC classifications with accuracies of 95.8% and 93.0%, respectively. In the recent
studies, deep learning methods without need of OD segmentation have proposed. The entire retinal
image was fed to deep CNN models [6,22–24]. For instance, Diaz-Pinto et al. [6] used five different
CNN models—InceptionV3, XceptionNet, VGG16, VGG19 and ResNet50—to classify between normal
and glaucomatous images. The XceptionNet model provided the best performance, yielding the
accuracy 71.2% for RIM-ONE, 75.25% for DRISTI-GS1 and 70.21% for ACRIMA dataset and AUCs
of 85.8%, 80.4% and 76.8% for the same datasets. Similarly, Gómez-Valverde et al. [22] reported five
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CNN models based on standard CNNs—VGG19, ResNet50, DENet and GoogleNet—from which
VGG19 performed best with sensitivity of 87.0%, specificity of 89.0% and AUC of 94.0% for RIM-ONE
dataset. Orlando et al. [23] first manually cropped the OD region and used blood vessels inpainting
and contrast enhancement. Then, the deep activated features were extracted using OverFeat and
VGG-S pretrained models and input to logistics regression. They achieved AUC of 76.26% for the
DRISTI-GS1 dataset. Asaoka et al. [24] pre-trained a network based on ResNet model using the whole
retinal image. They achieved an AUC of 94.8% using 1364 glaucoma images and 1768 healthy images
from a local dataset.

In the previous studies, conventional image processing techniques were commonly used for OD
segmentation, for example, superpixels methods [14,16,17] and Hough transform [15]. Few recent
studies segmented OD using deep semantic segmentation techniques, especially U-net model.
Despite the promising performance of DeepLabv3+, it has not been widely exploited for OD
segmentation in glaucoma detection. Our previous study in chest X-ray segmentation showed
that DeepLabv3+ outperformed other state-of-the-art deep semantic models such as U-net, fully
connect convolutional (FCN) network and SegNet [26]. Inspired by these results, here we adopted
DeepLabv3+ to segment OD. Five different CNNs are substituted as the encoder part and their empirical
results are compared. For classification stage, the studies in [6,20–25] showed that deep CNNs are
commonly applied individually using transfer learning or fine-turning the weights. However, using
an individual deep CNNs may produce unsatisfactory results as deep CNN models are rule-based
mechanisms to build and predict the hypothesis space. Ensemble of deep CNNs has been shown
to be more accurate and effective than those based on an individual CNN [27,28]. As presented
in [3,5], the ensembles of deep CNNs have been applied to classify glaucoma images and achieved
more accurate results. However, these methods obtained better results; the methods adapted on a
small number of deep CNN models. Therefore, here, we carried out an experimental comparison
among eleven different models of deep CNNs (i.e., (P1) pretrained deep CNNs for transfer learning,
(P2) pretrained deep CNNs as the features extractors followed by a SVM classifier and (P3) an ensemble
of methods, P1 and P2). The main contributions of this study are summarized as follow:

(i) A comparative study of OD segmentation using five different deep CNNs as the encoder in
DeepLabv3+ architecture;

(ii) Comparison of eleven pretrained CNNs as the glaucoma classifier using transfer learning techniques;
(iii) Comparison of eleven pretrained CNNs as the feature extractors using SVM classifier
(iv) Ensemble of the diverse CNN based learners from P1 and P2 using probability averaging strategy.

2. Methodology

Our automatic glaucoma detection system using deep learning has two-stages. In the first stage,
DeepLabv3+ detected and extracted the OD from the entire image. In the second stage, three styles of
deep CNNs were used to identify between normal and glaucoma in the segmented OD region.

2.1. OD Segmentation Using DeepLabv3+ Semantic Segmentation

In this stage, the OD was segmented using DeepLabv3+ [29] and a bounding box was set,
see Figure 3. DeepLabv3+ uses two phases: an encoder and a decoder. The encoder uses four parallel
atrous convolutions at different rates to extract features. The extracted features were then concatenated,
using average pooling, on the last feature map. To reduce the number of channels and obtain the
best encoder features, 1 × 1 convolution was used. The decoder recovered the object boundaries
encoded from CNNs model. The encoded features were first bilinearly upsampled by a factor of four
and then concatenated with the corresponding low-level features. Since the corresponding low-level
features usually contain a large number of channels, a 1 × 1 convolution filtered the important encoder
features. Afterwards, a 3 × 3 convolution was used to refine the features followed by another bilinear
upsampling by a factor of four. Five deep CNNs—ResNet18, ResNet50, XceptionNet, MobileNet and
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InceptionResNet—were used in the encoder phase and their segmentations were compared to find
the best one for the encoder of DeepLabv3+. This generated the semantic mask for the OD region.
OD extraction is illustrated in Figure 4. First, our segmentation formed a mask by labeling every pixel
as OD or non-OD. The mask was laid over the original retinal image to extract the OD region. Finally,
a bounding box cropped the OD region, which was input to the classification stage.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 19 
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Figure 4. Retrieving OD regions from the full retinal image using DeepLabv3+ and cropping to the
bounding box.

2.2. Classification of Normal and Glaucoma Retinal Images Using Deep CNNs

Here, we present three methods to apply deep CNNs to predict glaucoma in the retinal images:

(P1) pretrained CNNs for transfer learning;
(P2) pretrained deep CNNs as the feature extractors;
(P3) an ensemble of methods, P1 and P2.

2.2.1. Transfer Learning Using Pretrained Deep CNNs (Method P1)

Method P1 used a transfer learning scheme based on pretrained deep CNNs. Eleven pretrained
models—AlexNet [30], GoogleNet [31], InceptionV3 [32], XceptionNet [33], ResNet-50 [34], SqueezeNet [35],
ShuffleNet [36], MobileNet [37], DenseNet [38], InceptionResNet [39] and NasNet-Large [40]—were
evaluated. Table 2 lists the pretrained CNNs along with their specifications. The network depth presents
the total number of layers from the input to the output of each model. DenseNet had the deepest depth
with 201 layers, whereas AlexNet had only 8 layers. The inputs to all networks were RGB images. These
models were pretrained on the ImageNet dataset for classification of thousands of natural objects. To adapt
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those models to predict glaucoma, a transfer learning technique was used, as shown in Figure 5. First,
the OD was resized to the input size of each CNN model and the resized images were separately input to
pretrained CNNs. The last fully connected layer of each model was replaced with the new layer. The new
fully connected layer was trained and fine-tuned on the cropped OD images to classify between normal and
glaucoma. Cross entropy loss was optimized during each iteration:

CE
(
Y, YPredict

)
=

2∑
c=1

Yc log
(
YPredict

c

)
+ (1−Yc) log

(
1−YPredict

c

)
(1)

where Y is the target vector and YPredict is the predicted class vector: the vector elements are
binary—0 represents normal and 1 represents glaucoma. Each CNN model was trained using the
Adam optimizer [41] with default parameters: initial learning rate, α = 0.001, decay rate of gradient
moving average = 0.9 and squared gradient moving average = 0.999.
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Table 2. Pretrained convolutional neural networks (CNNs) and their properties.

Network Depth Size (MB) Parameters (×106) Image Input Size

AlexNet 8 227 61.0 227 × 227
GoogleNet 22 27 7.0 224 × 224

InceptionV3 48 89 23.9 299 × 299
XceptionNet 71 85 22.9 299 × 299
Resnet-101 101 167 44.6 224 × 224
ShuffleNet 50 6.3 1.4 224 × 224

SqueezeNet 18 4.6 1.24 227 × 227
MobileNet 53 13 3.5 224 × 224

InceptionResNet 164 209 55.9 299 × 299
DenseNet 201 77 20.0 224 × 224

NasNet-Large * 360 88.9 331 × 331

* NasNet—large does not consist of linear sequence of modules.

2.2.2. Pretrained CNNs as Features Descriptors and SVM as Classifier (Method P2)

Method P2 used the same pre-trained CNNs, used in method P1, as the feature descriptors to extract
the deep activated features, as shown in Figure 6. As in method P1, cropped OD regions were resized
to the input size required by the CNNs, and then propagated in the network. The early convolutional
layers of CNNs had a small receptive field and learnt small, low-level features. The deeper layers,
towards the end of the CNNs, held larger receptive fields and learnt larger features. Figure 7 displays
an example of activations (feature maps) of two convolution layers (the first: ‘conv2d-block1-1-conv’
and the last: ‘conv2d-block32-1-conv’) in DenseNet. These activation maps revealed the features that
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the CNN learnt. One can observe that channels in earlier layers learnt simple features, like color and
edges, while channels in the deeper layers learnt complex features like blood vessels or the optic
cup. Here, following Rokach [42], the fully connected layer and the last layer before classification,
was flattened to retrieve the deep activated features. We extracted 1000 deep activated features from
each CNNs and input them separately to the SVM classifier to identify a glaucoma. An SVM classifier
aims to find an optimal decision hyperplane that maximizes the margin between normal and glaucoma
data points. The number of training points is moderate, so an SVM classifier with Gaussian radial basis

functions was used. Given the training data, D = {
→

(xi, yi), i = 1 . . .N} and yi ∈ {−1,+1}, the general
form of SVM classifier and the mapping function of the Gaussian kernel are defined in Equations (2)
and (3):

min
w,b,ξ

1
2
||W||2 + C

∑
i

ξ2
i subject to yi(W

TXi + b) ≥ 1− ξi, ξi ≥ 0, ∀i (2)

where C > 0 is the selected parameter and ξ is a set of slack variables.

K(X, Y) = e
||X−Y||2

A (3)

where K is a kernel function and A is a constant.
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2.2.3. Ensemble Learning of Methods in P1 and P2

The basic idea of ensemble learning is similar to the real screening process in a hospital, when an
ophthalmologist makes a glaucoma screening, the chance of a false diagnosis is given. When there is a
doubt, the ophthalmologist asks other experts for more options. Similarly, our ensemble combines
the predictions of multiple individual learners (individual ophthalmologists) into a consolidated
prediction, reducing the generalization error. Predictions from ensemble CNNs were shown to be
more accurate and effective than those based on an individual CNN [26,27]. Therefore, we built two
ensemble classifiers– ensembles of the methods P1 and of the methods P2, as shown in Figure 8.
The predictions of the ensemble classifiers were computed by averaging the predicted probability of
each individual classifier. The predicted probability of ensemble classifier for an input image x is:

P(y = j
∣∣∣x) = exp

[∑N
n=1 P̂n(y = j

∣∣∣x)]
exp

[∑L
l=1

∑N
n=1 P̂n(y = l

∣∣∣x)] (4)

where n is each model, N is the number of models, L is the number classes and P̂n(y = j
∣∣∣x) is the

probability distribution.
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3. Experimental Results

This study was experimented using Matlab 2019b in Window 10 and Nivida T1660Ti with core
i7. We tested our work on 2787 retinal images from the five public databases: REFUGE, ACRIMA,
ORIGA, RIM-ONE and DRISTI-GS1. REFUGE dataset contains 1200 retinal images captured using
either Seiss Viscucam or Canon CR-2 from Chinese patients. The images were centered on both
macular and OD visible, for the purpose of examining optical head nerve damage and retinal nerve
fiber layer defects. The dataset contains pixel-wise annotations of OD and OC and classification
labels of normal and glaucomatous marked by seven ophthalmologists. Poor quality images were
discarded by the ophthalmologists during image labeling. The dataset was predefined into three
subsets: training (400 images), validation (400 images), and testing (400 images), and each set contains
an equal proportion of glaucomatous (10%) and non-glaucomatous (90%). ACRIMA dataset was
created by the Ministerio de Economía y Competitividad of Spain for the classification of glaucomatous
images. The dataset contained 309 normal and 396 glaucomatous images captured by Topcon TRC
retinal camera with a 35◦ field of view (FOV). The images were taken from the eyes dilated and
centered in OD. Only high-quality images were selected to avoid artefacts, noises and poor contrast.
Two glaucoma experts manually labeled the images into either normal or glaucoma. ORIGA dataset is
a part of SiMES dataset which was collected from 3280 Malay adults aged 40 to 80 and annotated by
the trained professionals from Singapore Eye Research Institute. A total of 650 images were selected
with the manual segmentation of OD and OC regions. It also provides CDR and labels for each image
as glaucomatous or healthy. The RIM-ONE dataset was created for optic nerve head evaluation and
glaucoma disease classification. It composed of 169 images which were captured and cited from
three different hospitals in Spain (Hospital Universitario de Canarias, Hospital Clínico San Carlos and
Hospital Universitario Miguel Servet) to guarantee the problems in image acquisition. All images are
non-mydriatic retinal photographs captured with specific flash intensities. Five experts collaborated to
annotate and label the retinal images into 3 classes: healthy, suspicious, and glaucoma. As suspicious
case is out the scope of this study, we picked only 131 images (92 healthy and 39 glaucomatous
images). DRISHTI-GS1 dataset was collected at Aravind eye hospital, Madurai and consists a total
of 101 images (31 normal and 70 glaucomatous images). It is divided into 50 training and 51 testing
images. All images were taken with the eyes dilated and centered in OD with 35◦ FOV. Poor quality
images were discarded in terms of contrast, noise and position of OD. Four glaucoma experts with
different clinical experiences examined and labeled each image into either normal or glaucoma. Table 3
summarizes the main characteristics of each dataset. All these datasets are collected for the purpose of
optic nerve head assessment and glaucoma detection. The images in all datasets focus on OD region,
whereas the images in REFUGE dataset were centered on both macula and OD visible. During the
labeling process, only high-quality images were selected due to artefacts, noises, poor contrast and
OD’s position, etc. As the images from different datasets were taken from different ethnicity by different
devices and different FOV, we separately tested the proposed methods using each dataset.

Our method consists of two stages: OD segmentation and glaucoma classification. First, OD is
detected and segregated from the full retinal images using DeepLabv3+ with five different backbone
networks. Using the segmented OD, three deep learning-based methods were developed to identify
glaucomatous images. For statistical evaluation of OD segmentation stage, only REFUGE dataset is
used as it provided pixel-wise annotation of OD region. To evaluate the OD segmentation performance,
we counted pixels matching the ground-truth maps. Figure 9 displays the overlap between the white
OD mask (ground-truth) and our OD detection (pink mask). Based on the number of pixels overlap
between the mask from OD detection and the ground truth mask, three evaluation metrics were
computed: accuracy, dice coefficient, and Intersect over Union (IoU).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)
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IoU =
TP

TP + FP + FN
(6)

Dice coefficient =
2TP

2TP + FP + FN
(7)

where

True Positive (TP) is the number of correctly prediction of OD pixels;
True Negative (TN) is the number of correctly detection of non-OD pixels;
False Positive (FP) is the number of wrongly detected of non-OD pixels as OD pixels;
False Negative (FN) is the number of wrongly identified of OD pixels as non-OD pixels.

Table 3. The datasets for glaucoma detection task.

Datasets
No. of
Images

Image Acquisition

Camera FOV Resolution Ethnicity Focus

REFUGE 1200

Train: Zeiss
Visucam 500 – JPEG 2124 × 2056

Chinese
Center

macula and
OD visibleValidation/Testing:

Canon CR-2 – JPEG 1634 × 1634

ACRIMA 705 Topcon TRC 35◦ JPEG 2048 × 1536 Spanish OD

ORIGA 650 – – JPEG 3072 × 2048 Malay OD

RIM–ONE 131 Kowa WX 3D 34◦ JPEG 2144 × 1424 Spanish OD

DRISHTI–GS1 101 NM/FA 30◦ PNG 2896 × 1944 Indian OD

Total 2787 –
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Table 4 shows OD segmentation results using five different deep semantic algorithms.
Combinations of DeepLabv3+ with ResNet18, ResNet50, XceptionNet, InceptionResNet and
MobileNet models achieved comparable accuracy—between 99.64% and 99.72% with the average
computational time 3.7 s per image. For the dice coefficient and IoU, the combination of DeepLabv3+

and MobileNet model achieved the best performance with dice coefficient of 91.73% and IoU of
84.89%. Therefore, the best-performing pair (a combination of DeepLabv3+ and MobileNet) is
employed as the OD segmentation algorithm.
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Once OD segmented, it is fed as input to the classification stage. Three proposed methods
based on deep learning are applied to identify between non-glaucomatous and glaucomatous OD.
We tested each method on all datasets individually to investigate their performance on different
datasets. The performance of each method is evaluated and validated using two performance measures:
accuracy and area under ROC curve. Table 5 demonstrates the experimental results obtained from
the first proposal P1 using eleven different deep CNNs as the transfer learning models. The results
showed that DenseNet model achieved the best performance for ACRIMA dataset with an accuracy
of 99.53% and AUC of 99.98%, followed by MoblieNet and XceptionNet and achieved the similar
best performance with MobileNet model for REFUGE dataset with the accuracy of 93.00% and AUC
of 94.64% while MoblieNet model achieved the accuracy of 94.50% and AUC of 93.04%. MobileNet
model achieved the best performance for ORIGA dataset with an accuracy of 80.51% and AUC of
81.54%, followed by InceptionResNet model which obtained the accuracy of 80.00% and AUC of
81.31%. For RIM-ONE dataset, SqueezeNet model achieved the best result with the accuracy of 97.37%
and AUC of 100%, followed by DenseNet model with the accuracy of 94.74% and AUC of 99.04%.
For DRISTI-GS1 dataset, ShuffleNet model is superior compared to other deep CNN models with an
accuracy of 86.67%, but AlexNet model achieved the best performance in term of AUC with the result
of 81.48%.

Table 6 shows the performance of the method P2 obtained from a SVM classifier using deep-activated
features of eleven different pretrained CNNs across the datasets. Deep-activated features from DenseNet
model provided the best performance for ACRIMA datasets with an accuracy of 96.23% and AUC of
98.75%, followed by the SqueezeNet model with the accuracy of 94.81% and AUC of 98.45%. For REFUGE
dataset, DenseNet, ShuffleNet and ResNet-50 models achieved similar best performance, respectively
with the accuracy of 93.50%, 93.75% and 94.75% and AUC of 93.94%, 92.24% and 90.66%. For DRISTI-GS1
dataset, InceptionResNet achieved the best results with the accuracy of 83.33% and AUC of 91.53% and
achieved similar best performance with InceptionV3 model for ORIGA dataset with the accuracy of
78.46% and AUC of 82.06%, while InceptionV3 achieved the accuracy of 78.97% and AUC of 81.39%.
For RIM-ONE dataset, ShuffleNet model achieved the best performance with an accuracy of 89.47%
and AUC of 97.44%, followed by MoblieNet model which obtained the accuracy of 86.84% and AUC
of 94.23%.

Table 7 illustrates the performance of the ensemble built by combining methods in each proposal
P1 and P2 using average probabilities. The experimental results indicated that E(P1) achieved the best
performance for RIM-ONE, ACRIMA and ORIGA datasets with the accuracy of 97.37%, 99.53% and
83.59% and AUCs of 100%, 99.98% and 88.86%, respectively, and achieved similar best performance
with E(P2) for REFUGE dataset with the accuracy of 95.50% and AUC of 95.10%, while E(P2) achieved
the accuracy of 95.75% and AUC of 94.32%. The E(P2) achieved the best performance for DRISTI-GS1
dataset with the accuracy of 90.00% and AUC of 92.06%. Tables 5–7 show that the results obtained
from ACRIMA dataset are superior compared to other datasets and the ensemble methods, E(P1) and
E(P2), perform well to find the optimal combination of the predictions managed to achieve the
best performance for all five datasets with the average computational time 40 s and 53 s per image,
respectively for E(P1) and E(P2).

To evaluate ensemble methods E(P1) and E(P2) visually, we plotted ROC curves based on the
relationship of the true positive and false positive rates for all five different datasets as demonstrated in
Figure 10. The graphs visualize that the closer such a curve is to the top-left corner, the better results of
the methods are. As an example of using ACRIMA dataset, the AUC value of E(P1) achieve better than
as of E(P2) is the same results as of ROC curves illustrated in Figure 10b, the blue curve E(P1) is closer
to the top-left corner comparing to that of orange curve E(P2). The same way for other four datasets as
showed in Table 5, ROC curves of E(P1) are closer to the top-left corner comparing to that of E(P2) for
REFUGE, RIM-ONE and ORIGA datasets, while ROC curve of E(P2) is closer to the top-left corner
comparing to that of E(P1) for DRISTI-GS1 dataset.
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Table 4. Statistical performance of various deep semantic algorithms for two classes segmentation
between OD and non-OD.

Methods
Performance Measures

Accuracy Dice Coefficient IoU

DeepLabv3+ + ResNet18 99.70% 90.95% 83.56%
DeepLabv3+ + ResNet50 99.64% 88.78% 80.26%

DeepLabv3+ + XceptionNet 99.71% 91.39% 84.48%
DeepLabv3+ + InceptionResNet 99.72% 91.29% 84.21%

DeepLabv3+ + MobileNet 99.70% 91.73% 84.89%

Table 5. P1: Transfer learning using eleven pretrained networks for glaucoma classification.

Pretrained Deep
CNNs

Performance Measures

REFUGE RIM-ONE ACRIMA ORGIA DRISTI-GS1

ACC
(%)

AUC
(%)

ACC
(%)

AUC
(%)

ACC
(%)

AUC
(%)

ACC
(%)

AUC
(%)

ACC
(%)

AUC
(%)

AlexNet 90.00 81.69 74.87 69.21 96.23 99.85 68.42 59.62 70.00 81.48

GoogleNet 92.50 88.69 94.74 91.03 91.51 96.49 71.79 77.03 70.00 79.89

InceptionV3 90.25 87.26 71.05 76.92 93.87 99.36 75.38 76.86 70.00 65.08

XceptionNet 89.00 85.29 81.58 88.14 98.11 99.80 77.44 81.68 66.67 66.67

ResNet-50 93.50 92.97 92.11 98.08 95.75 99.56 75.90 80.19 73.33 78.31

SqueezeNet 91.00 89.58 97.37 100 95.75 98.84 78.46 79.17 56.67 76.19

ShuffleNet 93.25 94.09 92.11 97.44 96.23 99.75 72.31 80.04 86.67 78.84

MobileNet 94.50 93.04 92.11 99.36 98.58 99.96 80.51 81.54 76.67 73.02

DenseNet 93.00 94.64 94.74 99.04 99.53 99.98 77.44 73.92 73.33 78.31

InceptionResNet 92.25 92.08 68.42 61.86 96.23 98.84 80.00 81.31 70.00 68.78

NasNet-Large 92.75 90.44 86.84 95.19 96.23 99.85 73.85 77.72 70.00 69.31

Table 6. P2: Deep activated features from eleven pretrained networks and SVM for glaucoma classification.

Deep Features
Descriptors

Performance Measures

REFUGE RIM-ONE ACRIMA ORGIA DRISTI-GS1

ACC
(%)

AUC
(%)

ACC
(%)

AUC
(%)

ACC
(%)

AUC
(%)

ACC
(%)

AUC
(%)

ACC
(%)

AUC
(%)

AlexNet 93.00 88.07 86.84 92.63 91.51 95.47 76.41 80.46 80.00 79.89

GoogleNet 93.75 87.81 84.21 90.38 90.57 90.57 74.87 75.23 70.00 72.49

InceptionV3 92.25 90.31 63.16 74.04 95.28 95.28 78.97 81.39 73.33 70.90

XceptionNet 93.25 90.26 78.95 81.09 91.04 94.90 75.90 76.12 73.33 68.78

ResNet-50 94.75 90.66 81.58 91.67 93.40 98.39 75.38 80.12 70.00 62.96

SqueezeNet 92.00 84.83 81.58 96.15 94.81 98.45 78.46 80.06 80.00 78.84

ShuffleNet 93.75 92.24 89.47 97.44 92.45 97.99 74.36 77.56 86.67 83.07

MobileNet 92.75 89.25 86.84 94.23 92.92 96.48 77.44 81.30 76.67 85.71

DenseNet 93.50 93.94 84.21 89.74 96.23 98.75 78.46 81.92 70.00 77.25

InceptionResNet 92.00 88.78 78.95 91.99 92.45 96.63 78.46 82.06 83.33 91.53

NasNet-Large 93.25 90.81 86.84 93.59 91.04 95.92 74.87 79.23 83.33 80.42
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Table 7. P3: Ensemble of methods in P1 and P2 for glaucoma classification.

Ensemble
Learners

Performance Measures

REFUGE RIM-ONE ACRIMA ORGIA DRISTI-GS1

ACC
(%)

AUC
(%)

ACC
(%)

AUC
(%)

ACC
(%)

ACC
(%)

AUC
(%)

ACC
(%)

AUC
(%)

ACC
(%)

Ensemble of
P1 (E(P1)) 95.59 95.10 97.37 100 99.53 99.98 83.59 88.86 83.33 85.19

Ensemble of
P2 (E(P2)) 95.75 94.32 92.11 99.04 96.23 99.01 80.00 85.26 90.00 92.06
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4. Discussion

An automated glaucoma diagnosis system is an essential task to save people’s vision due to its
value in assisting the ophthalmologists to screen the glaucoma disease in a faster and inexpensive
way. However, the lack of a common standard for comparison makes the evaluated result is not
necessarily best comparing to the previous methods due to the use of different databases. To ease the
validation criteria, we experiment several methods in each dataset separately and compare all results
of our proposed methods in this study as well as compare with the common works in the literature
which used the same experimental data. 2787 retinal images from five datasets are used separately to
evaluate the performance of the proposed methods. The results indicate that the top score of methods
in P1 achieves better performance for REFUGE, RIM-ONE and ACRIMA datasets comparing with
the top score of methods in P2, while the top score of methods in P2 is superior compared to the top
score of methods in P1 for DRISTI-GS1 dataset. However, the top score of both methods achieves
the similar performance using ORIGA dataset. To improve the performance of glaucoma detection,
the ensemble method is applied. The result indicates that E(P1) and E(P2) are superior comparing to
the top score of methods in P1 and P2, respectively for all five datasets. For overall, E(P1) achieves the
best performance for RIM-ONE, ACRIMA and ORIGA datasets and achieve similar best performance
with E(P2) for REFUGE dataset while E(P2) achieves the best performance for DRISTI-GS1 dataset.
In addition, we also compare our results with the previous works as reported in Table 8. The results
indicate that our methods, both E(P1) and E(P2), achieve better results comparing to the conventional
methods for RIM-ONE, ORIGA, DRISTI-GS1 and ACRIMA datasets with the accuracy of 97.37%,
90%, 86.84% and 99.53%, and AUC of 100%, 92.06%, 91.67% and 99.98%, respectively, and achieve the
comparable results with CUHKMED, the top team in REFUGE challenging using REFUGE dataset
with the accuracy of 95.59% and AUC of 95.10%.

From the above study, we found that the studies in [15,19,20] used simpler machine learning to
classify the features from the cropped OD images for glaucoma classification and achieved the accuracy
of 76.77%, 81.32%, and 76.90%, respectively on different datasets. The obtained results were not
really promising. Deep CNN models were applied in [6,21–23] and they achieved better performance.
However, those papers applied an individual CNN architecture using one or two datasets. It cannot
be sure that their best CNN model will be good for another dataset. To address this matter, here we
performed a comparative study from eleven CNN models using transfer learning technique in P1 and
deep feature extraction technique along with SVM classifier P2 using Five datasets. Orlando et al. [5]
presented the ensemble of CNN models and they achieved very good results using REFUGE dataset.
Nevertheless, they used only a few CNN architectures with similar structure, four ResNet models,
which did not efficiently explore the other potential features. In our study, we developed the ensemble
of diverse CNN models using eleven CNN models with different architecture and each of them with
different learning perspective. As all the methods presented in our study are tested and validated on
five online available datasets, we believe that the obtained results will be valuable for future studies.

Although the obtained results are promising, there are still rooms for improvement and limitations
to be alleviated. One fundamental limitation rises from the datasets when trying to generalize. We found
that the available datasets are different in the way they are captured from different ethics using different
devices, the labeling criteria and the quality of the image. Since our study separately tested each dataset,
each algorithm is trained on the dataset with same devices, race and similar appearance. One dataset
rarely contains diversity of images from different device, race. Ethnicities manifest differently in
retinal image due to changes in the pigment of the fundus. Therefore, the proposed model performed
differently on different datasets. By using the same dataset, it cannot be sure that the obtained best
performing models can be used to a different population and achieve the same outcomes without
retraining. Another issue is that the datasets used here contained only high-quality images. In real
screening setting, it is expected to encounter low quality images and images with affects and noises.
Therefore, a representative screening dataset with co- morbidities, diverse ethnicities, ages and genders
and low-quality images with acquisition artifacts, is in urgent need.
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Table 8. Performance of the proposed methods for glaucoma classification.

Datasets Performance Measures

RIM-ONE

Maheshwari et al.
(2016) [19]

Gómez-Valverde
et al. (2019) [22]

Diaz-Pinto
et al. (2019) [6] Proposed method

ACC = 81.32%
Sen = 87.01%
Spe = 89.01%
AUC = 94%

ACC = 71.21%
AUC = 85.75%

E(P1) E(P2)

ACC = 97.37%
AUC = 100%

ACC = 92.11%
AUC = 99.04%

DRISTI-GS1

Chakravarty et al.
(2017) [15]

Orlando et al.
(2017) [23]

Diaz-Pinto
et al. (2019) [6] Proposed method

ACC = 76.77%
AUC = 78%

AUC = 76.26% ACC = 75.25%
AUC = 80.41%

E(P1) E(P2)

ACC = 83.33%
AUC = 85.19%

ACC = 90%
AUC = 92.06%

ORIGA

GUO et al. (2018) [20] Bajwa et al.
(2019) [21] Proposed method

ACC = 76.90%
AUC = 83.10%

Sen=71.17%
AUC=87.40%

E(P1) E(P2)

ACC = 83.59%
AUC = 88.86%

ACC = 80.00%
AUC = 85.26%

ACRIMA

Diaz-Pinto et al. (2019) [6] Proposed method

ACC = 70.21%
AUC = 76.78%

E(P1) E(P2)

ACC = 99.53%
AUC = 99.98%

ACC = 96.23%
AUC = 99.01%

REFUGE

Orlando et al. (2020) [5] Proposed method

Sen = 97.52%
AUC = 98.85%

E(P1) E(P2)

ACC = 95.59%
AUC = 95.10%

ACC = 95.75%
AUC = 94.32%

Moreover, we can observe from our results that CNN models performed differently on the
underlying data across the datasets. It may occur due to two different patterns; the dataset size and the
imbalance data between glaucomatous and non-glaucomatous images. Although REFUGE, ORIGA
and ACRIMA datasets are large enough for generalization of deep learning methods, RIMONE and
DRISTI-GSI are quite small. Therefore, the models trained on these small datasets maybe over fitted.
Therefore, we intend to enlarge these datasets to validate the robustness of the evaluated methods
and even to build a customized deep learning method. Enlarging the datasets can be done by using
image augmentation methods or using generative adversarial networks (GAN). Regarding imbalance
data, except ACIRMA dataset, the rest datasets are heavily class-imbalanced where the number of
glaucomatous are tiny and the number of non-glaucomatous are abundant. The class-imbalanced data
can cause the classification bias in the deep learning algorithms which likely to favor to major class.
This problem can be addressed by balancing the datasets in two different ways: adding more images
to minor groups or using data sampling methods, and it remains as the future works.

Furthermore, in this study, we used only deep learning methods to make the classification decision
between glaucomatous and non-glaucomatous images. The main measurements used in previous
studies such as CDR and measurement of OD and OC are excluded. Incorporating deep learning
methods with these OD and OC related measurements may improve the classification accuracy of
glaucomatous images. To measure CDR, we need to segment both OD and OC region. As our
current segmentation method is designed for OD segmentation only, we need to redesign the proposed
segmentation method to segment both OD and OC simultaneously.

Finally, it is to highlight the disease screening scheme. This study aims for binary classification of
normal and glaucomatous image. In this future, it would be more beneficial to develop an automated
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screening system for all possible eye disease such as diabetic retinopathy, glaucoma, myopia, age related
macular degeneration, vascularization, etc., which can be examined using retinal images.

5. Conclusions

This study presents an automatic primary screening of glaucoma based on quantitative analysis
of fundus images to assist ophthalmologists for glaucoma disease detection in a faster and inexpensive
way. The proposed method consists of two main processing steps. OD segmentation is experimented
on five different deep semantic algorithms then the extracted features from the cropped OD region are
used as an input to training a classifier for prophesying the presence of glaucoma in the testing images.
Three proposals are presented to classify glaucomatous images; (P1) pre-trained CNNs using transfer
learning, (P2) pretrained CNNs features using SVM classifiers and (P3) the ensemble of methods
in P1 and P2. The methods are evaluated on five datasets containing 2787 retinal images, namely
REFUGE, ACRIMA, ORIGA, RIM-ONE and DRISHTI-GS1. The best option for OD segmentation
was the combination of DeepLabv3+ and MobileNet, which achieved an accuracy of 99.7%, a dice
coefficient of 91.73% and IoU of 84.89%. For glaucoma classification, the ensemble of the proposed
methods performs well to find the best performance comparing to the conventional methods for
RIM-ONE, ORIGA, DRISTI-GS1 and ACRIMA datasets with the accuracy of 97.37%, 90%, 86.84% and
99.53% and AUC of 100%, 92.06%, 91.67% and 99.98%, respectively, and achieve comparable result
with CUHKMED, the top team in REFUGE challenging using REFUGE dataset with the accuracy of
95.59% and AUC of 95.10%.
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