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Abstract: Case-based reasoning (CBR) systems often provide a basis for decision makers to make
management decisions in disaster prevention and emergency response. For decades, many CBR
systems have been implemented by using expert knowledge schemes to build indexes for case
identification from a case library of situations and to explore the relations among cases. However,
a knowledge elicitation bottleneck occurs for many knowledge-based CBR applications because
expert reasoning is difficult to precisely explain. To solve these problems, this paper proposes a
method using only knowledge to recognize marine oil spill cases. The proposed method combines
deep reinforcement learning (DRL) with strategy selection to determine emergency responses for
marine oil spill accidents by quantification of the marine oil spill scenario as the reward for the DRL
agent. These accidents are described by scenarios and are considered the state inputs in the hybrid
DRL/CBR framework. The challenges and opportunities of the proposed method are discussed
considering different scenarios and the intentions of decision makers. This approach may be helpful
in terms of developing hybrid DRL/CBR-based tools for marine oil spill emergency response.
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1. Introduction

Oil spills have become one of the most severe marine ecological disasters worldwide. With oil
imports exceeding 420 million tons in 2017, China surpassed the United States as the world’s largest
oil importer for the first time. As a large amount of oil is imported by sea transportation, oil spills
frequently occur in China, threatening China’s marine fishery, coastal environment and coastal
cities; providing a rapid response following marine oil spill emergencies has received increasing
attention. After an accident occurs, direct and effective methods can be used to quickly retrieve
similar historical cases by using certain intelligent methods and then assisting decision makers in
quickly formulating emergency response plans to cope with the current emergency based on historical
experience. Case-based reasoning (CBR) systems compare a new problem to a library of cases and
adapt a similar library case to the problem, thereby producing a preliminary solution [1]. Since CBR
systems require only a library of cases with successful solutions, such systems are often used in areas
lacking a strong theoretical domain model, such as diagnosis, classification, prediction, control and
action planning. CBR has been applied to help improve cost-efficiency control during infrastructure
asset management in developing countries by estimating costs through retrieving and comparing
the most similar instances across a case library [2]. Additionally, farmers have been provided with
advice about farming operation management at a high case retrieval speed based on the associated
representation method [3].
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Many scholars have conducted in-depth research on CBR for natural disaster emergency response
and support decision making. Emergency decision makers can effectively respond to emergencies
with mobile-based emergency response systems such as the ontology-supported case-based reasoning
(OS-CBR) system method [4]. This method has also been used to forecast the probability of finding oil
slicks [5]. The generation of secondary emergencies and potential escalation into an emergency cascade
has been studied with CBR and historical cases to increase the effectiveness of emergency decision
making in preventing cascading disasters [6]. A CBR method based on spatiotemporal trajectory
similarity assessment was applied for typhoon disasters [7]. Building information modeling (BIM)
has been combined with CBR to estimate replacement costs by retrieving cost information from the
industry foundation class (IFC) [8].

Various factors have contributed to the attractiveness of employing case-based methods: reducing
the knowledge acquisition effort and noise tolerance based on the approximate nature of these methods
and providing straightforward implementation schemes [9]. Compared with similarity matching based
on subjective experience, historical knowledge and computer technology can not only accelerate the
calculation process but also improve the reliability, which is of great significance in saving time during
an emergency response and minimizing the damage caused by marine oil spill accidents. In particular,
in the process of using CBR in disaster emergency problems, the static attribute information of the
disaster case at a certain time can be employed to obtain a similarity assessment and determine which
case best matches the current problem; this approach typically uses the attribute-weighted Euclidean
metric for assessment [10]. However, due to the sophisticated hydrogeological and biological factors
that influence oil movement, oil pollution is often characterized as an unconventional emergency and
is associated with many new and unidentified risk factors, such as those related to spill magnitude
uncertainties that may not be foreseeable in the disaster preparedness stage; these effects can lead
to difficulty in attribute similarity assessment based on the Euclidean metric. Moreover, weight
determination in CBR needs to be fully considered and requires extensive expert knowledge that
may affect the timeliness of emergency decisions. Therefore, scenario analysis is of interest because it
addresses variable uncertainties and has been applied in many fields, such as risk decision making
in emergency response [11], and plan-making in chemical industrial park pollution accidents [12].
In terms of similarity of cases, the reinforcement learning scheme does not need to know the correct
case for each input and is used as a feedback signal by generating actions that cause the environment
to enter a new state and generate a new feedback signal. In this work, we will exploit the advantages
of CBR and scenario analysis in the context of a deep Q-network (DQN) [13,14] to support marine oil
spill emergency decision making in prediction and action planning tasks. Our main contributions are
as follows:

1. A hybrid method using deep reinforcement learning (DRL) and CBR is proposed to produce a
preliminary solution for marine oil spill emergencies.

2. To address the uncertainty of marine oil spill accidents, a preprocess of constructing a marine oil
spill scenario tree is employed, and the scenario is also used to represent historical cases in our
CBR system.

3. Reward functions are considered based on different decision intentions to supporting decision
making; this approach may be helpful for improving the level of oil spill emergency response.

The remainder of this paper is organized as follows. Section 2 presents a brief introduction to the
fundamental theory of the proposed framework. Section 3 shows the experimental results to verify
the effectiveness of the scenario-based hybrid DRL/CBR method. Finally, a brief discussion is given,
and the study conclusions and proposed future work are discussed.

2. Materials and Methods

CBR is defined as the process of reusing experiences to deal with current situations that are similar
to ones solved and stored previously [10], and the foundation of the CBR system is the representation
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and definition of a case. We consider marine oil spill emergency response tasks in which a decision
maker addresses marine oil spill accidents and makes decisions based on comparisons with historical
data by using similarity measurements to identify a relevant past case. At each time step, the decision
maker selects an emergency response action a from the set of legal marine oil spill emergency response
actions Set A and receives feedback as a reward rt, which represents the result of the emergency
response action at step t. Note that the emergency response result depends on the entire prior sequence
of actions; feedback about an action can only be received after many time steps have elapsed. Therefore,
we consider sequences of actions and observations, st = x1, a1, x2, . . . , at−1, xt, and learn the actions that
depend on these sequences, which represent the internal state of the marine oil spill observed by the
decision maker. This state is a vector of values x representing the current status of the oil spill. All the
sequences in the emulator are assumed to terminate after a finite number of time steps. This condition
gives rise to a large but finite Markov decision process (MDP) [15,16] in which each sequence is a
distinct state.

The framework of our approach to scenario-based hybrid CBR/DRL is shown in detail in Figure 1.
Scenario analysis provides an approach for addressing unknown but related problems based on marine
oil spill historical cases. The CBR [17,18] method provides retention, retrieval, reuse and revision of
scenario analysis results, which is formalized as a four-step process [19]. Three of these steps are
implemented with the DQN algorithm.
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• Retention. Scenario analysis is employed to address marine oil spill accident uncertainties,
such as spill magnitude uncertainties and the uncertainties related to spill accident evolution.
Each individual historical case can be represented as a detailed “chain of consequences”, which is
named the scenario chain in this paper. Through the cluster algorithm, similar scenario instances
can be merged as a typical scenario, which consequently expands the scenario and forms a branch
to construct scenario trees. Through scenario analysis, marine oil spill cases are stored as scenario
instances and scenario trees in the scenario library.

• Retrieval. When applying cases to train the proposed hybrid CBR/DRL model, the scenario
library is considered as an environment for the agent to explore, and each marine oil spill scenario
instance is regarded as a state of the environment. Thus, each instance is a vector composed of
features representing the marine oil spill scenario.

• Reuse. The agent chooses the action with the highest expected value using the ε-greedy strategy.
With the probability of the ε strategy, the algorithm chooses an action based on the available
knowledge, and with the probability of 1− ε, a random action is selected [20].
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• Revision. The revision phase uses the DQN to update to the utilities Q for actions a chosen
by the agent. Eligibilities represent the cumulative contributions of individual state and action
combinations in previous time steps.

2.1. Marine Oil Spill Scenario and Scenario Tree Construction Method

A marine oil spill historical case can be divided into multiple scenarios according to its evolution.
Each marine oil spill scenario can be described from the following three aspects: hazard, exposure and
human behavior [21]. Since human behavior can strongly affect the results of a disaster, for example,
due to the effective implementation of preparedness actions such as evacuation and rescue procedures,
it is considered as a controllable driver of the development branch of oil spills. The hazard is
the time-space distribution of the intensity of a given marine oil spill accident with an assigned
occurrence probability at a given time and in a given geographical area. The exposure is the
distribution of the probability that a given element (including people, buildings, infrastructure,
the economy, or the environment) is affected by a disaster. In this paper, an oil spill scenario can
be represented by a set of scenario elements as S = {E1, E2, . . . , En}, n ∈ N+, where Ei is a scenario
element instance that alternates in type between hazard and exposure. The scenario element instance
set Ei = (T1, T2, . . . , Tm), where m ∈ N+, is a vector composed of features, where Ti represents the
attributes of a scenario element instance; such attributes may include the tonnage of the oil tanker and
the amount of spilled oil as shown in Table 1. In this case, the scenario instance can be represented as

S =


T11, T12, . . . , T1m
T21, T22, . . . , T2m

. . .
Tn1, Tn2, . . . , Tnm

 (1)

Table 1. Marine oil spill scenario element and scenario element attributes.

Order Category Scenario Element Scenario Element Attributes

1 Hazard

Crude oil

Flash point; Condensation point; Density;
Glue content; Sulphur content; Nitrogen content;

Hydrogen content; Wax content;
Asphalt value; Acid value; Carbon residue;

Kinematic viscosity; Distillation range

Oil slick Color; Cover area; Thickness

Sea condition Window speed; Wave height; Water temperature;
Sea visibility

2 Exposure

Oil tanker Offshore distance; Vessel age; Tonnage;
Amount of spilled oil

Offshore oil and
gas platform

Geographic position; Vertical height;
Carrying capacity

Marine organisms Creature name; Wildlife habitat; Number of dead
creatures; State of fire or explosion

Fisheries and
mariculture Geographic position; Breeding number; Species

Subsea tunnel Geographic position; Buried depth of tunnel;
Length of tunnel; Damaged area

Port infrastructure Geographic position; Coastline length;
Use of the facility
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An emergency response scenario is not a typical case, and the core of this approach is to identify
instances with similar characteristics. The similar scenario instances are merged into a typical scenario,
and consequence scenario instances are linked to the typical scenario. Thus, the expanded branches
express the uncertainties of the evolution of marine oil spill accidents. The k-means [22] algorithm is
employed to find the similarity scenario instances to minimize the squared error since the marine oil
spill is represented as a numeric scenario matrix (dimensions 9 × 13):

argmin
C

k∑
i=1

∑
x∈Ci

‖x− ui‖
2
2, (2)

where ui is the mean vector of cluster Ci. A new scenario chain extracted from a marine oil spill case
is first decomposed into scenarios based on the corresponding relationships. As the scenario chain
increases in size, some similar scenarios can be merged, and as children scenarios are connected,
the chain is extended to become a scenario tree. A new scenario is linked to the existing scenario tree
node only if the distance to the closest cluster is larger than the threshold parameter τ. Thus, τ acts
as a mechanism for controlling the density of the scenario instance. If a case cannot be linked to an
existing scenario tree, the scenario chain is regarded as an independent initial scenario tree template
and added to the scenario library. These branches generally form because of human behavior changes,
thus providing significant and intuitive help for decision making.

2.2. Hybrid DRL/CBR Method for Marine Oil Spill Emergency Response

In this research, a marine oil spill emergency response is assumed as an MDP, and the policy is
trained by the DQN algorithm using CBR. The CBR system provides an environment for reinforcement
learning (RL) agent exploration. Many RL algorithms have been developed to learn approximations of
an optimal action based on agent experience in a given environment. The return function is defined in
the MDP as follows:

Vπ
γ (x) = Eπ

 ∞∑
t=0

γtrt+1 | x0 = s0

, (3)

where future rewards are discounted by a factor γ per time step t with a start state s0 ∈ S. State S
is a vector composed of features representing a marine oil spill scenario, where r is the reward for
the current emergency response action. The DQN uses experience to learn value functions that map
state-action pairs to the maximal expected reward that can be achieved for a given state–action pair.
The optimal action value function Q∗(s, a) is defined as the maximum expected return achievable by
following any strategy after a state s is reached and an action a is taken:

Q∗(s, a) = max
π

E[Rt | st = s, at = a,π], (4)

where π is a function that maps policies to emergency response actions; emergency response action
a ∈ A, and A is a list of possible marine oil spill emergency response actions decision makers can take
for the current spill scenario. Equation (5) shows that the optimal value function Q∗(s, a) gives the
maximum emergency response action value for spill scenario s and action a achievable by policy π:

Q∗(s, a) =
∑
s′∈S

Pa
s→s′

(
Ra

s→s′ + γmax
a′∈A

Q∗(s′, a′)
)
, (5)

where Pa
s→s′ is the transition probability and Ra

s→s′ is the reward at state s translated to s′. This equation
is in agreement with the following intuition: the optimal strategy involves selecting the emergency
response action a′ that maximizes the expected value, which is a γ-related cumulative reward function
when the optimal value Q∗(s′, a′) of the sequence spill scenario s′ at the next time step is known for all
possible emergency response actions a′. The optimal action value function obeys an important identity
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known as the Bellman optimization equation, which can also be used as an iterative updating formula
with a learning rate parameter α:

Q(s, a)← (1− α)Q(s, a) + α
(
Ra

s→s′ + γQ(s′, a′)
)
. (6)

The Q-network is a neural network with a weight of θ as a function approximator to estimate the
action value function Q(s, a;θ) ≈ Q∗(s, a). A Q-network can be trained by minimizing a sequence of
the loss function L(θ) that changes at each iteration t, where yt is the target for iteration t and ρ(.) is a
probability distribution over a sequence of oil spill scenarios s and emergency response actions a.

Lt(θt) = Es,a∼ρ(.)[yt −Q(s, a;θt)], (7)

In this paper, the model is trained with an actor–critic strategy [23]. The actor selects a behavior
based on probability, and the critic estimates performance based on the actor. The critic is trained
at every step, and the actor synchronizes with the parameters of the critic model after specific steps.
The neural network of actors and critics consists of a nine-layer convolution neural network for the
state function approximator. The input to the neural work is a vector of the oil spill scenario instance.
After each step of the exploration, we calculate the Q values corresponding to the current state and
action using (6), and (7) is applied to calculate the loss and update the critic model parameters from the
previous iteration θt−1, which are fixed when optimizing the loss function Lt(θt). The approximator
input and output are shown in Figure 2.
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The three components based on the hybrid DQN and CBR method for the oil spill emergency
response model are detailed as follows:

• State. A marine oil spill scenario instance can be regarded as a state, which is a vector composed
of features representing marine oil spill accidents that have been stored in the CBR system.
The scenario instance and typical scenario are represented according to Equation (1).

• Reward. An interaction occurs between the marine oil spill scenario observed and the step-by-step
process of decision making in a discrete time series. If the emergency response action makes the
next scenario safer, the reward of the step is close to 1, and other actions yield reward values close
to 0. To reflect the severity of a marine oil spill accident, Dutch scholar W. Koops proposed a DLSA
evaluation model for oil spills that used nine individual indicators to analyze oil spill pollution [24].
In the DLSA model, the indicator weights are given by expert knowledge. Human experts, whose
time is valuable and scarce, often find it difficult to precisely explain their reasoning. In 1948,
the problem of information quantification was solved through the concept of information entropy,
which was proposed by Shannon. Based on traditional information entropy, Chen et al. defined
the concept of unconventional emergency scenario–response multidimensional entropy [25].
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In combination with information theory, we believe that low-probability events that occur during
oil spill accidents are important to consider due to our insufficient understanding of these events
and the unpredictability of the corresponding risk. In contrast, for accidents with high probability,
due to the relatively sufficient knowledge of the corresponding events, response actions can be
taken based on the known threat of the accident. In this paper, we consider the quantity of spilled
oil, vessel characteristic, sea area, and sea conditions as factors that influence the severity of
marine oil spill accidents. In addition, information entropy is employed to assist in measuring the
severity of marine oil spill scenarios, instead of using expert knowledge. The eleven indicators
considered can be matched among marine oil spill scenario instances. The indicator of scenario
instance I obeys the distribution ρ. The term P(I) is the probability that the indicator has a value
at I. Thus, the entropy of a marine oil spill scenario can be defined as

H = −
11∑

k=1

gk(Ik)Pk(Ik)lnPk(Ik), (8)

where g is the mapping function from indicator I to the risk level; the details of this function are
given in Appendix A. In this paper, we regard the severity of a marine oil scenario as a binary
state that is safe or unsafe. Therefore, we use the sigmoid function [26] to calculate the severity of
marine oil scenarios as the reward function,

R =
1

σ(H)
− 1, (9)

where R ∈ (0, 1), and the value of R is close to 1, which means that the evolution of marine oil
spill accidents tends to become increasingly safe. When the value of R is close to 0, the evolution
of an accident can gradually become out of control, and the situation can become unsafe.
The 11 indicators used in this paper are shown in Table 2.

• Action. From the branches of scenario trees and the International Tanker Owners Pollution Federation
Limited (ITOPF) technical information papers, we developed a relatively comprehensive response
action set for marine oil spill emergencies, which can be divided into three categories, as shown
in Table 3. In this paper, one-hot coding [27] is employed to digitize discrete and disordered
features, and this approach mainly uses an n-bit status registry to encode N states. The number
of marine oil spill emergency response actions is 15. For example, the action “use of booms”
can be encoded as [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], and “use of dispersants” can be encoded as
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Table 2. Eleven indicators used to measure the severity of marine oil spill scenarios.

Order Category Indicator

1 Spilled oil
Toxicity
Amount

Flammable

2 Vessel
Age

Tonnage

3 Sea area
Distance to offshoring

Self-purge ability

4 Sea conditions

Wind speed
Wave height

Water temperature
Visibility
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Table 3. Summary of human behaviors during a marine oil spill emergency.

Order Category Human Behavior

1 Cleaning spilled oil
Use of booms

Use of dispersants
Use of mechanical recycling and sorbent materials

2 Rescue

Tow oil vessel (potentially over a wide area)
Hang signal lights and establish anchors

Firefighting and fire extinction
Stopping ship leaks

Rescue crew
Abandon vessel

Voluntary stranding

3 Protection of sensitive
marine resources

Shut down sensitive resources
Spontaneous recovery

Biological recovery
Construct artificial reefs

Enhancement of fishery resources

3. Experiments and Results

3.1. The Training of the Action Policy Selection Process in Marine Oil Spill Emergency Response

The proposed methodology is intended to train the action policy selection process in emergency
response by fully using historical marine oil spill cases to maximize the cumulative reward and reduce
the risk of accidents. In this study, the policy selection method was trained based on information from
55 spills recorded since 1967. The data for these spills were mainly collected from ITOPF, Wikipedia
and specific websites. The selected historical case names are listed in Appendix B.

In our experiment, we assumed that 10 continuous emergency response actions should be taken
in one epoch; that is, the policy provides recommended actions for 10 marine oil spill instances.
The experimental results include the cumulative reward and accuracy of the training models at 300,
500, 900 total epochs. The training curves are shown in Figure 3.
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The experimental results show that with an increasing number of training epochs, the cumulative
reward and accuracy of the model increase. Specifically, 300 and 500 training epochs are inadequate for
training, but the reward and accuracy tend to be smooth and steady after 800 epochs. According to the
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optimal response policy given by the trained model, the cumulative reward theoretically reaches 7.2.
Based on the results of training, we hypothesize that the application of the hybrid DRL/CBR model
can assist decision makers in determining the best marine oil spill emergency response by providing
effective countermeasures.

3.2. Comparison of Hybrid Application Results and Similarity Matching Results

To support emergency decision making, the trained decision model uses the vector of an oil spill
scenario as the inputs and outputs the Q value corresponding to each action. Generally, the higher
the Q value is, the greater the probability of taking the corresponding action that the model suggests
to the decision maker. To verify the feasibility of the proposed method, four typical marine oil spill
scenarios (five scenario instances) are selected in this section, as shown in Table 4. Using these five
scenario instance vectors as inputs, the outputs of the state-action value curve are shown in Figure 4.

Table 4. Four typical scenarios (with five scenario instances) in the experiment.

Order Typical Scenario Scenario Instance

1 Tanker collision scenario

Set spilled oil amount. All other parameters are set as
default values. Sea condition parameter values set to
“normal”. Scenario instance extracted from the case

“ATLANTIC EMPRESS”.

2 Tanker fire scenario

Set spilled oil amount, where the spilled oil is
flammable. All other parameters are set as default

values. Sea condition parameter values set to
“normal”. Scenario instance extracted from the case

“ATLANTIC EMPRESS”.

3 Oil spill scenario

Set spilled oil amount. Sea condition parameter
values set to “normal”. Scenario instance extracted

from the case “BRAER”.

Set spilled oil amount. Sea condition parameter
values set to “dangerous”. Scenario instance

extracted from the case “TANIO”.

4 Marine organism death scenario
Assume the spilled oil has been cleaned up.

Sea condition parameter values set to “normal”.
Scenario instance extracted from the case “BRAER”.

Figure 4a–d illustrates the Q value of the emergency response action by applying the trained model
under four typical scenarios: tanker collision, tanker caught fire, oil spill and marine organism death.
Figure 4a shows an oil tanker collision scenario instance under normal sea conditions. The optimal
emergency response action suggested by the model is “use of mechanical recycling and sorbent
materials”. From the results, the Q value of the optimal action is not far from the Q value of other
emergency response actions, including the “use of booms” and the “use of dispersants”. Additionally,
in such a tanker collision scenario, all potential actions can be implemented at once. Figure 4b shows an
example of a tanker fire scenario under normal sea conditions. The best recommendation given by the
model is “extinguishing the fire”, and the Q value for selecting a firefighting emergency response action
is much higher than that of other emergency response actions. This recommendation is consistent
with the actions taken for the SEA STAR accident. In the historical case of the SEA STAR, the oil
tanker exploded during recovery without extinguishing the fire, which led to the ship sinking in the
Gulf of Oman. Figure 4c shows the results for two oil spill scenarios. When the sea conditions are
normal, various methods for remediating spilled oil are recommended. Moreover, only “mechanical
recycling” is recommended under rough sea conditions because oil booms lose efficacy under high
wave conditions and dispersants are ineffective in low-temperature water. However, in the case of
rough sea conditions, the optimal emergency response action given by the model is “stopping ship
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leaks”, with the Q value of the action being much higher than that for other actions, which seems
unreasonable. Therefore, it is essential to further optimize the values of the indicators used to assess
scenarios in the future. Figure 4d represents a biological impairment scenario in marine environments
that leads to organism death. The optimal recommendation given by the model is “shut down sensitive
resources”, such as affected economic facilities and fish farms. The other recommendations include
“spontaneous recovery” and “biological recovery”.
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Emergency response actions can be also achieved by scenario instance similarity matching from
historical cases in CBR systems. As a comparison, the matrix of typical scenarios is used for similarity
calculation, and when the Euclidean distance is less than τ (defined in Section 2.1), it matches a
historical scenario instance. The results are compared in Table 5:
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Table 5. Comparison of the two methods in typical oil spill emergency response action suggestion.

Scenario Instance Scenario Similarity Matching Scenario-Based Hybrid
DRL/CBR

Tanker collision scenario “Firefighting and fire extinction”

“Use of booms”
“Use of dispersants”

“Use of mechanical recycling and
sorbent materials”

“Firefighting and fire extinction”

Tanker fire scenario “Firefighting and fire extinction” “Firefighting and fire extinction”

Oil spill scenario-BREAR None

“Use of booms”
“Use of dispersants”

“Use of mechanical recycling and
sorbent materials”

Oil spill scenario-TANIO “Cleaning spilled oil” methods are
not recommended “Stopping ship leaks”

Marine organism death scenario None “Shut down sensitive resources”

From the results, it is obvious that the proposed method provides richer emergency response
action suggestions for the decision maker. Because we changed the sea condition parameters in the
oil spill scenario instances “Oil spill scenario—BREAR” and “Marine organism death scenario”, they
do not match appropriate scenario instances in the existing CBR system, which need to be revised
according to expert knowledge. Moreover, the proposed method suggestions have clear decision
intentions: to reduce the severity of oil spills. In general, the application results show that the optimal
emergency response model trained to reduce the severity of oil spills can provide a variety of reasonable
response actions for decision makers and aid in making decisions during marine oil spill emergencies.

4. Discussion

When using DQN to solve MDP problems, if the design of the reward function is not suitable,
the algorithm may display an extremely long convergence time or even not converge at all. In this
study, 11 indicators were selected to reflect the severity of marine oil spill accidents and reduce the risk
of oil spills. The reward function is regarded as an expression of the decision intent and the value of
the reward R ∈ (0, 1) after each emergency action. Similarly, we constructed another reward function
to measure marine biosafety by selecting fixed indicators that meet the conditions for an oil spill close
to shore, a fishery farm, a reef or an important habitat type. The intent of this reward function is to
optimally protect marine life. The reward function R(x) can be simply defined as follows:

R(x) =
{

1, otherwise
0, min(d1, d2, d3, d4) ≤ τ

, (10)

where min(d1, d2, d3, d4) is the minimum distance between spilled oil and these four selected locations
in a scenario instance and τ is the threshold parameter used to indicate that the spilled oil is approaching
a biologically sensitive resource. The model was retrained with the new reward function, and the
results were applied in oil spill scenario instances extracted from “BRAER” and “TANIO” cases,
as shown in Figure 5. Figure 5a shows the result for the oil spill scenario instance in which the tanker
“BRAER” was grounded at Garths Ness, with oil flowing into the sea from the moment of impact.
From the result, the “shut down sensitive resources” action was taken because an oil spill occurred
near the shore. The action “shut down sensitive resources” was also taken in the historical “BREAR”
case, thus providing positive feedback for model training. Figure 5b shows the result of using the oil
spill scenario instance for the “TANIO” case; this vessel broke into two pieces during violent weather
conditions off the coast of Brittany, France. The results show that the new model seems completely
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insensitive to sea conditions, potentially because the reward function ignores sea condition indicators
when calculating the reward.
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Another aspect that may limit the quality of the model is the number of states the agent observes
from the environment exploration. From the 55 selected historical cases, a total of 193 oil spill scenario
instances are extracted, which is far from enough for DQN agent exploring. To solve this problem, some
scenario instances in the same cluster are participating in scenario element exchanging to generate
more than 800 new scenario instances for experience replay in DQN training. It is still a need to collect
more marine oil spill cases to improve the quality of response.

The potential applications of the proposed method can be further explored to aid in marine oil
emergency response using different approaches. First, various decision intents can be combined to
establish the reward function and train models, which may help improve the level of the marine oil
spill emergency response. Second, when faced with a real oil spill accident, we strongly recommend
the use of models with different decision intents because a single model cannot fully utilize the scenario
tree of historical cases.

5. Conclusions

A new approach that combines the CBR and DRL algorithms to aid in marine oil emergency
response decision making is presented in this paper. The proposed method provides a useful task
decomposition process that allows agents to learn tactical policies that can assist decision makers in
making decisions across different marine spill instances. Compared with traditional CBR, the proposed
method only requires knowledge of a marine oil spill scenario or the construction of scenario
instances. Because the proposed method combines the reward function in reinforced learning with
the decision intention and applies this approach to train multiple models with different decision
intents, the suggested emergency response actions are easy to explain and more informative than those
produced by the similarity matching-based CBR system. However, the article only gives two reward
functions, which is not enough for a real complex marine oil spill accident, and this limitation will be
the focus of future studies.
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Appendix A

Table A1. Level of Damage.

Level of Damage Evaluation Value

Small 0~0.2
Normal 0.2~0.4

Dangerous 0.4~0.6
Very dangerous 0.6~0.8

Extremely dangerous 0.8~1.0

Table A2. Spilled Oil.

Spilled Oil—Toxicity (Soluble Aromatic Hydrocarbon Derivatives) Evaluation Value

Almost insoluble in water and includes no oil-containing aromatic hydrocarbons 0.2
Heavy kerosene, some aromatic hydrocarbons and other oils 0.6

Gasoline, light kerosene, many aromatic hydrocarbons and other oils 1.0

Spilled Oil—Amount (t) Evaluation Value

<5 0.1
5~50 0.3

50~100 0.5
100~150 0.7
150~200 0.9
≥200 1.0

Spilled Oil—Flammable Evaluation Value

Heavy oil, crude oil, etc. 0.4
Heavy kerosene, etc. 0.6

Gasoline, light kerosene, etc. 0.9

Table A3. Sea Condition.

Sea Conditions—Wave Height (m) Evaluation Value

<0.1 0.1
0.1~0.5 0.2

0.5~1.25 0.4
1.25~2.5 0.6

2.5~4 0.8
≥4 1.0

Sea Conditions—Wind Speed (m/s) Evaluation Value

<3.3 0.1
3.3~7.9 0.2

7.9~13.8 0.4
13.8~20.7 0.6
20.7~28.4 0.8
≥28.4 1.0
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Table A3. Cont.

Sea Conditions—Water Temperature (◦C) Evaluation Value

≥ 25 0.1
20~25 0.3
15~20 0.5
10~15 0.7
5~10 0.9
<5 1.0

Sea Conditions—Visibility (n Miles) Evaluation Value

≥5 0.1
3~5 0.3
2~3 0.5
1~2 0.7

0.03~1 0.9
<0.03 1.0

Table A4. Vessel.

Vessel—Dead Weight Tonnage Evaluation Value

<160,000 0.1–0.3
160,000~319,999 0.4–0.6
320,000~549,999 0.7~1.0

Vessel—Age (Year) Evaluation Value

<5 0.1
5~10 0.3
10~15 0.5
15~20 0.7
20~25 0.9
≥25 1

Table A5. Sea Area.

Sea Area—Self-Purification Capacity Evaluation Value

Good 0.3
Normal 0.5

Bad 0.8

Sea Area—Distance to Offshoring (n MILEs) Evaluation Value

>25 0.2
5~25 0.5
≤5 0.9

Appendix B

Table A6. 55 selected significant oil spill cases since 1967.

Order Ship/Accident Name Year Location

1 AEGEAN SEA 1992 A Coruña, Spain
2 AGIOS DIMITRIOS 1 2009 Zhuhai, China
3 AGIP ABRUZZO 1991 Livorno Port, Italy
4 ALFA 1 2012 Elefsis Bay, Greece
5 ARAGON 1989 Morocco
6 ARGO MERCHANT 1976 Nantucket Shoals, Massachusetts, USA
7 BALTIC CARRIER 2001 Baltic Sea, between Germany and Denmark
8 BRAER 1993 Garth’s Ness, Shetland
9 BUNGA KELANA 3 2010 Singapore Strait, 13 km south east of Singapore
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Table A6. Cont.

Order Ship/Accident Name Year Location

10 EAGLE OTOME 2010 Sabine Neches waterway, Texas, USA
11 ECE 2006 Channel Islands, UK
12 ERIKA 1999 Bay of Biscay, West of France
13 EXXON VALDEZ 1989 Alaska, USA
14 FLINTERSTAR 2015 Coast of Zeebrugge, Belgium
15 FU PING YUAN 2010 Incheon Port, Republic of Korea
16 GDANSK 2011 Ferrominera Port, Puerto Ordaz, Venezuela
17 GOLDEN TRADER 2011 Western coast, Denmark
18 GULSAR ANA 2009 Madagascar
19 HAWAIIAN PATRIOT 1977 300 miles west of Hawaii, USA
20 HEBEI SPIRIT 2007 Taean, Republic of Korea
21 INDEPENDENTA 1979 Bosporus, Turkey
22 JAKOB MAERSK 1975 Leixoes Port, Portugal
23 KATINA P 1992 Mozambique Channel, Maputo, Mozambique
24 KHARK 5 1989 150 nautical miles off the coast of Morocco
25 METULA 1974 Eastern Strait of Magellan, Chile
26 NATUNA SEA 2000 Singapore Strait/Indonesia/Malaysia
27 NOVA 1985 Khark Island, Iran
28 OLIVA 2011 Nightingale Island, UK
29 PRESTIGE 2002 Spain/France
30 RENA 2011 Tauranga, New Zealand
31 ROCKNES 2004 Bergen, Norway
32 ROKIA DELMAS 2006 La Rochelle, France
33 SAMHO BROTHER 2005 Hsinchu, Taiwan, China
34 SEA EMPRESS 1996 Wales, UK
35 SEKI 1994 Coast of Fujairah, United Arab Emirates
36 SELENDANG AYU 2004 Skan Bay, Unalaska Island, USA
37 SILVER 2013 Coast of Tan-Tan, Morocco
38 SOLAR 1 2006 Guimaras Straits, Philippines
39 ST THOMAS DE AQUINAS 2013 Cebu Port, Philippines
40 STOLT VALOR 2012 Ras Tanura, Kingdom of Saudi Arabia
41 TANIO 1980 Coast of Brittany, France
42 TASMAN SPIRIT 2003 Karachi Port, Pakistan
43 TK BREMEN 2011 Beach of Kerminihy, Erdeven, France
44 URQUIOLA 1976 Port of La Coruña, Spain
45 USHUAIA 2008 Antarctic Peninsula
46 SS ALTANTIC EMPRESS 1979 18 miles east of the island of Tobago
47 ABT SUMMER 1991 900 miles off the coast of Angola
48 CASTILLO DE BELLVER 1983 Cape Town, South Africa
49 AMOCO CADIZ 1978 Coast of Brittany, France
50 HAVEN 1991 Genoa, Italy
51 ODYSSEY 1988 700 miles off the coast of Nova Scotia, Canada
52 TORREY CANYON 1967 Seven Stone Reef, Land’s End, UK
53 SEA STAR 1972 Gulf of Oman
54 SANCHI 2018 Shanghai, China
55 IRENES SERENADE 1980 Navarino Bay, Greece
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