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Abstract: Piezoelectric materials have been found to have many electromechanical applications in
intelligent devices, generally in the form of the flexible cantilever element; thus, the analysis to
the corresponding cantilever is of importance, especially when advanced mechanical properties
of piezoelectric materials should be taken into account. In this study, the vibration problem of a
piezoelectric cantilever beam with bimodular functionally-graded properties is solved via analytical
and numerical methods. First, based on the equivalent modulus of elasticity, the analytical solution for
vibration of the cantilever beam is easily derived. By the simplified mechanical model based on subarea
in tension and compression, as well as on the layer-wise theory, the bimodular functionally-graded
materials are numerically simulated; thus, the numerical solution of the problem studied is obtained.
The comparison between the theoretical solution and numerical study is carried out, showing that the
result is reliable. This study shows that the bimodular functionally-graded properties may change,
to some extent, the dynamic response of the piezoelectric cantilever beam; however, the influence
could be relatively small and unobvious.
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1. Introduction

The piezoelectric effect is among the most exploited transduction mechanisms for multiscale
electromechanical applications, such as sensors, actuators and energy conversion devices, in which
piezoelectric vibrational energy harvesting is attractive. For piezoelectric materials, there is a
wide spectrum, from piezoelectric ceramics, perovskite structured lead zirconate titanate (PZT),
to piezoelectric polymer films, polyvinylidene fluoride (PVDF). Among the piezoelectric materials,
piezoelectric ceramics (PZT) is currently regarded as the most promising material system of
piezoelectric vibrational energy harvesting devices since it can produce large output power, effective
electromechanical coupling and high mechanical strain under an applied electric field [1,2]. Usually,
piezoelectric sensors are a laminated original made of ceramic slice; thus, it is easy to result in
stress concentration and also to develop interfacial microcracks. For overcoming this difficulty,
functionally-graded piezoelectric materials (FGPM), whose properties of materials continuously
change along certain direction, are developed. In FGPM, the obvious interface is disappeared, thus
effectively avoiding the damage caused by the stress concentration at the interface. Studies concerning
FGPM and corresponding structures made of FGPM have attracted the interests of scholars from all
over the world [3–8].
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In the existing works, the vibration problems of piezoelectric structures with functionally-graded
properties have been extensively studied, and some valuable results were obtained. Based on
the first-order shear theory, Mahinzare et al. [9] studied the free vibration of a rotating circular
nanoplate composed of two directional functionally-graded piezo materials (two directional FGPM).
The steady-state forced vibration of functionally-graded piezoelectric beams was investigated by Yao
and Shi [10]. Shakeri and Mirzaeifar [11] made static and dynamic analysis of thick functionally-graded
plates with piezoelectric layers based on the layerwise finite element model. Ebrahimi [12] investigated,
analytically, the vibrations and dynamic response of functionally-graded plate, which is integrated with
piezoelectric layers in thermal environment. Using a numerical method, Chen et al. [13] investigated the
transient response and natural vibration of FGPM curved beam. Li et al. [14] studied the free vibration
of FGM beams with surface-bonded piezoelectric layers, which is statically thermal post-buckled and
subjected to both voltage and temperature rise. Huang and Shen [15] investigated the dynamic response
and vibration of FGM plates with piezoelectric actuators in thermal environments. Fu et al. [16] made
a nonlinear analysis of free vibration, dynamic stability and buckling for the FGPM beams in thermal
environment. Li and Shi [17] studied the free vibration of a FGPM beam by using state-space based
differential quadrature. Considering that there have been many studies in this field, it is not necessary
to review them in detail here.

Compared with the FGPM, the bimodular effect of materials is relatively less known. However,
many investigations have indicated that some materials [18,19], such as graphite, plastics, ceramics,
concrete, steel, polymeric materials, powder metallurgy materials and some composites, will perform
different elastic properties when they are in tension and compression; that is, they have different moduli
when tensioned and compressed and thus are named bimodular materials [20] (see Figure 1), in which σ
is the stress, ε is the strain and E+ and E− represents the tensile modulus of elasticity and compressive one,
respectively. In 1982, the Elasticity Theory of Different Moduli, by Ambartsumyan [21], was published,
in which the constitutive model for bimodular materials and the corresponding application in structural
analysis were introduced systematically. The publication of this book marks that the idea of bimodular
materials entered the field of vision of scholars from all over the world. Thereafter, bimodular problems
for materials and structures have been investigated extensively [22–25]. These works indicated that
the bimodular effect of materials will modify, to some extent, the mechanical behaviors of structures.
Unfortunately, due to the complexity in analysis, the bimodular effect of materials is often neglected.
Although some works have been carried out to combine the functionally-graded properties with
bimodular effect of materials, for example, [26], the existing works appear insufficient. In fact, not only
pure functionally-graded materials but also functionally-graded piezoelectric materials may have a
certain degree of bimodular effect. Simple neglect will inevitably lead to analytical errors, which could
further influence the design application of the electromechanical devices based on piezoelectric effect.
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Figure 1. Constitutive model for bimodular materials: (a) nonlinear model under actual state;
(b) bilinear model when E+ > E−; (c) bilinear model when E+ < E−.

He et al. [27] considered the bimodular effect during the analysis of functionally-graded
piezoelectric materials and structures for the first time, and presented a two-dimensional analytical
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solution for a FGPM bimodular cantilever beam. Thereafter, aiming at the static problem of a bimodular
FGPM cantilever, He et al. [28] neglected some unimportant factors to derive the one-dimensional
theoretical solution and, based on the model of tension-compression subarea, conducted a
two-dimensional numerical simulation. However, the existing works appear insufficient since
there is no dynamic solution to the corresponding problem. At present, for a cantilever-type structure
which is extensively adopted in piezoelectric sensors devices, the bimodular functionally-graded effect
on its vibration has not been investigated. In addition, for piezoelectric polymer elements, the vibration
problem, due to flexible and lightweight characters of the elements, is particularly acute, which also
deserves further research.

In this paper, the free damping vibration problem of a piezoelectric cantilever beam with bimodular
functionally-graded properties is analyzed by using analytical and numerical methods. The paper
is organized as follows: In Section 2, the problem studied is briefly described and the constitutive
relation for bimodular functionally-graded piezoelectric materials is presented. In Section 3, we derive
the equivalent modulus of elasticity and obtain the analytical solution of the problem described.
The numerical simulation for the problem is performed step by step in Section 4 and the corresponding
comparisons and discussions are given in Section 5. Based on the results obtained in this study,
some main conclusions are presented in Section 6.

2. The Problem Description

An FGPM orthotropic cantilever beam with different tensile and compressive properties is
considered here, and the corresponding Cartesian coordinates system (x, y, z) is established, as depicted
in Figure 2, where the right end of the beam is free and the left end is fully fixed; h is the rectangular
section height of the beam, b is the section width and l is the beam length (h << l). By exerting a
concentrated load at the right end of the beam, an initial displacement v0 is generated at this end of the
beam, as depicted in Figure 2. Then, by removing the load suddenly, the beam will freely vibrate until
it ceases due to the existence of damping.
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Figure 2. Scheme of the functionally-graded piezoelectric materials (FGPM) bimodular cantilever beam.

During the bending vibration, the beam will continuously present downward bending and
upwards bending up to the last cease. In the downward (or upward) bending, the tensile and
compressive areas, bound by the neutral layer, will take turns to generate; this physical phenomenon is
different from the corresponding static problem, which has an unchanged tensile area and compressive
area [27,28]. Therefore, unlike a bending beam in static analysis, in the vibration problem here, it seems
that there is no definite tensile or compressive area in the beam. For the convenience of the following
analysis, however, we assume in this study that the tensile or compressive area is defined in the present
of initial displacement, i.e., the upper part of the beam is in compression and the lower part is in
tension, as shown in Figure 2.

Note that the physical parameters of materials of the beam are also functions of coordinates due
to the functionally-graded property. In present study, we assume physical parameters vary only along
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the thickness direction. Thus, all the material parameters are assumed to change with z, according to
the following relations.

s+i j = s0
i jF

+(z), d+i j = d0
i jF

+(z),λ+i j = λ0
i jF

+(z),

s−i j = s0
i jF
−(z), d−i j = d0

i jF
−(z),λ−i j = λ0

i jF
−(z)

, (1)

in which, F+(z) = eα1z/h, F−(z) = eα2z/h are the tensile and compressive gradient functions, respectively;
superscript “+” represents tension and “−” compression; d+/−

i j ,λ+/−
i j , s+/−

i j are piezoelectric coefficient,

dielectric coefficient and elastic coefficient, respectively; d0
i j,λ

0
i j, s0

i j are values at the neutral layer of the
corresponding material parameters. It should be noted here that the neutral layer is defined at z = 0,
whose determination has been reported in our previous study on static problem [27,28]. The proposal
of the neutral layer stems from the static problem but is still adopted in dynamic counterpart; otherwise,
the so-called subarea in tension and compression cannot be realized. Furthermore, note that a set of
very small electrodes are adhered discontinuously to the lower and upper surfaces of the beam and the
beam is then poled along the direction of z.

Suppose that, in a two-dimensional problem, the stress and strain components is denoted by
σ+/−

x , σ+/−
z , τ+/−

zx and ε+/−
x , ε+/−

z ,γ+/−
zx , respectively; the electrical displacement and the electrical field

components by D+/−
x , D+/−

z and E+/−
x , E+/−

z , respectively. Therefore, the physical equations are
ε+/−

x
ε+/−

z
γ+/−

zx

 =


s+/−

11 s+/−
13 0

s+/−
13 s+/−

33 0
0 0 s+/−

44



σ+/−

x
σ+/−

z
τ+/−

zx

+


0 d+/−

31
0 d+/−

33
d+/−

15 0


{

E+/−
x

E+/−
z

}
(2)

and {
D+/−

x
D+/−

z

}
=

 0 0 d+/−
15

d+/−
31 d+/−

33 0



σ+/−

x
σ+/−

z
τ+/−

zx

+

 λ+/−
11 0
0 λ+/−

33

{ E+/−
x

E+/−
z

}
, (3)

in which superscript “+/−” denotes “tension/compression”, similar to Equation (1). Until now,
Equations (1)–(3) construct the materials relation considering piezoelectric effect as well as bimodular
functionally-graded properties.

3. Equivalent Modulus of Elasticity and Analytical Solution

For a relatively shallow beam, the stress and strain along x direction, σ+/−
x and ε+/−

x , are dominant,
while other stresses and strains along z direction, σ+/−

z and τ+/−
zx as well as ε+/−

z and γ+/−
zx , are less

important. Thus, the constitutive relation of FGPM with bimodular effect, that is, Equations (2) and (3),
may be further simplified as, 

ε+/−
x = s+/−

11 σ+/−
x + d+/−

31 E+/−
z

ε+/−
z = 0
γ+/−

zx = 0
(4)

and  D+/−
x = λ+/−

11 E+/−
x

D+/−
z = d+/−

31 σ+/−
x + λ+/−

33 E+/−
z

. (5)

In existing studies for the two-dimensional problem [27,29], Dx >> Dz may be found; thus, it may
be assumed that Dz ≈ 0 in a one-dimensional problem, especially if a long and shallow beam is
considered here. From the second one of Equation (5), we have

E+/−
z = −

d+/−
31

λ+/−
33

σ+/−
x (6)
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Plugging Equation (6) into the first one of Equation (4) yields

ε+/−
x =

 s+/−
11 λ+/−

33 − (d+/−
31 )

2

λ+/−
33

σ+/−
x =

σ+/−
x
E∗

, (7)

in which E∗ represents the equivalent modulus of elasticity, that is

E∗ =
λ+/−

33

s+/−
11 λ+/−

33 − (d+/−
31 )

2 . (8)

We note that Equation (8) may be rewritten as the form E∗ = [s+/−
11 − (d+/−

31 )
2
/λ+/−

33 ]
−1

, clearly
showing the piezoelectric effect on the elastic modulus. Then, E∗ = 1/s+/−

11 is obtained when

s+/−
11 >> (d+/−

31 )
2
/λ+/−

33 ; this, exactly, stands for the reciprocal relation of stiffness coefficient and

flexibility coefficient. Meanwhile, the existence of the term (d+/−
31 )

2
/λ+/−

33 also reveals the well-known
piezoelectric stiffening effect. It is this term that the resulting equivalent modulus becomes larger than
1/s+/−

11 , thus stiffening the mechanical performance of piezoelectric materials and structures under
external loading.

Now, the vibration equation of free damping of the bimodular FGPM cantilever beam may be
easily obtained, by only replacing E in a classical equation [30] by E∗,

E∗Iy
∂4v(x, t)
∂x4

+ m
∂2v(x, t)
∂t2 + c

∂v(x, t)
∂t

= 0. (9)

in which m is the uniformly-distributed mass, v(x, t) is the displacement along z direction, t is the time
variable, E∗Iy is the equivalent bending stiffness of the beam, Iy is the moment of inertia with respect
to y axis, c is the damping parameter, and c = 2ξmω, in which, ξ is the damping ratio and ω is the
undamped frequency. Equation (9) may be solved under the following boundary conditions:

v(x, t) = 0 and
∂v(x, t)
∂x

= 0, at x = 0 (10)

EIy
∂2v(x, t)
∂x2 = 0 and EIy

∂3v(x, t)
∂x3 = 0, at x = l. (11)

and the conditions of initial values

v(x, t) = v0 and
∂v(x, t)
∂t

= 0, at x = l, t = 0 (12)

The variable separation is first needed to solve the Equation (9); suppose that

v(x, t) = φ(x)Y(t) (13)

Plugging Equation (13) into Equation (9), we may obtain the following two equations:

d4φ(x)
dt4

− a4φ(x) = 0 (14)

and
d2Y(t)

dt2 +
c
m

dY(t)
dt

+ω2Y(t) = 0 (15)

in which a is an unknown constant: ω2 = a4E∗Iy/m. Thus, the partial differential Equation (9) is
transformed two ordinary differential Equations (14) and (15), and their solutions under defined
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boundary conditions or initial conditions, φ(x) and Y(t), may be easily derived. Since the solving
process is readily found in any a textbook on dynamic problems of bending beams, here we do not
repeat the details, only directly presenting the final solution; they are

φ(x) = cos ax− cosh ax−
(cos aL + cosh aL)
(sin aL + sinhaL)

(sin ax− sinhax) (16)

and

Y(t) =
[
Y(0) cosωDt +

(
dY(0)/dt + Y(0)ξω

ωD

)
sinωDt

]
e(−ξωt) (17)

in which Y(0) is the corresponding mode amplitude for initial displacement v0, and ωD is the natural
damped frequency,

ωD = ω
√

1− ξ2 (18)

Obviously, the proposal of the equivalent modulus of elasticity for bimodular FGPM beams
plays an important role; this equivalent modulus may be used in the analysis of similar bimodular
FGPM structures.

4. Numerical Simulation

In order to simulate the free vibration of the beam, a transient load is applied on the right end
of the beam at the beginning, thus generating an initial displacement v0 at the end, and then release
suddenly, the beam will vibrate up to the cease due to the damping, as shown in Figure 2. In this
section, the software ABAQUS is used to simulate the free damping vibration of the bimodular FGPM
cantilever beam.

4.1. Constitutive Equation of Piezoelectrical Materials

First, we need to describe the input of the piezoelectrical materials parameters in the software.
The piezoelectrical materials model in ABAQUS follows the e-form constitutive equation, such that σi j = cE

ijklεkl − eki jEk

Di = ei jkεkl + λεikEk
, (19)

where the stress component is denoted by σi j; the strain component is denoted by εi j; the electrical
displacement component is denoted by Di; the electrical field strength are denoted by Ek; the stiffness
coefficient matrix is denoted by cE

ijkl; the dielectric constant matrix is denoted by λεik.
In piezoelectrical materials, there is a polarization direction which corresponds to z direction in

x-y-z coordinate system (i.e., 3-direction in matrix). In ABAQUS, we need to transform the flexibility
coefficient matrix into the stiffness coefficient matrix, such that

[
si j

]
=



s11 s12 s13 0 0 0
s21 s22 s23 0 0 0
s31 s32 s33 0 0 0
0 0 0 s66 0 0
0 0 0 0 s44 0
0 0 0 0 0 s44


⇒

[
ci j

]
=



c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 c66 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44


. (20)

Note that the above definition for the variation form of functionally-graded materials
and the flexibility coefficient si j = s0

i je
αiz/h (where i = 1, 2 due to the bimodular effect),

the stiffness coefficient will thus vary with ci j = c0
i je
−αiz/h, otherwise si j and ci j cannot

satisfy [si j][ci j] = [s0
i j]e

αiz/h[c0
i j]e
−αiz/h = [E] (here [E] is an unit matrix). The piezoelectrical strain
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constants should, at the same time, be ei j = di jcE
ij = d0

i je
αiz/hc0

i je
−αiz/h = e0

i j, where cE is the constant
matrix of elastic stiffness in the state of short circuit; thus, the piezoelectrical stress constants matrix is

[
ei j

]
=

[
e0

i j

]
=


0 0 0 0 e15 0
0 0 0 0 0 e15

e31 e31 e33 0 0 0

. (21)

The constitutive equation for piezoelectric materials is, in the form of matrix, expressed as

σ11

σ22

σ33

σ12

σ13

σ23


=



c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c66 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44





ε11

ε22

ε33

γ12

γ13

γ23


−



0 0 e31

0 0 e31

0 0 e33

0 0 0
e15 0 0
0 e15 0




E1

E2

E3

 (22)

and


D1

D2

D3

 =


0 0 0 0 e15 0
0 0 0 0 0 e15

e31 e31 e33 0 0 0





ε11

ε22

ε33

γ12

γ13

γ23


+


λ11 0 0
0 λ11 0
0 0 λ33




E1

E2

E3

 (23)

According to Voigt notation, the vector components (1, 2, 3, 4, 5 and 6) correspond to the
second-order tensor mark of double-subscript (11, 22, 33, 13, 23 and 12), respectively. Thus, the above
two equations can be written as,

σ11

σ22

σ33

σ12

σ13

σ23


=
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D1111 D1122 D1133 0 0 0
D2211 D2222 D2233 0 0 0
D3311 D3322 D3333 0 0 0

0 0 0 D1212 0 0
0 0 0 0 D1313 0
0 0 0 0 0 D1313
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

ε11

ε22

ε33

γ12

γ13

γ23


−



0 0 e311

0 0 e322

0 0 e333

0 0 0
e113 0 0

0 e223 0




E1

E2

E3

 (24)

and


q1

q2

q3

 =


0 0 0 0 e113 0
0 0 0 0 0 e113

e311 e322 e333 0 0 0





ε11

ε22

ε33

γ12

γ13

γ23


+


D11 0 0

0 D11 0
0 0 D33




E1

E2

E3

 (25)

where, Di jkl represents the modulus of elasticity, Di j represents the dielectric coefficient and qi
represents the electrical displacement component. By the comparison of the above two sets of
equations, the corresponding relationship among constants is readily found, which can be used to
input values of the constants. For example, c11 should be input at the location of D1111; e31 should be
input at the location of e311 and λ11 should be input at the location of D11.

4.2. Initial Modeling

(i) Establishment of structures

Suppose that the length l of a FGPM cantilever beam is set to be 50 mm, the section width b to be
10 mm and the section height h to be 2 mm.
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(ii) Determination of tension-compression subarea under initial displacement

For the determination of the tensile and compressive height of the beam, a set of functionally-graded
indexes should be chosen first in the light of our previous study on static analysis [28]. In this study,
we consider the following two groups of gradient indexes: (a) α1 = −2, α2 = −3 and (b) α1 = 2, α2 = 3
to correspond to the two different cases: E+(z) > E−(z) as well as E−(z) > E+(z), respectively, as shown
in Figure 3, in which E0 is the electric modulus value on the neutral layer, in case (a), h1 = 0.6 mm,
h2 = 1.4 mm and in case (b), h1 = 1.4 mm, h2 = 0.6 mm.
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alternative implementation was proposed in the context of the commercial finite element package 
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Figure 3. E−(z): (a) α1 = −2, α2 = −3; (b) α1 = 2, α2 = 3.

As is the case in most commercial software, there will be the limitations for implementing FGMs
in ABAQUS; for example, it seems to be inconvenient to realize the change of material properties
along a certain direction as a continuous function. To overcome the shortcomings, an alternative
implementation was proposed in the context of the commercial finite element package ABAQUS [31].
In this study, however, the layer-wise model was still used to simulate the functionally-graded
properties, since this practice is conventional and well-known. Without losing the computational
accuracy, we divided the beam into a moderate number of layers along the thickness direction;
the physical parameters of the material on each layer are considered to be the same, thus indirectly
realizing the continuous variation of properties of materials along the thickness direction if the numbers
for layering are sufficient. To this end, bound by the neutral layer, the upper and lower areas of the
beam are equally divided into 40 layers along the thickness direction, each layer being 0.05 mm thick,
as depicted in Figure 4. It is easy to see that in case (a), there are 28 layers in the compressive area
and 12 layers in the tensile area, while in case (b), the layering is the opposite, that is, 12 layers in the
compressive area and 28 layers in the tensile area. The coordinate origin is still on the neutral layer.
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(iii) Input of properties of materials

The material PbZrTiO3-4 (generally abbreviated as PZT-4) is selected as our materials simulated.
Table 1 shows the material constant on the neutral layer z = 0 which are directly input into ABAQUS.
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Material constants up or down the neutral layer may be computed and input into the program, by
using the layering pattern of tension-compression established in Step (ii).

Table 1. Elastic, piezoelectric and dielectric constants of PZT-4 materials [32].

Elastic Constant
(10−12 m2

·N−1)
Piezoelectric Constant

(10−12 C·N−1)
Dielectric Constant

(10−8 F·m−1)

s0
11 s0

12 s0
13 s0

33 s0
44 d0

31 d0
33 d0

15 λ0
11 λ0

33
12.4 −3.98 −5.52 16.1 39.1 −135 300 525 1.301 1.151

(iv) Boundary conditions

The left end of the beam is fully fixed and the right end is free; this agrees with the mechanical
model presented in Figure 2. Besides, the upper and lower surfaces of the beam are open circuited.

(v) Mesh division

An 8-node linear piezoelectric brick C3D8E is used, and the mesh size is set to be 1 mm× 1 mm,
in which the size ratio is 0.001 and also the global seed is set.

4.3. Analysis of Frequency Extraction

While solving linear dynamic problems, the mode superposition method is used in ABAQUS.
Before the dynamic analysis, we need to extract the frequency of the computational example to obtain
the vibration mode and natural frequency of the structure.

First of all, according to the initial model established in Section 4.2, the density of materials is
defined as 7.5× 103 kg/m3 in a property function module and also the frequency extraction analysis is
defined in the analysis step. In ABAQUS, there are two kinds of method in the frequency extraction:
one is the Lanczos method, which is suitable for the larger model and needs to extract the multi-order
mode; the other is the subspace iterative method. In this computation, the latter is selected due to the
characteristic of structural unit.

In the analysis of linear dynamic problems using the mode superposition method, a sufficient
number of modes are required in the frequency extraction. The criterion follows that the total effective
mass in the main direction of motion exceeds 90% of the movable mass in the model. To this end,
we calculate and extract the frequency whose eigenvalue numbers are 10, 15 and 20, respectively,
to select the appropriate eigenvalue. By viewing DAT file, we extract the data of frequency, participation
factors and effective mass for 10, 15 and 20 eigenvalues, as shown in Tables 2–4. Here, below, are listed
the data from the case α1 = −2, α2 = −3, which is very significant.

The main motion direction of the beam is along the z-axis direction, the participation factors in
Tables 2–4 reflect that the first-order mode acts mainly in the z-direction. The total mass of this model
is 7.500× 10−3 kg. Since the constrained nodes account for a small proportion of all nodes, it may be
approximated that the movable mass in the model is equal to the total of the model. Table 5 shows
that, when eigenvalue numbers are 10, 15 and 20, respectively, the ratio of effective mass in z-direction
to total motion mass. It is easy to see that when the eigenvalue numbers are 15 and 20, the ratios are
uniformly greater than 90%, which both satisfy the basic requirement for sufficient number of modes.
However, considering the hardware factors and amount of calculation, the 15th order mode is adopted
here. Besides, for another case α1 = 2, α2 = 3, we still select the 15th order mode, the ratio reads
6.993× 10−3/(7.500× 10−3) = 93.24% in this case.
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Table 2. Frequency, participation factor and effective mass for 10 eigenvalues.

Mode
Number

Frequency/Hz
(Cycles Time)

Participation Factor
(z-component)

Effective Mass/Kg
(z-component)

1 326.490 1.565 4.562 × 10−3

2 1767.500 6.332 × 10−11 7.519 × 10−24

3 2029.300 −0.868 1.418 × 10−3

4 2688.300 2.535 × 10−10 8.065 × 10−23

5 5634.600 0.510 4.941 × 10−4

6 7994.700 8.990 × 10−9 1.007 × 10−19

7 9720.000 −2.243 × 10−8 1.114 × 10−18

8 10,916.000 −0.366 2.549 × 10−4

9 13,994.000 −4.504 × 10−6 1.983 × 10−14

10 14,237.000 1.494 × 10−2 8.313 × 10−7

Total 6.729 × 10−3

Table 3. Frequency, participation factor and effective mass for 15 eigenvalues.

Mode
Number

Frequency/Hz
(Cycles Time)

Participation Factor
(z-component)

Effective Mass/Kg
(z-component)

1 326.490 1.565 4.562 × 10−3

2 1767.500 6.332 × 10−11 7.519 × 10−24

3 2029.300 −0.868 1.418 × 10−3

4 2688.300 2.527 × 10−10 8.016 × 10−23

5 5634.600 0.510 4.941 × 10−4

. . . . . . . . . . . . . . . . . . . . . . . .
12 20,587.000 −7.667 × 10−7 5.125 × 10−16

13 22,745.000 −1.099 × 10−6 3.228 × 10−15

14 26,094.000 −0.244 1.042 × 10−4

15 28,006.000 −2.242 × 10−5 3.993 × 10−13

Total 6.989 × 10−3

Table 4. Frequency, participation factor and effective mass for 20 eigenvalues.

Mode
Number

Frequency/Hz
(Cycles Time)

Participation Factor
(z-component)

Effective Mass/Kg
(z-component)

1 326.490 1.565 4.562 × 10−3

2 1767.500 6.331 × 10−11 7.517 × 10−24

3 2029.300 −0.868 1.418 × 10−3

4 2688.300 2.527 × 10−10 8.016 × 10−23

5 5634.600 0.510 4.941 × 10−4

. . . . . . . . . . . . . . . . . . . . . . . .
17 36,310.000 4.508 × 10−7 1.586 × 10−16

18 37,469.000 4.075 × 10−7 5.328 × 10−16

19 42,285.000 1.940 × 10−2 1.246 × 10−6

20 45,307.000 0.236 3.677 × 10−5

Total 7.101 × 10−3

Table 5. Ratios of z-direction mass to total mass under different eigenvalue numbers.

Eigenvalue Numbers Effective z-Direction Movable Mass to Total Motion Mass

10 6.729× 10−3/(7.500× 10−3) = 89.72%
15 6.989× 10−3/(7.500× 10−3) = 93.19%
20 7.101× 10−3/(7.500× 10−3) = 94.68%
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4.4. Simulation for Free Damping Vibration

As shown in Table 3, we have finished the frequency extraction of 15 eigenvalues for the case
α1 = −2, α2 = −3, in which the maximum frequency reads 28,006 Hz; thus, the corresponding period
is 1/28006 s = 0.00003571 s. Since the time increment in the analysis step of transient modal should be
less than this period value, the time increment is determined as 3× 10−5 s. The details are shown below.

(i) Establishment of dynamic analysis step of transient modal

Although the material properties considered in this study are bimodular, functionally-graded and
piezoelectric—that is, it is not linear—the nonlinear behavior of the material itself has little impact on
the dynamic response of the structure. Besides, the motion attributes to the small deflection bending
vibration thus there is no geometrical nonlinearity here. Furthermore, the damping of the structural
system is relatively small, and the frequency involved in the analysis is low. Therefore, the system may
be regarded as linear, which is suitable for linear transient dynamic analysis.

Frequency extraction analysis step is followed by this step. To observe the attenuation process
of the vibration, the analytical step time is set to be 0.5 s and the time increment is determined as
3× 10−5 s, as indicated above.

(ii) Setting of the damping

Direct modal damping is used here and the value of the damping ratio is 0.03. The starting mode
order is 1 and the terminating mode order is 15.

(iii) Setting of the output of historical variable

In the output of historical variable, the displacement component is selected.

(iv) Definition of load

In order to make the model produce the initial displacement of 2 mm, a short-term load is applied
on the model, in which the time of duration of the load is determined by the variation of load amplitudes
with time and the amplitude is given in tabulate. In the time period 0–0.005 s, the amplitude is 1;
and in the later time period, the amplitude is set as 0. The smoothness parameter is set as 0.25. Lastly,
along the negative direction of z-axis, the load is applied and the magnitude of the load is 25 N.

(v) Submission of analysis and post-processing

After a job is established, we may submit the job and calculate and output the results.
Figures 5 and 6 show cloud diagrams of stress and displacement of 15th order mode at the end
of the transient modal analysis, in which Figure 5 is for the case α1 = −2, α2 = −3 and Figure 6 is for
the case α1 = 2, α2 = 3.

Note that although the numerical implementation in ABAQUS is three-dimensional in the form,
we still put out the final results in the form of two-dimensional case, including three stresses, σx,
σz and τxz, as well as two displacements, u and w, which are typical in two-dimensional plane problem.
In fact, the studied problem is a two-dimensional plane problem, even in some cases (for example, a
slim beam), the problem may be further simplified as a one-dimensional problem, like our analytical
solution based on Euler–Bernoulli beam theory.
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5. Comparisons and Discussion

5.1. Comparison of Theoretical and Numerical Results

For the purpose of the full comparison between the theoretical results and numerical ones,
both under the two cases of different modulus—that is, the tensile elastic modulus is greater than the
compressive one E+(z) > E−(z), or reversely, E+(z) < E−(z)—we should select an object of study from
the beam, for example, the upper surface of the free end, as our study object. In order to investigate the
displacement variation with time under two cases of different modulus, we take the following two
cases of functionally-grade index: (a) α1 = −2, α2 = −3, which corresponds to E+(z) > E−(z), and the
case (b) α1 = 2, α2 = 3, which corresponds to E+(z) < E−(z). The numerical results are taken from the
15th order mode. For the theoretical results, we should compute the equivalent modulus of elasticity
first. For this purpose, substituting Equation (1) into Equation (8), we have

E∗ =
λ+/−

33

s+/−
11 λ+/−

33 − (d+/−
31 )

2 =
λ0

33

s0
11λ

0
33 − (d

0
31)

2 e−αiz/h (26)

Substituting the values of s0
11, d0

31 and λ0
33 from Table 1 into the above equation and also noting

that the upper surface is in compression; thus, αi = α2, the values of the equivalent modulus of
elasticity, may be determined and is listed in Table 6. Note that for the first case, E+(z) > E−(z),
we take αi = α2 = −3 and z = −0.0014 m, and for the second case, E+(z) < E−(z), we have αi = α2 = 3
and z = −0.0006 m, in which the values of z may refer to the cases (a) and (b) in Figure 4. Besides,
the theoretical value of vibration frequency may be obtained via the expression ω2 = a4E∗Iy/m and the
numerical result of frequency is also from the 15th order modes, which are also listed in Table 6.

Table 6. Equivalent modulus and frequency from theoretical and numerical results.

Cases
Equivalent Modulus

E∗ (GPa)

Vibration Frequency
ω (Hz)

Theoretical Value Numerical Value

E+(z) > E−(z) 11 17,506 28,006

E+(z) < E−(z) 227 28,019 34,599

Figures 7 and 8 show the two time-displacement curves from theoretical and numerical results,
in which Figure 7 is for E+(z) > E−(z) and Figure 8 is for E+(z) < E−(z). It is easy to see that despite
some differences, the theoretical curve basically agrees with the curve from numerical simulation, this
validates the theoretical solution to some extent.

From Figures 7 and 8, we may also see that under two cases E+(z) > E−(z) and E+(z) < E−(z),
the attenuation speed of the vibration from the numerical result is faster than that from theoretical
solution, this is because the natural frequency from numerical simulation is greater than the one from
theoretical solution, which may be easily seen from Table 6, in which for E+(z) > E−(z), the value
from numerical simulation is 28,006 Hz while the counterpart from theoretical solution is 17,506 Hz;
for E+(z) < E−(z), the two values from numerical simulation and theoretical solution are 34,599 Hz
and 28,019 Hz, respectively. In addition, for E+(z) < E−(z), the attenuation speed is obviously faster
than that in the case E+(z) > E−(z); this also may be easily seen from Table 6, in which the natural
frequency from E+(z) < E−(z) is greater than the one from E+(z) > E−(z), for example, for theoretical
solutions 28,019 Hz is greater than 17,506 Hz, while the numerical simulation 34,599 Hz is also greater
than 28,006 Hz. It may be concluded that the relative magnitudes of the tensile and compressive
moduli have influence on the attenuation speed of the vibration.
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It should be noted here that there are some differences between the theoretical solution and the
numerical simulation, mainly due to the different mechanical models on which the two methods
are established. In the theoretical analysis, the introduction of the equivalent modulus of elasticity
may greatly simplify the derivation process; on the other hand, this equivalent practice inevitably
cause some errors, in other words, the so-called equivalence is actually a compromise. Based on this
consideration, the numerical simulation seems to be more accurate than the theoretical analysis; that is
to say, the theoretical analysis and numerical simulation have their own advantages and complement
each other.

5.2. Comparison of Theoretical and Experimental Results

At present, the relevant vibration experiment for the functionally-graded piezoelectric cantilever
beam has not been found, not to mention the consideration for bimodular effect of the materials.
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The comparison should therefore be based on the experimental data available. Aiming at purely
piezoelectric materials (which means there is no bimodular effect and also no functionally-graded
characteristic), Yang et al. [33] performed an experiment of free damping vibration of a cantilever beam.
In this section, the theoretical solution derived in this study with the experimental results from [33]
will be compared.

Before comparison, it is necessary for us to reduce our theoretical solution to a purely piezoelectric
case, to agree with the material model adopted in [33]. For this purpose, we need to presume
α1 = α2= 0 in Equation (8); thus, the equivalent modulus of elasticity E∗ may be simplified as

E′ =
λ33

s11λ33 − (d31)
2 (27)

in which E′ stands for the equivalent modulus of elasticity without bimodular and functionally-graded
characteristic. Accordingly, Equation (18) may be changed as

ω′D = ω′
√

1− ξ2 (28)

in which ω′D is the natural damped frequency in the same case of materials.
In the comparison we should take the same parameters in accordance with the experimental model

in [33], including the shape dimension of the beam, h = 0.0001 m, b = 0.02 m, l = 0.05 m, the damping
ration ξ = 0.03 and the uniformly-distributed mass m = 0.015 Kg/m, as well as the material parameters
of PZT-5 (shown in Table 7). Besides, three different initial displacements in [33] are also adopted in
our theoretical results; thus, Table 8 lists the vibration frequencies from experimental measurement and
theoretical solution. It is easily seen that the differences between experimental results and theoretical
results are small, which indicates the theoretical vibration frequency is reliable.

Table 7. Materials parameters of PZT-5 [33].

Elastic Constant
(10−12 m2

·N−1)
Piezoelectric Constant

(10−12 C·N−1)
Dielectric Constant

(10−8 F·m−1)

s11 s12 s13 s33 s44 d31 d33 d15 λ11 λ33
16.4 −5.74 −7.22 18.8 47.5 −172 374 584 1.505 1.531

Table 8. Frequencies of experimental and theoretical results.

Initial Displacements
(mm)

Vibration Frequency (Hz)

Experimental Results
Reference [33]

Theoretical Results
(This Paper)

Relative Errors
(%)

0.475 123.25 123.220 0.02
0.750 123.25 123.220 0.02
1.342 123.25 123.220 0.02

Figures 9–11 show time-displacement curves from theoretical and experimental results under
the three different initial displacements. It is readily found that the theoretical results agree with the
experimental ones, although there are some differences between them, which may be caused by some
uncontrollable factors in the experimental operation.
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6. Conclusions

In this study, we investigate the free damping vibration problem of a bimodular FGPM cantilever
beam by using analytical and numerical methods. By comparisons, the theoretical results basically agree
with the numerical results, although there are some differences, mainly due to the different mechanical
models. In addition, the theoretical solutions after regression agree well with the experimental results
of the pure piezoelectric cantilever, which also proves, indirectly, the effectiveness of theoretical work.
The following three conclusions can be drawn:

(i) Under two cases, E+(z) > E−(z) and E+(z) < E−(z), the attenuation speed of the vibration from
numerical simulation is faster than that from theoretical solution; besides, the attenuation speed
in the case E+(z) < E−(z) is obviously faster than that in the case E+(z) > E−(z).

(ii) The bimodular functionally-graded properties may change, to some extent, the dynamic
response of the piezoelectric cantilever beam; however, the influence could be relatively small
and unobvious.

(iii) In the frame of simple models, with analytical considerations, this work may be helpful for the
analysis and design of flexible and lightweight cantilever-type elements composed of piezoelectric
materials, especially when the bimodular functionally-graded properties of materials cannot be
completely ignored.

Although the results in this study are obtained on the piezoelectric ceramics (PZT), this work will
also be helpful for predicting the mechanical behaviors of a vibrational cantilever made of piezoelectric
polymer films (PVDF); however, there may be a huge difference in their behavior and property about
vibrational cantilever. Among the two main types of piezoelectric materials, due to the fact that the
elastic modulus of PZT is far greater than that of PVDF; thus, the vibration frequency of PZT is far
greater than that of PVDF. This should be give more attention in analyzing the vibration characteristic
of cantilevers made of the two different piezoelectric materials.
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