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Abstract: Future smart grids will be more dynamic with many variabilities related to generation,
inertia, and topology changes. Therefore, more flexibility in form of several active and reactive
power related technical services from different distributed energy resources (DER) will be needed for
local (distribution network) and whole system (transmission network) needs. However, traditional
distribution network operation and control principles are limiting the Photovoltaic (PV) hosting
capacity of LV networks and the DER capability to provide system-wide technical services in certain
situations. New active and adaptive control principles are needed in order to overcome these
limitations. This paper studies and proposes solutions for adaptive settings and management schemes
to increase PV hosting capacity and improve provision of frequency support related services by flexible
energy resources. The studies show that unwanted interactions between different DER units and
their control functions can be avoided with the proposed adaptive control methods. Simultaneously,
also better distribution network PV hosting capacity and flexibility services provision from DER units
even during very low load situations can be achieved.

Keywords: distributed energy resources; flexibility services; active network management; frequency control

1. Introduction

The potential of active (P) and reactive power (Q) control of distributed energy resources (DER)
connected at distribution networks (MV and LV) is expected to be utilized increasingly in the future
power systems to manage different renewable energy sources (RES) variabilities related challenges.
These challenges related to larger share of RES based generation [1], concern (a) power generation
fluctuations and (b) higher variability in power system inertia and fault levels. Moreover, network
topologies need to be adapted by active network management (ANM) functionalities including
occasionally intended island operation. DER consisting of distributed generation (DG), energy storages
(ESs), demand response, or electric vehicles (EVs) can provide flexibility and resiliency for local
(distribution system operator, DSO) and system-wide (transmission system operator, TSO) needs.
Flexibility can also enable larger scale integration of RES and EVs and minimize the system and societal
costs. The effective utilization of flexibilities requires combination and coordination of different types
and sizes of resources from all voltage levels (LV, MV, and HV).

Traditionally used fixed on-load-tap-changer’s (OLTC’s) setting value is rather high because it
considers only the existence of customer loads. Additionally, the same OLTC setting value is typically
used during the whole year. These traditional OLTC’s settings, together with fixed and uncoordinated
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DER units” droop control settings limit the PV hosting capacity of distribution networks and DER
ability to provide power system frequency control support during very low load situations. In order
to overcome these limitations, more active and adaptive distribution network operation and control
principles are needed. Flexibility services provision must be enabled by DER management schemes,
regulation, market structures, and business models. DER participation requires new distribution and
transmission network operation and planning principles based on active utilization of flexibilities [2].

P and Q related flexibility services by DER can be realized by various inverter local control modes
or functions. Inverter control functions such as constant power factor (cos®), fixed Q, Q(P), cos(P),
QU, PU, and Pf, where f is frequency and U is voltage, are already required by different network
connection and operation codes. QU-droop control seems to be the preferred and most effective
inverter-based DG units’ voltage control method in distribution networks [3,4]. In order to increase DG
hosting capacity and avoid curtailment of PV active power P, QU-droop is used as a primary voltage
control method and P curtailment by PU-droop control as a secondary method. In order to achieve the
best possible voltage level control in both MV and LV networks simultaneously, the control settings of
distribution grid connected DER need to be coordinated with the HV/MV substation’s OLTC settings.
This improves further DER hosting capacity in distribution networks and reduces network losses [5-7].
Different DER unit control modes, settings, and coordination with OLTC settings should be increasingly
considered in the planning stage to obtain the most benefits from the coordinated operation.

Amongst the various DER, battery energy storage systems (BESSs) are expected to play an
important role in future smart grids due to their fast and controllable dynamics and potential to
provide multiple different flexibility services in stationary applications. In many cases the use of BESS
for only one purpose, for example, for (i) improving electricity supply reliability (in case of intended
islanding or microgrid operation) or for (ii) increasing distribution network/PV hosting capacity [8,9]
may not be an economically viable solution. Therefore, multi-purpose use cases are normally needed
for the distribution network connected BESSs. In general, DER control can be roughly divided into
local, distributed, and centralized control methods [10-12]. The management scheme can be also a
hybrid i.e., combination of centralized and distributed control features. In the literature, different BESS
control schemes and sizing principles have been proposed in [13-35]. Different control methods have
been also proposed to improve the BESS dynamic inertial response [36]. It can be noted that some of
the proposals, such as [10,36], consider only the use of active power P control and do not use the reactive
power Q control for local voltage control. It has been shown however that more effective voltage control
can be achieved by using both P and Q control capabilities of BESS [8,32]. Due to their rapid response and
dynamics, BESSs are also capable of providing system-wide (TSO level) frequency control related services.
These services can be realized by an individual large-scale BESS or by aggregating multiple small-scale
BESSs [37,38]. The optimization of BESS for multi-purpose use in order to provide different local (DSO)
and system level (TSO) services should be also taken into account [37].

This paper studies and proposes new solutions and adaptive settings and management schemes
in order to increase DER (PV) hosting capacity and the capability of distribution network connected
DER to provide flexibility services, predominantly frequency support for system-wide (TSO) needs.
In particular, this paper deals with problems such as (1) the coordination between DER units functions
and OLTC settings, (2) interactions between different DER units and their control functions, and (3)
multi-purpose use of BESS to increase their short- and long-term viability for grid integration (stationary
applications). Simulations focus mainly on studying the potential DER (PV and BESS) units QU-,
PU-, and Pf-control interactions in different situations. Based on the case studies results, the paper
proposes frequency adaptive PU-droops and role of PU-droops implementation logic with different
DER configurations. The way unwanted interactions between DER units and their control functions can
be avoided is shown. In addition, novel real-time adaptive management of DER PU-and QU-droops
and HV/MV substation transformer’s OLTC settings is proposed.

Section 2 of the paper presents the simulated case studies and explains the differences with
previous research, the DER droop control settings, and the simulation sequence. Section 3 shows the
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PSCAD simulation results from the main study cases, presents simulation results by utilizing real-life
frequency data, and proposes new frequency adaptive PU-droops for PVs and BESSs. In Section 4
new real-time adaptive management schemes for PU-droops, PQ-flow dependent OLTC settings, and
OLTC setting dependent QU-droops are proposed. Finally, conclusions are drawn in Section 5.

2. Simulation Model and Study Cases

2.1. Simulated Study System

The initial choices made for this paper were based on conclusions from previous research in [39].
Paper [39] studied new multi-objective ANM scheme by simulating local smart grid pilot Sundom
Smart Grid (SSG) with different future potential DER scenarios. Currently there are two DG units
connected to SSG [39]. One 3.6 MW full-power-converter based wind turbine (WT) connected to MV
network with own MV feeder J08 (Figure 1) and another LV network connected inverter based PV unit
(33 kW) at MV/LV substation TR4318 (not included in Figure 1).
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Figure 1. One-line diagram of the studied SSG in future scenario with more PV and BESS units in LV
network, as well as with control functions applied in WT, PVs, and BESSs.

However, in the study cases of this paper also future scenarios with higher amount of PV units as

well as with BESSs connected in LV network of SSG (Figure 1) are evaluated. As shown in Figure 1,
in the studied future scenario there are two 450 kW PV units (PV 1 and PV 2) at MV feeder J07 and
three 300 kW PV units (PV 3-5) at MV feeder J06. Respectively, three 200 kW BESS units (BESSs 1-3)
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were added to MV feeder J07 in different locations (Figure 1). Figure 1 also shows what type of control
functions are applied in the studies of this paper for WT, PVs, and BESSs. Differences to the previous
studies in [39] can be also seen in Table 1.

Table 1. Main focus areas of previous studies [39] and research work done in this paper.

Previous Studies [39] Research Work in the Paper
0. Initial choices (based on [39] findings)

No QU- and PU-droops on WT
- Only Fingrid RPW-limits used which are
fulfilled by the control of WT reactive power

[y

. Type of DER units

PV units (300 and 450 kW), BESS units (200 kW)
and WT (3.6 MW), see Figure 1 and Table 2
e Average models with controlled voltage sources

1. Type of DER units

PV units (300 kW) and WT (3.6 MW)
Average models with controlled voltage sources

2. Droops and control functions of DER units
e  Utilization of WT or PVs to fulfill RPW-limits 2. Droops and control functions of DER units
e  QU-and PU-droop also on WT e See Fioure |
e  Different QU- (seasonal) and PU-droops for PVs &
e  One Pf-droop for PVs
3. Focus on
e  Solutions to increase PV hosting capacity in LV
3. Focus on network as well as provision of services from LV
o network connected DER
*  Multi-objective ANM scheme e  Coordination between DER unit functions and
o  Different RPW-limits (Fingrid and ENTSO-E) OLTC settings
and control of reactive power flow between HV | Multi-purpose use of BESS
and MV nc.etworks ) e  Potential DER (PV and BESS) unit Pf- and
e Effect of different OLTC setting values PU-control interactions in different situations
(20.7 or 20.0 kV)

e New frequency adaptive PU-droops (Section 3.2)
e Role of PU-droops implementation logic with
different DER configurations

e Mutual/conflicting requirements between WT
control functions) (QU-droop 2 and Q-control to
fulfill RPW-limits)

e Verylow and high load situations @) For example, effect of PU-blocking with

PVs (only) and with PVs + BESSs

. Very low load situations

4. In addition, this paper presents new real-time adaptive

management schemes (Section 4) for

O  DER units” PU-droops,

O  HV/MV substation transformer’s OLTC setting
value and DER units” QU-droops

In this paper, the studies were undertaken by utilizing Fingrid’s (Finnish TSO) Reactive Power
Window (RPW)-limits (see [39]) in scenarios with more PVs and BESSs (Figure 1) than in [39]. In the
studied cases, WT alone is responsible for fulfilling the Fingrid’s RPW-limits (Figure 1). In addition,
during normal operation WT close to HV/MV substation does not need to have QU- or PU-droops. This also
prevents potential mutual effects between control functions, which were reported in [39]. However, if WT
would be connected to network in some back-up feeding configuration (e.g., during Sundom HV/MV
primary transformer maintenance), then suitable QU- and PU-droops could be used. The main focus areas
of previous studies in [39] and research work in this paper are summarized in Table 1.
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2.2. Droop Control of the DER Units

Figure 1 in Section 1 presented the type of control functions applied in the studies for WT, PVs,
and BESSs. Voltage control of MV and LV distribution network is managed by HV/MV substation
OLTC setting as well as by QU- and PU-droop control of PV and BESS units. In the simulations
QU-droop control of the DER units is used as the primary local voltage control method and PU-droop
control as the secondary method in order to avoid unnecessary P curtailment of PV units.

Increased reactive power Q production (Equation (1)) of cables during very high voltages and very
low load currents can potentially lead to local overvoltage situations in the distribution network and
therefore seasonal OLTC setting values could be used to improve DER hosting capacity of the network.

Qcable = Qproduction - Qconsumption = wcuz - 3CUL12/ (1)

where

w = angular frequency,
C = cable capacitance,
U = cable voltage,

L = inductance/phase,
I = cable current.

In order to improve distribution network PV hosting capacity, the OLTC setting during very high
load (winter season, total load 6548 kW, 283 kVAr) was chosen to be 20.3 kV (1.015 pu). Reactive power
Q produced by cables is dependent on voltage (Equation (1)) and therefore lower OLTC setting is more
suitable during summer time when cable load current I dependent reactive power consumption is also
smaller. In the simulations during very-low load (summer season, total load 970 kW, -660 kVAr) the set
value of OLTC was 20.0 kV (1.0 pu) with dead-zone + 0.3 kV/0.015 pu and 7.0 s operation time delay
(due to short simulation time ¢ = 110 s). Total load includes also P losses and Q produced/consumed by
cables and overhead lines.

Respectively, seasonal QU- and PU-droops should be utilized for DER units in order to improve
the DER hosting capacity of the distribution network. In addition, the seasonal QU- and PU-droops
should be compatible with the seasonal OLTC setting values as well as coordinated between different
type of units. This means that, for example, PU-droop settings of PV and BESS units at the same
connection point should be coordinated so that unnecessary active power curtailment of PV unit due
to local overvoltage can be avoided by simultaneous charging of the BESS unit.

The used QU-droops, PU-droops, and Pf-droop of PV and BESS units are shown in Figure 2.
It can be noted that BESSs 1 and 2 (Figure 1) have also the Q,;y,-control responsibility in order to enable
correct operation of passive islanding detection methods [40—42]. In many grid codes, like in ENTSO-E
NC RfG [43], the required reactive power feeding/absorbing capability of the DER units is defined
to be range cos(p) = 0.95in4/cap and that has been also used in this paper for defining the reactive
power limits of the DER unit (PV and BESS) QU-droops (Figure 2a,b). The basis for dimensioning
the DC/AC converter of the PV unit can be found e.g., from [44]. However, in order to reduce the
needed simulation time with multiple connected DER units (PVs, BESSs, and WT), average models
with controlled voltage sources are used instead of actual power-electronics switches in PSCAD models
utilized in the studies of this paper.

In the simulation studies of this paper, PV and BESS units had different chosen QU-droops for
winter (PV/BESS QU-droop 2, Figure 2a,b) and summer time (PV/BESS QU-droop 1, Figure 2a,b).
Dead-zone of QU-droops during summer time was chosen to be smaller in order to compensate more
reactive power produced by cables during very low load. In the studies, coordinated PU-droop settings
of PV and BESS units were also used (Figure 2c).

In addition, PV and BESS units have Pf-droop functions (Figures 1 and 2d) in order to participate in
frequency control during over-/under-frequency situations. In the simulations, two different Pf-droops
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for PVs and BESSs with smaller and larger dead-zones were utilized (Figure 2d). The Pf-droops smaller
dead-zones are used during summer time (PV/BESS Pf-droop 1, Figure 2d) when there is typically
also less inertia in the power system and need for more rapid response from DER units to support the
power system frequency. The used Pf-droops are also more sensitive than those required by the grid
codes, because the idea is that the PV and BESS units could offer participation in frequency control as a
flexibility service, for example, through a flexibility marketplace.

The implementation of PV unit’s active and reactive power droop control functions in the used
PSCAD model is shown in Figure 3 (see also Figures 1 and 2). From Figure 3 it can be seen how the
active and reactive power controllers with respective droop functions (QU-, PU-, and Pf-droops) will
create the active and reactive power references (P_ref, Q_ref) which are further processed in order to
have current reference values (Iq_ref, Iq ref) for the current controller. The current controller (Figure 3)
then gives the voltage reference values (V_ref) for the controlled voltage sources in the PSCAD model.
In the simulations it was also found out that the mutual effects of Pf- and PU-control functions on PV 2
(Figure 1) during over-frequency support participation need additional blocking logic (PU-blocking in
Figure 3) in the control system. Otherwise, the active power of PV unit PV 2 needs to be curtailed and it
cannot participate in frequency control due to mutual interaction of Pf- and PU-control functionalities.
In the PSCAD simulations, the control functionality of BESS units was very similar when compared to
the PVs (Figure 3).
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Figure 2. (a) QU-droop settings of PV units, (b) QU-droop settings of BESS units, (¢) PU-droop
settings of PV and BESS units, and (d) Pf-droop settings of BESS units which were used in the PSCAD
simulations (see also Figures 1 and 3).
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Figure 3. PV unit’s active and reactive power control functions like QU-, PU-, and Pf-droops implementation
in PSCAD model (see also Figures 1 and 2).

2.3. Study Cases and Simulation Sequence

Table 2 shows the study cases presented in this paper and used QU-, PU-, and Pf -droops for
the PV and BESS units (Figure 2). In all cases (Table 2), over- and under-voltage limits were 1.05 and
0.95 pu and OLTC dead-zone was + 0.3 kV/0.015 pu. In order to highlight the effect of adapting the
OLTC setting during very low load situations, simulations with OLTC setting value 20.7 kV (1.035 pu)
were also included in the simulation results (Table 2). Voltage limits of 0.95 and 1.05 pu were chosen as
steady-state operation target limits in order to guarantee stable voltage level and high power quality
in LV network. In addition, all simulation cases presented in the following were simulated with
only P-controllers on PVs and BESSs for PU-control (see Table 2 and Figure 3). In Table 3, the used
simulation sequence and other issues regarding study cases (Table 2) are presented.
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Table 2. Simulation study cases, very low load in all cases (see Figure 2).

OLIC Set
U-Droop of PU-Droop of Pf-Droop of PU-Blockin:
Case  WTs*  PVs*  BESSs*” QPVs/BESPSs PVs/BESPSs I{Vs/BEgss; with PVs/BESgSs Value
(kV)/(pw)
1a 1 5 0 1/- 1/- 1/- No 20.7/1.035
1b 1 5 0 1/- 1/- 1/- No 20.0/1.0
2a 1 5 0 1/- 1/- 1/- Yes 20.7/1.035
2b 1 5 0 1/- 1/- 1/- Yes 20.0/1.0
3a 1 5 0 2/~ 1/- 2/— Yes 20.7/1.035
3b 1 5 0 2/- 1/- 2/~ Yes 20.0/1.0
4a 1 5 2 11 11 111 Yes 20.0/1.0
4b*) 1 5 2 11 11 11 Yes 20.0/1.0
5a 1 5 3 11 1/1 11 No 20.0/1.0
5b 1 5 3 11 11 111 Yes 20.0/1.0

WT is wind turbine, PV is photovoltaic unit, BESS is battery energy storage unit, *) remote voltage (U_PV_2)
measurement from PV 2 connection point to BESS 1 control through communication, **) number of units.

Table 3. Simulation sequence actions and other issues in study cases (see Table 2 and Figure 1).
Total simulation time ¢ = 110 s.

Time (s) Initial Condition/Action

t =0-110 PV unit active power (Ppy) is at nominal *) i.e., 300 or 450 kW
t=10.5 WT active power (Pwr) increases from initial 0.5 to 1.5 MW *)
t=15.0 WT active power (Pwr) increases from 1.5 to 2.5 MW *)
t=19.0 WT active power (Pwrt) increases from 2.5 to 3.6 MW *)

t = 3040 Over-frequency situation (50.07 Hz) *%)

t = 50-60 Over-frequency situation (50.25 Hz) **)

t =70-80 Under-frequency situation (49.9 or 49.4 Hz) #%)

Under-frequency situation (49.8 or 49.4 Hz) **)
Part of the load participates in demand response and disconnects from the LV network
In all study cases of Table 2 PVs QU-droop is primary and PU-droop secondary local
voltage control method

t =90-100

Other issues

*) If voltage at PV or WT connection point is between min. and max. limits, **) Pf-control of PVs/BESSs participates
in frequency control according to their Pf-droops.

3. Simulation Results and New Frequency Adaptive PU-Droop

In this section, the main simulation results regarding potential solutions which could increase LV

distribution networks’ PV hosting capacity and provision of flexibility services from small-scale DER

are presented. In Section 3.1, the focus of the simulations was in the following issues (Table 2):

Effect of BESSs utilization (Cases 4a—5b), two or three BESSs (with default PU-droops on BESSs).
Potential DER (PV and BESS) unit Pf- and PU-control interactions during future scenarios with
very high PV penetration and very low load in (i) steady-state, (ii) over-frequency, and (iii)
under-frequency situations to study the effect of:

@) additional PU-control blocking logic (Cases 2a—4b and 5b);
O different Pf- and QU-droop settings (Cases 3a—-3b).

Effect of remote LV voltage measurement from PV (further in LV network) connection point to
BESS at closest MV/LV secondary substation in order to maximize PV production during very low
loads (Case 4b).

Effect of adapting the OLTC setting during very low load situations (Cases 1b, 2b, 3b, and 4a-5b).

After that, Section 3.1 presents simulation results by utilizing measured 30 min real-life frequency

data from SSG (Case 6). Finally, in Section 3.2. frequency adaptive PU-droops for PVs and BESSs
during larger under- and over-frequency situations are proposed (Cases 7a—7b).
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3.1. Simulations to Study Different Potential Solutions for Increasing LV Network PV Hosting Capacity and
Provision of Flexibility Services from DER

In the following, simulation results from different very low load cases (Tables 2 and 3) with only
P-controllers for PU-control in PVs and BESSs (Figure 3) are explained in detail. At first, Table 4
presents PV 2 unit’s (Figure 1) active (Ppy ») and reactive (Qpy 2) power as well as PV 2 connection
point voltage (Upy ») during over- and under-frequency events in different cases. After that, Tables 5
and 6 show the active and reactive power of BESS 1 and 3 during over- and under-frequency events
in different cases. In order to highlight the PV hosting capacity in PV 2 connection point, Figure 4
presents the active power (Ppy ») values of PV 2 during steady-state, over- and under-frequency events
in different cases.

From Table 4 and Figure 4 it can be seen that the PV hosting capacity in PV 2 connection point
(Figure 1) without BESSs in Cases 1a-3b during steady-state operation (¢ = 25.0 s) can be increased
with lower (20.0 kV) OLTC setting (Cases 1b, 2b, 3b). During over-frequency event 50.07 Hz (t = 25.0 s)
in Cases 1a-3b without BESSs one can see that best frequency support (frequency control participation)
can be achieved in Cases 2a and 2b with utilization of PU-control blocking logic (Figure 3) and Pf-droop
1 (Figure 2) on PVs. On the other hand, during under-frequency event 49.8 Hz (f = 95.0 s) in Cases
1la-3b without BESSs it can be seen from Table 4 and Figure 4c that due to load demand response
participation to frequency support by disconnecting part of the load at PV 2 connection point, also the
PV 2 active power needs to be curtailed in order to avoid local over-voltages. However, this PV
curtailment during under-frequency event is not feasible from system-wide perspective and reduces
the effect of load demand response to frequency control. Table 4 results also show that, due to used
P-controllers for PU-control in PV 2 and BESS 3 without any PI-controllers (Figure 3), small voltage
limit violations at the PV 2 connection point voltage (Upy ) can be possible.

Table 4. PV 2 active (Ppy ») and reactive (Qpy 2) power as well as PV 2 connection point voltage
(Upy 2) during over- and under-frequency events in different cases (Figures 1 and 2, Tables 2 and 3).

Load Ppv_2, Qpv_2, Upv 2 Ppy 2, Qpv 2, Upv 2 Ppv 2, Qpv 2, Upv2  Ppv_2, Qpv 2, Upv2
Case Level Steady-State, t =25 s 50.07 Hz, t =35 s 50.25 Hz, t =55s 498Hz, t=95s*

(kW, kVAr, pu) (kW, kVAr, pu) (kW, kVAr, pu) (kW, kVAr, pu)
la Low 243, -150, 1.056 236, —150, 1.054 0,0, 1.006 213, —150, 1.057
1b Low 316, —150, 1.053 310, —150, 1.051 0,0,0.976 286, —150, 1.054
2a Low 243, -150, 1.056 190, —150, 1.038 0,0, 1.006 213, —150, 1.057
2b Low 316, —150, 1.053 264, —150, 1.035 0,0,0.976 286, —150, 1.054
3a Low 241, -150, 1.056 242, -150, 1.056 0,0, 1.006 210, —150, 1.057
3b Low 316, —150, 1.053 317, -150, 1.053 0,10, 0.979 286, —150, 1.054
4a Low 316, —150, 1.053 264, —150, 1.035 0,0,0.974 281, =150, 1.055
4b Low 334, —150, 1.052 282, -149, 1.035 0,0,0.974 298, —150, 1.054
5a Low 450, —150, 1.046 390, —150, 1.039 0, 140, 0.950 363, —150, 1.051
5b Low 450, —150, 1.046 390, —139, 1.033 0, 150, 0.935 245, -150, 1.056

*) Part of the load also at PV_2 connection point participates in demand response and disconnects from the
LV network.

Table 5. BESS 1 active (Ppgss_1) and reactive (Qpgss_1) power during over- and under-frequency events

in different cases (Figures 1 and 2, Tables 2 and 3).

PgEss_1, QBEss_1

PgEss_1, QBEss_1

PgEss_1, QBEss_1

PgEss_1, OBEss_1

Case {“:3:1 Steady-State, £ = 25 5 50.07Hz,t=35s  50.25Hz t=55s  49.8Hz t=95s
(KW, kVAr) (kW, kVAr) (KW, KVAr) (KW, KVA1)
4a Low 0,0 -27,0 -200, 0 200, 0
4b Low ~200, —67 ~200,0 ~200, —67 0, -67
5a Low 0,0 -27,0 -200, 0 200, 0
5b Low 0,0 -27,0 -200, 0 200, 0
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Table 6. BESS 3 active (Ppgss_3) and reactive (Qpgss_3) power during over- and under-frequency events
in different cases (Figures 1 and 2, Tables 2 and 3).

Load PgEss_3, QBEss_3 PgEss_3, QBEss_3 PgEss_3, QBEss_3 PgEss_3, QBEss_3
Case Level Steady-State, t =25 s 50.07 Hz, t =35s 50.25 Hz, t =55s 498 Hz,t=95s
(kW, kVAr) (kW, kVAr) (kW, kVAr) (kW, kVAr)
5a Low -93, —67 -52, -67 —165, 62 -25, —67
5b Low -93, —67 -84, -62 -200, 67 108, —67
450 450
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Figure 4. PV 2’s active power (Ppy ;) values in different cases with very low load during (a) steady-state,
(b) over- and (c) under-frequency events (see also (Figures 1 and 2, Tables 2-6)).

The effect of BESS 1 and 3 (Figure 1) on the PV hosting capacity in PV 2 connection point can be
seen from Cases 4a—5b (Tables 4-6, Figure 4). When comparing Cases 4a and 4b with BESS 1 during
steady-state operation (f = 25.0 s) one can see that PV 2 hosting capacity can be only be increased in
Case 4b in which remote LV voltage measurement from PV 2 connection point to BESS 1 (Figure 1)
control is utilized through communication. In Cases 5a and 5b with BESS 3 at the PV 2 connection point
however, the PV hosting capacity during steady-state operation (t = 25.0 s, Figure 4a) can be maximized
by simultaneously charging BESS 3 (Table 6) in order to avoid local over-voltages. By comparing the
simulation results of Cases 5a and 5b (Tables 4-6) during over-frequency event 50.25 Hz (¢ = 55.0 s)
the effect of PU-control blocking logic of PVs and BESSs can be seen. The PU-blocking maximizes
the BESS 3 participation in frequency support in Case 5b (Table 6), but simultaneously leads to local
under-voltage at PV 2 connection point (Table 4). During under-frequency event 49.8 Hz (t = 95.0 s) in
Cases 5a and 5b with BESS 3 it can be seen from Tables 4 and 6 that in Case 5a without PU-blocking total
active power change (PV2 + BESS 3) is APs, 4981, = APpy 2(—=87 kW) + APpgss 3(68 kW) = =19 kW and
in Case 5b with PU-blocking APsp, 49 811, = APpy 2(—205 kW) + APppsg 3(201 kW) = —4 kW. The total
active power change is quite similar in Cases 5a and 5b, but it seems that in cases with PV and BESS at
the same connection point, the PU-blocking (Case 5b) may lead to unnecessary large PV curtailment
during under-frequency events if BESS unit participates in frequency control. This issue is further
studied in Section 3.2.
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Simulations with Real-Life Measurement Data

In this Section, the aim was to study PV 2 and BESS 3 unit’s (Figure 1) active (Ppy ») and reactive
(Qpy 2) power as well as PV 2 connection point voltage (Upy ») in Case 5 by utilizing measured real-life
frequency data from SSG (Figure 5). Measured 30 min frequency data (Figure 5) was modified for
PSCAD simulations to 240 s input data and was utilized in the new simulation Case 6 during ¢t =
10-250 s (Figure 6a).

5 - 28 Goose Graph View - e 8 0o o Ojaﬂ 8, 2020 16:00:00 to Jan 8, 2020 16:30:00

50.10
50.05
50.00
49.95

49.90

Frequency (Hz)

49.85

49.80

9.75
16:00 16:02 16:04 16:06 16:08 16:10 16:12 16:14 16:16 16:18 16:20 16:22 16:24 16:26 16:28 16:30

Time (min)

Figure 5. Measured 30 min real-life frequency data from SSG (which is modified for PSCAD simulations
to 240 s frequency input data between t = 10-250 s, see Figure 6a).
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Figure 6. (a) Input frequency (f) data modified from real-life SSG measurements (Figure 5), PV 2
and BESS 3 (b) active (P) and (c) reactive power (Q), as well as (d) local voltage (U) behavior at PV 2
connection point during simulated Case 6 (similar to Case 5, see also Figures 1 and 2, Tables 2-6).

From simulation results of Figure 6 it can be seen how PV 2 and BESS 3 units participate in
frequency control when frequency exceeds 50.05 Hz. In a similar manner, BESS 3 participates in frequency
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control during under-frequencies (i.e., when frequency is smaller than 49.95 Hz). In addition, during
t =178.0-180.5 s also load demand response participates in frequency support by load disconnection
when under-frequency limit 49.90 Hz is exceeded. Due to local voltage rise at PV 2 connection point
during under-frequency events also PV 2 active power needs to be simultaneously curtailed as shown
in Figure 6.

3.2. Frequency Adaptive PU-Droops for PVs and BESSs During Larger Under- and Over-Frequency Situations

Based on the simulations results of Section 3.1. it can be concluded that

e  Use of PU-blocking is needed from system-wide perspective in order to enable feasible operation
of PV 2 (without BESS 3) in Cases 2a and 2b during 50.07 Hz over-frequency situation.

e  With BESS 3 in Case 5b during 49.8 Hz under-frequency situation however, PV 2 output needs to
be curtailed more with PU-blocking due to BESS 3 unit’s more rapid and extensive participation
in system frequency support.

O Therefore, use of PU-blocking is not recommended from PV curtailment viewpoint when
there are both PV and BESS at the same network connection point. On the other hand,
simultaneous BESS frequency support with PU-blocking logic is higher.

O One potential option to avoid PV 2 curtailment could be disabling Pf-control of BESS 3
during under-frequency events. On the other hand, that is not optimal from whole-system
perspective especially if frequency deviation is large and frequency support is needed.

By considering above conclusions there is a need for development of PU-droops in order to avoid
the mentioned shortcomings and challenges. Therefore, in this section ‘frequency adaptive PU-droops’
are proposed. The idea, settings, and PSCAD implementation of the frequency adaptive PU-droop
are presented in Figure 7. For example with PV 2 and BESS 3 the adaption of frequency adaptive
PU-droops would mean that when frequency is e.g., > + 0.2-0.5 Hz and between over-voltage limits

1.05-1.15 pu or under-voltage limits 0.85-0.95 pu then active PU-droops would be changed from
PU-droop 1 (Figure 2) to PU-droop 2 or 3 (Figure 7).

“Frequency adaptive PU-droops” when frequency is e.g.

1) =+0.2-0.5 Hz and o Frequency adaptive PU-droop control
2) voltage between over-voltage limits 1.05-1.15 pu PV PU-droop 2

or undervoltage limits 0.85-0.95 pu
Active Power (P) [MW]

udv 2 JEn

Table

A o= 1

PV PU-droop 1

0.2 (200 kW, BESS) i ¥
U_PV_ 2 ul P_PV_2
Voltage (U) - 108 (HT PU_set_value
0.9 \0.905" 1.0951.0975 1.1** [pu] upis b=
F

u T Compar-
0.85°0.89°  0.950.955 1/0 1.15° s M
— PV PU-droop 2*/3** frequency D ’ [ A
— BESS PU-droop 273 “0-2[ (200 KW, BESS) e
0.45+1-03
(450 kW, PV) | (300 kW, PV) b)

a)

Figure 7. ‘Frequency adaptive PU-droops’ (a) idea and settings for PVs and BESSs during larger under
and over-frequency situations and (b) PSCAD implementation of the PV and BESS droops 2.

Standard EN 50160 [45] defines that LV network supply voltage variations under normal operation
should not exceed + 10% of nominal voltage U, (99% of the 10-min mean RMS value over one week)
and none of the 10-min mean RMS values shall exceed + 15% of U,,. When comparing these frequency
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adaptive PU-droop settings (Figure 7) to standard EN 50160 [45] requirements regarding supply
voltage variation in LV network, it can be stated that standard requirements are respected.

Frequency adaptive PU-droops should be used without PU-blocking in cases with PV + BESS at the
same connection point in order to enable PV or BESS unit participation in frequency control markets as
well as to maximize smaller LV network connected demand (loads) participation in frequency control.

In Tables 7 and 8, active and reactive power of PV 2 and BESS 3 (Figure 1) as well as PV 2/BESS 3
connection point voltage (U_PV_2, Figure 1) values during larger under-frequencies (49.4 Hz) in Cases
7a and 7b are presented.

Table 7. PV 2 active (Ppy ») and reactive (Qpy 2) power as well as PV 2 connection point voltage
(Upy ») during larger under-frequencies (49.4 Hz) (Figures 1 and 2, Tables 2-6).

Ppy_2, Qpv_2, Upv 2
494 Hz, t=95s %

Ppy_2, Qpv_2, Upv 2
494 Hz, t="75s

Ppy_2, Qpv_2, Upvy 2

Case PV Load Level Steady-State, t =25 s

Droop (kW, kVAr, pu) (kW, kVAr, pu) (KW, kVAr, pu)
2b 1 Low 316, -150, 1.053 319, -150, 1.053 285, —150, 1.054
7a 2 Low 316, —150, 1.053 450, —150, 1.095 426, -150, 1.100
7a 3 Low 316, -150, 1.053 450, —150, 1.095 416, -150, 1.098
5a 1 Low 450, —150, 1.046 395, —150, 1.050 362, -150, 1.051
7b 2 Low 450, —150, 1.046 400, -150, 1.103 376, -150, 1.106
7b 3 Low 450, —150, 1.046 448, -150, 1.097 406, —150, 1.098

*) Part of the load also at PV_2 connection point participates in demand response and disconnects from the
LV network.

Table 8. BESS 3 active (Ppgss_3) and reactive (Qpgss 3) during larger under-frequencies (49.4 Hz)

(Figures 1 and 2, Tables 2-6).

BESS

Pgess_3, QBESS 3

Pgess_3, QBESS 3

Pgess_3, QBESs 3

Case Droo Load Level Steady-state, t =25 s 494 Hz,t=75s 494 Hz,t=95s
(kW, kVAr) (kW, kVAr) (kW, kVAr)
5a 1 Low -93, —67 -25, —67 -25, —-67
7b 2 Low -93, —67 144, —67 135, —67
7b 3 Low -93, —67 76, —67 76, —67

In both cases OLTC set value is 20.0 kV. Case 7a is similar to 2b and Case 7b is same as 5a (Table 2).
The under-frequencies (49.4 Hz) however, are larger (Table 3) and both Cases 7a and 7b are done
without PU-blocking in PV 2/BESS 3 due to their ‘frequency adaptive PU-droops’ (Figure 7).

From Tables 7 and 8 it can be seen that during larger under-frequencies (49.4 Hz) in Case 7a with only
PVs (no BESSs), the frequency adaptive PU-droop enables larger PV 2 output and power system frequency
support also during simultaneous demand response at t = 95 s (see Case 7a AP1oraL 755 and APToTAL 956
values in Table 9 when compared to Case 2b). Respectively, in Case 7b with PVs and BESSs during
49.4 Hz under-frequency events the combined frequency support of PV 2 and BESS 3 is increased (see
Case 7b APtotar_75s and AP1oTAL 955 Values in Table 9 when compared to Case 5a) and their total
effect due to ‘frequency adaptive PU-droops’ is much better from the whole system point of view.

Figure 8 shows the active power behavior of PV 2 and BESS as well as voltage behavior at PV 2
connection point during simulated under-frequency (49.4 Hz) events in Cases 5a, 7b (with different
PU-droops, Figure 7 and Tables 7 and 8 ). From Figure 8 and Tables 7 and 8 it can be seen that PV 2
active power Ppy ; is much less curtailed during under-frequency events in Case 7b with PU-droop
2 than with PU-droop 3. In addition, simultaneous change and increase in BESS 3 active power
PgEss_3 is smaller in Case 7b with PU-droop 3 than with PU-droop 2. These differences in Ppy » and
Pggss 3 behavior during under-frequencies are affected by different PU-droops as well as the PSCAD
implementation logic presented in Figure 7b.
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Table 9. Provided frequency support by PV 2 and BESS 3 in different cases during simulated
under-frequency (49.4 Hz) events (see also Tables 7 and 8).

APpy > APpy 5 49.4 Hz APgEgss_3 APgEgss_3 AP1oTAL 755 APTOTAL 955 ***
Case 49.4 Hz, f= 05" ‘(kw)' 49.4 Hz, 49.4 Hz, **) 49 4 Hz, 49.4 Hz,
t=75s (kW) t=75s (kW) $=95s5* (kW) t=75s5(kW) t=95s5% (kW)
2b +3 =31 — — +3 =31
7a +134 +110 - - +134 +110
7a +134 +100 — — +134 +100
5a -55 —88 +68 +68 +13 =20
7b =50 -74 +237 +228 +187 +154
7b -2 —44 +169 +169 +167 +125

*) Part of the load also at PV_2 connection point participates in demand response and disconnects from the LV
network, *) AProraL 755 = APpy_2 + APggss 3 att =755, **) AProrar,_oss = = APpy > + APgpss 3 at t =95 s.

Ppv 2 PBESS 3
047 Case 5a, Droop 1 me== Case 7b, Droop 2 === Case 7b, Droop 3 === Case 53, Droop 1 === Case 7b, Droop 2 === Case 7b, Droop 3
—_ 4 Simuclitaneous 0.14
A lemand response —_
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=043 atPV2 co_nrgection S 0.08
g : ot g 0.0 o Simultaneous
emand response
2041 2 lioad disconnection),
a r S 0 at PV 2 connection
e 0.39 < .0.02 ~ poin
o037 %-0.06
035/ <.0.10
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a) PV2 b)
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Figure 8. (a) PV 2 active power Ppy », (b) BESS 3 active power Ppgss 3, and (c) local voltage Upy »
behavior at PV 2 connection point during simulated under-frequency (49.4 Hz) events in Cases 5a
(PU-droop 1), 7b (PU-droop 2), and 7b (PU-droop 3), see also Figures 2 and 7.

4. New Real-Time Adaptive Management Schemes

In the following, new real-time adaptive management schemes are proposed based on the previous
studies and simulation results presented in Section 3.

4.1. Real-Time Frequency Adaptive PU-Droop

In Section 3.2. the idea of frequency adaptive PU-droops for PVs and BESSs was presented.
The implementation could be smoother without exact frequency (> + 0.2-0.5 Hz) and voltage limits for
the activation of the frequency adaptive functionality. Therefore, in Figure 9 new ‘real-time frequency
adaptive PU-droop’ for PV and BESS units is proposed when frequency deviation is between + 1.0 Hz
from the nominal frequency fn. If frequency deviation is larger, then similar settings will be used as
if the deviation would be 1.0 Hz from f,,. This approach enables constant and smoother frequency
adaptive response from the DER units which is also more dependent on the real-time magnitude of
frequency change. It should be noted from Figure 9 that different equations will be used for calculation
of the PU-droop set-points Xj, Xy, X3, and X4 depending on the situation (i.e., under- or over-frequency,
f <fnorf>fn). In these Figure 9 equations for Xj, Xy, X3, and X:

f = measured frequency (Hz)
fn =nominal frequency (Hz)
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Ummin_ini = chosen initial minimum voltage set-point value when f = f, (pu)

Umax_ini = chosen initial maximum voltage set-poi
P, = nominal active power (MW).

Active Power (P) [MW]

nt value when f = f,, (pu)

If f > f
X1= Uninni* (fo/f)*-0.005
X2 = Umin_ni*(fo/f)?

X3 = Umaxn*(f/fa)®

Xa= Umax_n=(f/fa) +0.005
X3 X4

'Pr

Xi XZ
Iff<fn

X1= Umingm“U/fn)a—0.005

Xz = Unmin_n*{f/fa)?

X3= Ur'r\ax_ini*{fn/’f)3

Xa= Umax_ini‘{fn/f)3+0.005

Figure 9. Real-time smooth frequency adaptive PU-

for activation e.g., for BESS unit.

| Voltage (U)
. [pul
|
|
\

droop without specific frequency and voltage limits

Figure 10 shows example about calculated real-time frequency adaptive PU-droop values Xj, Xy,
X3, and Xy (Figure 9) for 200 kW BESS with different frequency values when f, = 50 Hz, P, = 0.2 MW,

Umin_ini = 0.955 pu, and Umax ini = 1.045 pu.
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Figure 10. Example of real-time frequency adapti

ve PU-droop values for 200 kW BESS with (a) f =

50 Hz, (b) f = 50.5 Hz, and (c) f = 49 Hz (f, = 50 Hz, Py, = 0.2 MW, Upnin_ini = 0.955 put, and Upnay ini =

1.045 pu, Figure 9).

4.2. Real-Time HV/MV Substation PQ-Flow Dependent OLTC Setting Value

Instead of seasonal OLTC settings the OLTC

setting value could be based on locally measured

real-time active and reactive power flow levels (5 min average Pyy and Qpy values) between HV and
MYV networks at the HV/MV substation as shown in Figure 11. The example in Figure 11 is based on
SSG RPW-limits [39]. This proposed new PQ-flow dependent OLTC setting value calculation could
enable increased DER and PV hosting capacity in distribution networks, less reactive power produced
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by cables (see Equation (1), Section 2.2), and therefore decreased need for voltage control support in
MYV and LV networks by the flexible energy resources. In addition, simultaneously the availability of,
for example, demand response, for provision of system-wide frequency support could be increased.

P
Qo1 v = -443 kVAr consumption
i)
tan @ =-0,04 &
20.3 kv /
1.015 pu .
PoLmw=5 MW —— F+——————— -
20.2kv/ .
1.01 pu i
““““ i
20.1kv/ !'20.2kv/
_ Qp mv = 790 KVAr
Qo1 mv=-247,5 kVArs| | 1.005 pu I 1.01 pu -
a | 5Q
feeding consumption
Pmin mv= 19.9kv / 20.0 kv /
-363 kW 0.995 pu 1.0 pu
N
i +*
Qg1 mv=-443 kVAr P feeding Q; mv= 363 kVAr

Figure 11. Real-time HV/MV substation PQ-flow dependent OLTC setting value with SSG (RPW)-limits.

The proposed PQ-flow dependent OLTC setting value (Figure 11) is based on local measurements
only and does not require knowledge about minimum and maximum voltages in the corresponding
distribution network. Therefore, this approach could be further improved in the future with the real-time
measurements based data in order to achieve even more optimized and coordinated determination of
OLTC set value and compatible settings for the adaptive QU-droops of the DER units (Section 4.3).

4.3. Real-Time Adaptive QU-Droop Based on OLTC Setting Value

If seasonal OLTC settings are utilized, then also QU-droop settings of DER units should be adapted
accordingly when OLTC seasonal setting value is changed. This could be done, for example, based on
date if also OLTC set value is changed based on the same schedule. This approach was also used as a
hypothesis in the simulations presented in Section 3. If the real-time OLTC setting value (e.g., as defined
in Section 4.2) however, can be communicated to the DER unit then it could be used as an input to adapt
the DER unit QU-droop settings as shown in Figure 12. Regarding the QU-droop settings (Figure 12),
the dead-zone size could be modified based on chosen constant B value (from 0.02 to 0.06 pu) depending
on the location of the DER unit in MV or LV network. In addition, if participation of the DER unit
to compensate fast voltage variations is emphasized then a smaller constant A value in Figure 12
(e.g., 0.005 pu) could be used instead of a larger one (e.g., 0.015 pu) in QU-droop settings.

Reactive Power (Q) Xi=X2-A Constant values A and B:
[— QU-droop | Xa=X -8 €@ 7=0005-0015

———————————— - Qnominal,DER X3 = OLTCset_valve_pu 58=0.02-0.06
Xa=Xz+A
Xs Xa values A and B are chosen based
|
|
|
|
|

|

I

| y on DER unit location in

X1 Xz Voltage (U) distribution network (B) and
[pu] participation to compensate fast

voltage variations (A)

- Qnominal,DER T+————

Figure 12. Real-time adaptive DER unit QU-droop based on OLTC set value and constants A and B.



Appl. Sci. 2020, 10, 5146 17 of 21

5. Conclusions

In this paper solutions for increasing PV hosting capacity and distribution network connected
flexible energy resources improved utilization for local (DSO) and system-wide (TSO) services were
studied by PSCAD simulations during very low load situations. The focus was on the potential
momentary mutual effects and simultaneous interaction between different functions. Based on the
simulation results, it can be concluded that

e PV hosting capacity in LV network can be increased with lower OLTC setting value.

e  Feasible and coordinated QU-, PU-, and Pf-droop settings (with dead-zones) of PVs and BESSs
are essential in maximizing the provision of their flexibility services.

e During an over-frequency event without BESS, the best frequency support can be achieved by
using PU-control blocking logic on PVs.

e PV hosting capacity can be increased to some extent by remote LV voltage measurement from PV
connection point to MV/LV substation connected BESS.

e  With BESS at the PV connection point however, the PV hosting capacity during steady-state
operation can be maximized by simultaneously charging BESS in order to avoid local over-voltages.

e  During larger frequency deviations frequency adaptive PU-droops can enable larger PV and BESS
power system frequency support as well as maximize smaller LV network connected demand
(loads) participation in frequency control.

e Actual implementation logic (e.g., PU-blocking or change of active PU-droop with frequency
adaptive PU-droops) affects the PV and BESS frequency support contribution and the extent of
PV curtailment (Table 10).

Table 10. Summary about effect of functionalities implementation logic during simulated very low
load situations.

Frequency Adaptive PU-Droops

DER Unit(s) Without PU-Blocking With PU-Blocking (Without PU-Blocking)
No difference depending on the
PV (only) Over-frequency support Better over-frequency PU-droop settings and over-voltage
oy can be limited support limits in the logic (during
under-frequencies)
Duri derf Duri Smaller PV curtailment + smaller
PV + BESS uring under-trequency urng BESS contribution with lower
events small PV under-frequencies PV .
(at the same i1 11 i over-voltage limit on the PU-droop
connection point) curtaiiment + smaller curtailment larger + and implementation logic
BESS contribution BESS contribution larger

(during under-frequencies)

In general, it can be stated that the dead-zones in BESS and PV unit QU-, PU-, and Pf-droops are
required in order to enable multi-use of active (P) and/or reactive (Q) power for different purposes.
In the future, new adaptive management schemes to enable maximum availability of all types and
sizes of flexibilities for different local and system level services are needed. New management and
DER control methods must be also compatible with other flexibility service options and platforms like
flexibility markets. Therefore, in the near future flexible QU-, PU-, and Pf-droop functions for DER units
are required. Flexible droop functions could also enable local operation optimization at DSO level by
updating droop functions setting values and activation limits in a seasonal/monthly/weekly/daily/hourly
manner. The adaptation of these droops to the changing network situations, however, should be
increasingly done in the future based on the available local and/or remote measurements information.
Therefore, in Section 4 new real-time adaptive management schemes for DER units” PU-droops, HV/MV
substation transformer’s OLTC setting value (dependent on the PQ-flow through the transformer),
and DER units” QU-droops (dependent on OLTC setting value) were also proposed.

It was shown by simulations that with BESS at the PV connection point the PV hosting capacity
during steady-state operation and very low load situation can be maximized by simultaneously
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charging BESS. In reality this is only possible if State-of-Charge (SOC) of the BESS is at a suitable level.
BESS’s SOC naturally has an effect on its capabilities to be used for different control purposes and the
ability to provide different flexibility services. In real-life, the SOC-dependency of the BESS PU-droops
would be feasible to be implemented as part of the control system in order to be able to maximize
benefits to the owner of the assets/flexibility resources. Real-time SOC-level defines the actual BESS
ability to provide the different flexibility services. These issues will be considered in the future research.
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Nomenclature

AC Alternating Current

ANM Active Network Management
BESS Battery Energy Storage System

CB Circuit Breaker

DC Direct Current

DG Distributed Generation

DER Distributed Energy Resources

DSO Distribution System Operator
ENTSO-E European Network of Transmission System Operators for Electricity
ES Energy Storage

EU European Union

EV Electric Vehicle

HV High Voltage

J06,J07, J08 MYV feeders in the study case

LV Low Voltage

MV Medium Voltage

NC Network Code

OLIC On-Load Tap Changer

PSCAD Power System Simulation Software

P-controller
PI-controller
PV

Proportional controller
Proportional-Integral controller
Photovoltaic

RES Renewable Energy Sources
RfG Requirements for Generators
RMS Root Mean Square

RPW Reactive Power Window

SOC State-of-Charge

SSG Sundom Smart Grid

TSO Transmission System Operator
WT Wind Turbine

w Angular frequency

C Capacitance

Cos@ Power factor

cos(P) Active Power dependent power factor
f Frequency

fn Nominal frequency (Hz)


https://www.univaasa.fi/en/research/projects/fleximar/

Appl. Sci. 2020, 10, 5146

19 of 21

I Current

Imeas Measured Current

Ig Current direct (d) component

L4 ref Current direct (d) component reference value

Iq Current quadrature (q) component

Iq ref Current quadrature (q) component reference value
L Inductance

P Active Power

P_MV_flow Active Power flow between HV and MV networks
Pf or P(f) Active Power—Frequency

PU or P(U) Active Power—Voltage

APgEss 3 Active Power change of BESS unit 3

APpy - Active Power change of PV unit 2

APTOTAL 755
APTOTAL 955

Total Active Power change during simulationatt=75s
Total Active Power change during simulation att=95s

PpEss 1 Active Power of BESS unit 1

PpEss 3 Active Power of BESS unit 3

Pn Nominal active power

Ppy Active Power of PV unit

Ppy 2 Active Power of PV unit 2

Pwr Active Power of Wind Turbine (WT)
P_ref Active Power reference value

PQ Active Power—Reactive Power

Q Reactive Power

Q _MV_flow Reactive Power flow between HV and MV networks
Qcable Total Reactive Power of a cable
Qconsumption Reactive Power consumed by a cable
Qproduction Reactive Power produced by a cable
Qunb Reactive Power unbalance

Q) Reactive Power—Active Power

QU or Q(U) Reactive Power—Voltage

QBEss_1 Reactive Power of BESS unit 1

QBEss 3 Reactive Power of BESS unit 3

Qpv 2 Reactive Power of PV unit 2

Q_ref Reactive Power reference value

t Time

8} Voltage

Un Nominal Voltage

Umin_ini Chosen initial minimum voltage set-point value
Unnax_ini Chosen initial maximum voltage set-point value
Upy 2 Connection point voltage of PV unit 2
Vg4 Voltage direct (d) component

Vq Voltage quadrature (q) component

Vpcce Voltage at the point of common coupling
V_ref Voltage reference value

References

1. Mohandes, B.; El Moursi, M.S.; Hatziargyriou, N.; El Khatib, S. A review of power system flexibility with
high penetration of renewables. IEEE Trans. Power Syst. 2019, 34, 3140-3155. [CrossRef]

2. Laaksonen, H.; Hovila, P. FlexZone concept to enable resilient distribution grids-possibilities in sundom
smart grid. In Proceedings of the CIRED Workshop 2016, Helsinki, Finland, 14-15 June 2016.

3. Astapov, V,; Divshali, PH.; Soder, L. The potential of distribution grid as an alternative source for reactive
power control in transmission grid. In Proceedings of the 20th European Conference on Power Electronics
and Applications-EPE 2018, Riga, Latvia, 17-21 September 2018.


http://dx.doi.org/10.1109/TPWRS.2019.2897727

Appl. Sci. 2020, 10, 5146 20 of 21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Hafezi, H.; Laaksonen, H. Autonomous soft open point control for active distribution network voltage level
management. In Proceedings of the 13th IEEE PowerTech 2019, Milan, Italy, 23-27 June 2019.

Hes, S.; Kula, J.; Svec, J. Technical solutions for increasing der hosting capacity in distribution grids in
the Czech Republic in terms of European project INTERFLEX. In Proceedings of the 25th International
Conference on Electricity Distribution-CIRED 2019, Madrid, Spain, 3-6 June 2019.

Ulasenka, A.; Del Rio Etayo, L.; Cirujano, P; Ortiz, A.; Brandl, R.; Montoya, J. Holistic coordination of smart
technologies for efficient Iv operation, increasing hosting capacity and reducing grid losses. In Proceedings
of the 25th International Conference on Electricity Distribution-CIRED 2019, Madrid, Spain, 3-6 June 2019.
Wang, Y.; Xu, Y.; Tang, Y.; Syed, M.H.; Guillo-Sansano, E.; Burt, G.M. Decentralized-Distributed Hybrid
Voltage Regulation of Power Distribution Networks Based on Power Inverters. IET Gener. Transm. Distrib.
2019, 13, 444-451. [CrossRef]

Divshali, P.H.; Séder, L. Improving hosting capacity of rooftop PVS by quadratic control of an LV-Central
BSS. IEEE Trans. Smart Grid 2017, 10, 919-927. [CrossRef]

Parthasarathy, C.; Hafezi, H.; Laaksonen, H.; Kauhaniemi, K. Modelling and simulation of hybrid PV &
BES systems as flexible resources in Smartgrids-Sundom smart grid case. In Proceedings of the 13th IEEE
PowerTech 2019, Milan, Italy, 23-27 June 2019.

Divshali, PH.; Alimardani, A.; Hosseinian, S.H.; Abedi, M. Decentralized cooperative control strategy of
microsources for stabilizing autonomous VSC-Based Microgrids. IEEE Trans. Power Syst. 2012, 27, 1949-1959.
[CrossRef]

Worthmann, K.; Kellett, C.M.; Braun, P; Griine, L.; Weller, S.R. Distributed and decentralized control of
residential energy systems incorporating battery storage. IEEE Trans. Smart Grid 2015, 6, 1914-1923. [CrossRef]
Nieto, A.; Efstratiadi, M.-A.; Currie, A.; Coughlan, K.; Do, S. Coordinated operation of a grid scale energy
storage system with tap changer for voltage control on primary substations. In Proceedings of the 25th
International Conference on Electricity Distribution-CIRED 2019, Madrid, Spain, 3—6 June 2019.

Weckx, S.; D'Hulst, R.; Driesen, J. Primary and secondary frequency support by a multi-agent demand
control system. IEEE Trans. Power Syst. 2015, 30, 1394-1404. [CrossRef]

Mokhtari, G.; Ghosh, A.; Nourbakhsh, G.; Ledwich, G. Smart robust resource control in LV network to deal
with voltage rise issue. IEEE Trans. Sustain. Energy 2013, 4, 1043-1050. [CrossRef]

Lee, S.-J.; Kim, J.-H.; Kim, C.-H.; Kim, S.-K.; Kim, E.-S.; Kim, D.-U.; Mehmood, K.K.; Khan, S.U. Coordinated
control algorithm for distributed battery energy storage systems for mitigating voltage and frequency
deviations. IEEE Trans. Smart Grid 2016, 7, 1713-1722. [CrossRef]

Miao, L.; Wen, J.; Xie, H.; Yue, C.; Lee, W.-J. Coordinated control strategy of wind turbine generator and
energy storage equipment for frequency support. IEEE Trans. Ind. Appl. 2013, 51, 2732-2742. [CrossRef]
Alam, M.].E.; Muttaqi, K.M.; Sutanto, D. Mitigation of rooftop solar pv impacts and evening peak support by
managing available capacity of distributed energy storage systems. IEEE Trans. Power Syst. 2013, 28, 3874-3884.
[CrossRef]

Nazariet, M.H.; Costello, Z.; Feizollahi, M.].; Grijalva, S.; Egerstedt, M. Distributed frequency control of
prosumer-based electric energy systems. IEEE Trans. Power Syst. 2014, 29, 2934-2942.

Moghadam, M.R.V,; Ma, R.T.B.; Zhang, R. Distributed frequency control in smart grids via randomized
demand response. IEEE Trans. Smart Grid 2014, 5, 2798-2809. [CrossRef]

Xing, L.; Mishra, Y.; Tian, Y.; Ledwich, G.; Su, H.; Peng, C.; Fei, M. Dual consensus based distributed frequency
control for multiple energy storage systems. IEEE Trans. Smart Grid 2019, 10, 6396-6403. [CrossRef]

Yu, L.; Chu, C. Consensus-based secondary frequency and voltage droop control of virtual synchronous
generators for Isolated AC Microgrids. IEEE |. Emerg. Sel. Top. Circuits Syst. 2015, 5, 443-455.

Baros, S.; Llic, M.D. A Consensus approach to real-time distributed control of energy storage systems in
wind farms. IEEE Trans. Smart Grid 2019, 10, 613-625. [CrossRef]

Nguyen, D.H.; Khazaei, J. Multi-agent time-delayed fast consensus design for distributed battery energy
storage systems. IEEE Trans. Sustain. Energy 2018, 9, 1397-1406. [CrossRef]

Pilloni, A.; Pisano, A.; Usai, E. Robust finite time frequency and voltage restoration of inverter-based
microgrids via sliding mode cooperative control. IEEE Trans. Ind. Electron. 2018, 65, 907-917. [CrossRef]
Hu, J.; Lanzon, A. Distributed finite time consensus control for heterogeneous battery energy storage systems
in droop-controlled microgrids. IEEE Trans. Smart Grid 2019, 10, 4751-4761. [CrossRef]


http://dx.doi.org/10.1049/iet-gtd.2018.5428
http://dx.doi.org/10.1109/TSG.2017.2754943
http://dx.doi.org/10.1109/TPWRS.2012.2188914
http://dx.doi.org/10.1109/TSG.2015.2392081
http://dx.doi.org/10.1109/TPWRS.2014.2340582
http://dx.doi.org/10.1109/TSTE.2013.2265100
http://dx.doi.org/10.1109/TSG.2015.2429919
http://dx.doi.org/10.1109/TIA.2015.2394435
http://dx.doi.org/10.1109/TPWRS.2013.2259269
http://dx.doi.org/10.1109/TSG.2014.2316913
http://dx.doi.org/10.1109/TSG.2019.2904075
http://dx.doi.org/10.1109/TSG.2017.2749379
http://dx.doi.org/10.1109/TSTE.2017.2785311
http://dx.doi.org/10.1109/TIE.2017.2726970
http://dx.doi.org/10.1109/TSG.2018.2868112

Appl. Sci. 2020, 10, 5146 21 of 21

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Sugihara, H.; Yokoyama, K.; Saeki, O.; Tsuji, K.; Funaki, T. Economic and efficient voltage management using
customer-owned energy storage systems in a distribution network with high penetration of photovoltaic
systems. IEEE Trans. Power Syst. 2013, 28, 102-111. [CrossRef]

Giannitrapani, A.; Paoletti, S.; Vicino, A.; Zarrilli, D. Optimal allocation of energy storage systems for voltage
control in LV distribution networks. IEEE Trans. Smart Grid 2017, 8, 2859-2870. [CrossRef]

Zarrilli, D.; Giannitrapani, A.; Paoletti, S.; Vicino, A. Energy storage operation for voltage control in distribution
networks: A receding horizon approach. IEEE Trans. Control Syst. Technol. 2018, 26, 599-609. [CrossRef]

Sami, S.S.; Cheng, M.; W, ].; Jenkins, N. A Virtual energy storage system for voltage control of distribution
networks. CSEE ]. Power Energy Syst. 2018, 4, 146-154. [CrossRef]

Wang, L.; Liang, D.H.; Crossland, A.F.; Taylor, P.C.; Jones, D.; Wade, N.S. Coordination of multiple energy
storage units in a low-voltage distribution network. IEEE Trans. Smart Grid 2015, 6, 2906-2918. [CrossRef]
Wang, Y.; Tan, K.T.; Peng, X.Y.; So, PL. Coordinated control of distributed energy-storage systems for voltage
regulation in distribution networks. IEEE Trans. Power Deliv. 2016, 31, 1132-1141. [CrossRef]

Jayasekara, N.; Masoum, M.A.; Wolfs, PJ. Optimal operation of distributed energy storage systems to improve
distribution network load and generation hosting capability. IEEE Trans. Sustain. Energy 2016, 7, 250-261. [CrossRef]
Rigas, A.; Messinis, G.; Hatziargyriou, N. Application of topology identification on optimal bess sizing in
distribution systems. In Proceedings of the 8th IEEE PES Innovative Smart Grid Technologies Conference
Europe-ISGT Europe 2018, Sarajevo, Bosnia and Herzegovina, 21-25 October 2018.

Jahromi, A.A.; Majzoobi, A.; Khodaei, A.; Bahramirad, S.; Zhang, L.; Paaso, A.; Lelic, M.; Flinn, D. Battery
Energy storage requirements for mitigating PV output fluctuations. In Proceedings of the 8th IEEE PES
Innovative Smart Grid Technologies Conference Europe-ISGT Europe 2018, Sarajevo, Bosnia and Herzegovina,
21-25 October 2018.

Zhang, Y,; Ren, S.; Dong, Z.Y.; Xu, Y.; Meng, K.; Zheng, Y. Optimal placement of battery energy storage in
distribution networks considering conservation voltage reduction and stochastic load composition. IET Gener.
Transm. Distrib. 2017, 11, 3862-3870. [CrossRef]

Yue, M.; Wang, X. Grid Inertial response-based probabilistic determination of Energy Storage System Capacity
under high solar penetration. IEEE Trans. Sustain. Energy 2015, 6, 1039-1049. [CrossRef]

Wang, Y; Xu, Y;; Tang, Y.; Liao, K.; Syed, M.H.; Guillo-Sansano, E.; Burt, G. Aggregated energy storage for power
system frequency control: A finite-time consensus approach. IEEE Trans. Smart Grid 2019, 10, 3675-3686. [CrossRef]
Vasilj, J.; Gros, S.; Jakus, D.; Sarajcev, P. Multi-market scheduling of battery storages within renewable
portfolios. In Proceedings of the 8th IEEE PES Innovative Smart Grid Technologies Conference Europe-ISGT
Europe 2018, Sarajevo, Bosnia and Herzegovina, 21-25 October 2018.

Laaksonen, H.; Sirvio, K.; Aflecht, S.; Hovila, P. Multi-objective active network management scheme studied
in sundom smart grid with MV and LV network connected DER units. In Proceedings of the 25th International
Conference on Electricity Distribution-CIRED 2019, Madrid, Spain, 3-6 June 2019.

Laaksonen, H.; Hovila, P.; Kauhaniemi, K.; Sirvio, K. Advanced islanding detection in grid interactive
microgrids. In Proceedings of the CIRED 2018 Workshop, Ljubljana, Slovenia, 7-8 June 2018.

Laaksonen, H.; Hovila, P.; Kauhaniemi, K. Combined islanding detection scheme utilizing active network
management for future resilient distribution networks. In Proceedings of the IET 14th International
Conference on Developments in Power System Protection-DPSP 2018, Belfast, UK, 12-15 March 2018.
Laaksonen, H. Reliable islanding detection with active MV network management. In Proceedings of the
CIRED 2014 Workshop, Rome, Italy, 11-12 June 2014.

EU Commission. Commission Regulation (EU) 2016/631 of 14 April 2016 Establishing A Network Code on
Requirements for Grid Connection of Generators. Available online: https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=0J:JOL_2016_112_R_0001#d1e8030-1-1 (accessed on 12 May 2020).

Faranda, R.S.; Hafezi, H.; Leva, S.; Mussetta, M.; Ogliari, E. The optimum PV plant for a given solar DC/AC
converter. Energies 2015, 8, 4853-4870. [CrossRef]

Standard EN 50160. Voltage Characteristics of Electricity Supplied by Public Electricity Networks; European
Committee for Electrotechnical Standardization (CENELEC): Brussels, Belgium, 2010.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1109/TPWRS.2012.2196529
http://dx.doi.org/10.1109/TSG.2016.2602480
http://dx.doi.org/10.1109/TCST.2017.2692719
http://dx.doi.org/10.17775/CSEEJPES.2016.01330
http://dx.doi.org/10.1109/TSG.2015.2452579
http://dx.doi.org/10.1109/TPWRD.2015.2462723
http://dx.doi.org/10.1109/TSTE.2015.2487360
http://dx.doi.org/10.1049/iet-gtd.2017.0508
http://dx.doi.org/10.1109/TSTE.2014.2328298
http://dx.doi.org/10.1109/TSG.2018.2833877
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:JOL_2016_112_R_0001#d1e8030-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:JOL_2016_112_R_0001#d1e8030-1-1
http://dx.doi.org/10.3390/en8064853
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Simulation Model and Study Cases 
	Simulated Study System 
	Droop Control of the DER Units 
	Study Cases and Simulation Sequence 

	Simulation Results and New Frequency Adaptive PU-Droop 
	Simulations to Study Different Potential Solutions for Increasing LV Network PV Hosting Capacity and Provision of Flexibility Services from DER 
	Frequency Adaptive PU-Droops for PVs and BESSs During Larger Under- and Over-Frequency Situations 

	New Real-Time Adaptive Management Schemes 
	Real-Time Frequency Adaptive PU-Droop 
	Real-Time HV/MV Substation PQ-Flow Dependent OLTC Setting Value 
	Real-Time Adaptive QU-Droop Based on OLTC Setting Value 

	Conclusions 
	References

