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Abstract: We provide an analytical investigation of the nonlinear vibration behavior of thick sandwich
nanocomposite beams reinforced by functionally graded (FG) graphene nanoplatelet (GPL) sheets,
with a power-law-based distribution throughout the thickness. We assume the total amount of
the reinforcement phase to remain constant in the beam, while defining a relationship between
the GPL maximum weight fraction, the power-law parameter, and the thickness of the face sheets.
The shear and rotation effects are here considered using a higher-order laminated beam model.
The nonlinear partial differential equations (PDEs) of motion are derived from the Von Kármán
strain-displacement relationships, here solved by applying an expansion of free vibration modes.
The numerical results demonstrate the key role of the amplitudes on the vibration response of
GPL-reinforced sandwich beams, whose nonlinear oscillation behavior is very important in the
physical science, mechanical structures and other mathematical analyses. The sensitivity of the
response to the total amount of GPLs is explored herein, along with the possible effects related to
the power-law parameter, the structural geometry, and the environmental conditions. The results
indicate that changing the nanofiller distribution patterns with the proposed model can remarkably
increase or decrease the effective stiffness of laminated composite beams.

Keywords: functional reinforcement; graphene nanoplatelets; higher-order shear deformable
laminated beams; nanocomposites; nonlinear free vibration; sandwich beams

1. Introduction

Sandwich structures, generally made of a soft core and two hard face sheets, are largely used in the
aerospace, oil, gas, and petrochemical industries, due to their enhanced mechanical properties, namely, a high
strength-to-weight ratio and a high resistance to heat, humidity, and noise [1–5]. Hence, in recent decades,
much attention has been paid to the mechanical behavior of these structures [6–12]. Based on the available
literature, it seems that the geometry of the layers, the mechanical properties of the constituents, and the
geometrical properties of the whole structure can have a meaningful effect on the static and dynamic
behavior of sandwich structures [13–20]. The presence of some reinforcing layers in sandwich structures
represents one important issue to consider for a general improvement of their mechanical properties [21–24].
Nowadays, with the advancement of nanotechnology, carbon nanotubes (CNTs) and graphene sheets (GSs)
are two alternative options for the reinforcement of structures, due to their extraordinary properties. This has
led to an extensive research on the behavior of sandwich structures reinforced with nanocomposites [25–28].
Among different reinforcement possibilities, graphene nanoplatelets (GPLs) provide a uniform reinforced
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assembly, as well as the easiest manufacturing process, as discussed in [29–32]. Graphene is a monolayer
structure of carbon atoms with extraordinary electrical, mechanical, thermal, and optical properties [33–35],
which make it very attractive for high-tech device applications, such as micro/nano-electromechanical
systems [36]. Graphene and its derivatives—namely, GPLs—are increasingly applied as a reinforcement
material in many nanocomposite structures [37–43]. This justifies the large attention paid in the literature
to the mechanical behavior of structures reinforced with graphenic materials [44–53].

Despite the extensive literature available on the behavior of composite structures reinforced with
nanostructures, there is a general lack of works focusing on the nonlinear dynamic and vibration
behavior of sandwich beams reinforced by GPLs. This is here investigated for thick polymer sandwich
beams with face sheets reinforced by GPLs, in a context where the reduced weight of polymers and the
high strength of GPLs can provide remarkable properties in the equivalent composite structure. A novel
reinforcement model is proposed herein, which considers the functionality of the GPLs distribution
throughout the thickness of the face sheets, and a constant total amount of the reinforced material.
A higher-order laminated beam theory is applied to include the shear and rotation effects on the thick
GPL-reinforced sandwich beam, where the nonlinear governing equations of the problem are solved
in a straightforward manner by means of the multiple timescales method. The main advantage of
the present method is that it can cover weak or strong nonlinearities with possible damping effects.
The method is demonstrated to be very simple and accurate with respect to other existing predictions
and theories from the literature.

The reinforcement phase varies along the thickness according to a power-law distribution, whereby
the effective material properties of the nanocomposite beam are determined by means of the Halpin–Tsai
micromechanics model and the rule of mixtures. The nonlinear partial equations of motion are derived
by the Hamilton’s principle, in accordance with the third-order shear deformation theory and the
Von Kármán strain-displacement relationships. We then apply Galerkin’s approach to discretize the
nonlinear differential equations of motion, while determining the frequency equations by means of the
multiple timescales method. Various numerical examples indicate the accuracy of the proposed model
and check for the sensitivity of the vibration response of GPL-reinforced sandwich beams, of great
interest for design and practical purposes.

The paper is organized as follows. In Section 2 the mechanical and geometrical properties of
materials and their structure are briefly described. Section 3 presents the theoretical formulation of the
problem, along with the numerical procedure. A number of illustrative applications and comparative
evaluations with the available literature are proposed in Section 4. Finally, in Section 5 some concluding
remarks are reported.

2. Material Properties and Geometry

A nanocomposite sandwich beam with length L, thickness ht and width b is considered, as shown
in Figure 1. The Cartesian coordinate system (x, z) is here used to derive the equations of motion,
where the structural mid-plane is parallel to the x-axis. The beam is made of a homogeneous core
and two face sheets with a symmetric GPL-based reinforcement, whose weight fraction satisfies the
following power-law:

Γ(z) = Γmax

(
2|z| − hc

ht − hc

)κ
, (1)

where Γmax is the maximum value of the distribution function and κ is a power-law parameter,
which defines the GPLs dispersion throughout the thickness of the face sheets.
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Due to possible difficulties during the manufacturing process of a functional reinforced lamina, 
each face sheet is considered to be made of N layers with equal thickness and the GPL reinforcement 
is assumed to be uniform within each layer (see Figure 1). 

Therefore, the GPL weight fraction in the ݇th lamina can be defined as 

(௞)߁ = ୫ୟ୶߁ ቆ2|ℎ௞| − ℎ௖ℎ௧ − ℎ௖ ቇ఑, (2) 

where ℎ௞ is the distance between the mid-plane of the beam and the mid-plane of the ݇th layer. 

 
Figure 1. General configuration and graphene nanoplatelet (GPL) dispersion description in a 
laminated GPL-reinforced sandwich beam. 

The volume fraction of the reinforced GPLs can be related to their weight fraction as 

ୋܸ୔୐(௞) = (௞)߁(௞)߁ + ୋ୔୐ߩ) ⁄ெߩ )(1 −  (3) ,((௞)߁

 ୋ୔୐ being the mass density of the matrix and GPLs, respectively. Here, the Halpin–Tsaiߩ ெ andߩ
micromechanical model is adopted to define the effective elastic modulus of the reinforced face sheets 
[54]. Moreover, the GPL reinforcement is assumed to be randomly oriented in each lamina [27]. 

 
Figure 2. Variation of the dimensionless GPL weight fraction (߁_ = ߁ (ݖ) ⁄௕߁ ) through the thickness of 
the top face sheet with respect to various power-law parameters (ℎ_ = ݖ2) − ℎ௖) 2⁄ ℎ௙). 

Therefore, the elastic modulus for the ݇th layer can be expressed as 

Figure 1. General configuration and graphene nanoplatelet (GPL) dispersion description in a laminated
GPL-reinforced sandwich beam.

For a proper analysis, the total amount of GPLs in the beam remains constant independently
of the distribution pattern (see Figure 2). This means that, if we keep constant the total amount of
GPLs in the beam, Γb, the maximum value of the GPL weight fraction, Γmax, increases by increasing
the power-law parameter. Note that the total amount of reinforced GPLs decreases by increasing the
power-law parameter if the maximum value of the GPL weight fraction is kept constant.
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Figure 2. Variation of the dimensionless GPL weight fraction (Γ = Γ(z)/Γb) through the thickness of
the top face sheet with respect to various power-law parameters (h = (2z− hc)/2h f ).

Due to possible difficulties during the manufacturing process of a functional reinforced lamina,
each face sheet is considered to be made of N layers with equal thickness and the GPL reinforcement is
assumed to be uniform within each layer (see Figure 1).

Therefore, the GPL weight fraction in the kth lamina can be defined as

Γ(k) = Γmax

(
2|hk| − hc

ht − hc

)κ
, (2)

where hk is the distance between the mid-plane of the beam and the mid-plane of the kth layer.
The volume fraction of the reinforced GPLs can be related to their weight fraction as

V(k)
GPL =

Γ(k)

Γ(k) + (ρGPL/ρM)
(
1− Γ(k)

) , (3)
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ρM and ρGPL being the mass density of the matrix and GPLs, respectively. Here, the Halpin–Tsai
micromechanical model is adopted to define the effective elastic modulus of the reinforced face
sheets [54]. Moreover, the GPL reinforcement is assumed to be randomly oriented in each lamina [27].

Therefore, the elastic modulus for the kth layer can be expressed as

E(k)
C =

3
8

1 + ξLηLV(k)
GPL

1− ηLV(k)
GPL

EM +
5
8

1 + ξWηWV(k)
GPL

1− ηWV(k)
GPL

EM, (4)

where

ηW =
(EGPL/EM) − 1
(EGPL/EM) + ξW

, ηL =
(EGPL/EM) − 1
(EGPL/EM) + ξL

, (5)

ξW =
2wGPL

hGPL
, ξL =

2lGPL

hGPL
, (6)

and hGPL, lGPL, wGPL stand for the average thickness, length, and width of GPLs, respectively; EM and
EGPL denote the Young modulus of the matrix and GPLs, respectively.

Using the rule of mixtures, the effective mass density and Poisson’s ratio for the kth layer can be
defined as

ρ
(k)
C = ρGPLV(k)

GPL + ρM

(
1−V(k)

GPL

)
, (7)

ν
(k)
C = νGPLV(k)

GPL + νM

(
1−V(k)

GPL

)
, (8)

νM and νGPL being the Poisson’s ratio of the matrix and GPLs, respectively.

3. Theoretical Formulations

In this section, the nonlinear governing equations of the problem for functionally graded (FG)
GPL-reinforced sandwich beams are derived by Hamilton’s principle, while using a higher-order shear
deformation approach.

3.1. Displacement Field and Strains

In agreement with the third-order shear deformation theory [55,56], the displacement components
u1(x, t) and u3(x, t) of an arbitrary point in the x and z directions for shear deformable sandwich beams
can be expressed as

u1(x, z, t) = u(x, t) + zφ(x, t) −
4z3

3h2
t

(
φ+

∂w
∂x

)
, (9)

u3(x, z, t) = w(x, t), (10)

where u(x, t) and w(x, t) are the displacement components of a point at the mid-plane of the beam
in the x and z directions, respectively. Moreover, φ(x, t) denotes the slope of a transverse normal at
z = 0. Based on the Von Kármán strain-displacement relationships, the nonlinear strain components
associated with the displacement field (9)–(10) can be written as

εxx = ε
(0)
xx + zε(1)xx + z3ε

(3)
xx , (11)

γxz = γ
(0)
xz + z2γ

(2)
xz , (12)

where

ε
(0)
xx =

∂u
∂x

+
1
2

(
∂w
∂x

)2

, ε(1)xx =
∂φ

∂x
, ε(3)xx = −c1

(
∂φ

∂x
+
∂2w
∂x2

)
, (13)

γ
(0)
xz = φ+

∂w
∂x

, γ(2)xz = −c2

(
φ+

∂w
∂x

)
, (14)
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and
c1 =

4
3h2

t

, c2 = 3c1 =
4
h2

t

. (15)

3.2. Equations of Motion

The equations of motion of FG-GPL reinforced sandwich beams are derived from Hamilton’s
principle. Accordingly, we have ∫ t2

t1

(δU − δW − δK)dt = 0, (16)

where U is the strain energy, W is the work done by external forces, and K is the kinetic energy. The
virtual strain energy δU for the third-order shear deformable sandwich beams reads as follows

δU =
∫

A

∫ L
0 (σxxδεxx + σxzδγxz)dxdA

=
∫

A

∫ L
0

[
σxx

(
δε

(0)
xx + zδε(1)xx + z3δε

(3)
xx

)
+ σxz

(
δγ

(0)
xz + z2δγ

(2)
xz

)]
dxdA

=
∫ L

0

[
−
∂Nxx
∂x δu− ∂

∂x

(
Nxx

∂w
∂x

)
δw− ∂Mxx

∂x δφ+ c1
∂Pxx
∂x δφ− c1

∂2Pxx
∂x2 δw

+ Qxδφ−
∂Qx
∂x δw− c2Rxδφ+ c2

∂Rx
∂x δw

]
dx

+
[
Nxxδu + Nxx

∂w
∂x δw + Mxxδφ− c1Pxxδφ− c1Pxx

∂
∂xδw + c1

∂Pxx
∂x δw + Qxδw− c2Rxδw

]L

0
,

(17)

where 
Nxx

Mxx

Pxx

 =
∫

A
σxx


1
z
z3

dA,
[

Qx

Rx

]
=

∫
A
σxz

[
1
z2

]
dA. (18)

The virtual kinetic energy δK is defined as

δK =
∫

A

∫ L
0 ρ(z)

( .
u1δ

.
u1 +

.
u3δ

.
u3

)
dAdx

=
∫ L

0

[(
m0

..
u + m1

..
φ− c1m3

( ..
φ+ ∂

..
w
∂x

))
δu

+
(
m1

..
u + m2

..
φ− c1m3

..
u− c1m4

(
2

..
φ+ ∂

..
w
∂x

)
+ c2

1m6
( ..
φ+ ∂

..
w
∂x

))
δφ

+

(
m0

..
w + c1m3

∂
..
u
∂x + c1m4

∂
..
φ
∂x − c2

1m6

(
∂

..
φ
∂x + ∂2 ..

w
∂x2

))
δw

]
dx,

(19)

with

mi =

∫
A
ρ(z)zidA =

2N+1∑
k=1

b
∫ zk+1

zk

ρ
(k)
c zidz, i = 0, 1, 2, 3, 4, 6. (20)

In the total absence of external forces on the structure, it is δW = 0. Therefore, by substitution
of Equations (17) and (19) into Equation (16), by integrating the result by parts, and equating the
coefficients of δu, δw, and δφ to zero separately, we get the following nonlinear equations of motion:

∂Nxx

∂x
= m0

..
u + m1

..
φ− c1m3

(
..
φ+

∂
..
w
∂x

)
, (21)

∂Mxx

∂x
− c1

∂Pxx

∂x
−Qx + c2Rx = m1

..
u + m2

..
φ− c1m3

..
u− c1m4

(
2

..
φ+

∂
..
w
∂x

)
+ c2

1m6

(
..
φ+

∂
..
w
∂x

)
, (22)

∂
∂x

(
Nxx

∂w
∂x

)
+ c1

∂2Pxx

∂x2 +
∂Qx

∂x
− c2

∂Rx

∂x
= m0

..
w + c1m3

∂
..
u
∂x

+ c1m4
∂

..
φ

∂x
− c2

1m6

∂
..
φ

∂x
+
∂2 ..

w
∂x2

. (23)
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Thus, we define the stress resultants in terms of the displacement and rotation components of the
sandwich beam as

Nxx = A11

∂u
∂x

+
1
2

(
∂w
∂x

)2+ B11

(
∂φ

∂x

)
− c1E11

(
∂φ

∂x
+
∂2w
∂x2

)
, (24)

Mxx = B11

∂u
∂x

+
1
2

(
∂w
∂x

)2+ D11

(
∂φ

∂x

)
− c1F11

(
∂φ

∂x
+
∂2w
∂x2

)
, (25)

Pxx = E11

∂u
∂x

+
1
2

(
∂w
∂x

)2 + F11

(
∂φ

∂x

)
− c1H11

(
∂φ

∂x
+
∂2w
∂x2

)
, (26)

Qx = (A55 − c2D55)

(
φ+

∂w
∂x

)
, (27)

Rx = (D55 − c2F55)

(
φ+

∂w
∂x

)
, (28)

where

(A11, B11, D11, E11, F11, H11) =
N∑

k=1

b
∫ hk+1

hk

Q(k)
11

(
1, z, z2, z3, z4, z6

)
dz, (29)

(A55, D55, F55) =
N∑

k=1

b
∫ hk+1

hk

Q(k)
55

(
1, z2, z4

)
dz, (30)

and

Q(k)
11 =

E(k)
C

1−
(
ν
(k)
C

)2 , Q(k)
55 = G(k)

C =
E(k)

C

2
(
1 + ν

(k)
C

) , (31)

In view of Equations (21)–(28), the nonlinear partial differential equations of motion of FG
GPL-reinforced sandwich beams can be written as

A11
(
∂2u
∂x2 + ∂2w

∂x2
∂w
∂x

)
+(B11 − c1E11)

∂2φ
∂x2 − c1E11

∂3w
∂x3

= m0
∂2u
∂t2 + (m1 − c1m3)

∂2φ
∂t2 − c1m3

∂3w
∂x∂t2 ,

(32)

(B11 − c1E11)
(
∂2u
∂x2 + ∂2w

∂x2
∂w
∂x

)
+

(
D11 − 2c1F11 + c2

1H11
)∂2φ
∂x2 +

(
−c1F11 + c2

1H11
)
∂3w
∂x3

+
(
−A55 + 2c2D55 − c2

2F55
)(
φ+ ∂w

∂x

)
= (m1 − c1m3)

∂2u
∂t2 +

(
m2 − 2c1m4 + c2

1m6
)∂2φ
∂t2 +

(
−c1m4 + c2

1m6
)
∂3w
∂x∂t2 ,

(33)

c1E11

(
∂3u
∂x3 −

(
∂2w
∂x2

)2)
+

(
c1F11 − c2

1H11
)∂3φ
∂x3 − c2

1H11
∂4w
∂x4

+
(
A55 − 2c2D55 + c2

2F55
)(∂φ
∂x + ∂2w

∂x2

)
+A11

(
∂2u
∂x2

∂w
∂x + ∂u

∂x
∂2w
∂x2 + 3

2

(
∂2w
∂x2

(
∂w
∂x

)2
))

+(B11 − c1E11)
(
∂2φ
∂x2

∂w
∂x +

∂φ
∂x

∂2w
∂x2

)
= m0

∂2w
∂t2 + c1m3

∂3u
∂x∂t2 +

(
c1m4 − c2

1m6
) ∂3φ
∂x∂t2 − c2

1m6
∂4w
∂x2∂t2 .

(34)

3.3. Solution Procedure

In this section, the nonlinear equations of motion are solved numerically, in order to obtain the
linear and nonlinear frequency equations. In this regard, the nonlinear partial differential equations
(PDEs) of motion (32)–(34) are discretized as ordinary differential equations by employing the Galerkin
method. Afterwards, the multiple timescales approach is used to obtain the nonlinear frequency
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equation. Here, we assume that the GPL-reinforced sandwich beam is simply supported at both ends
with movable supports. Based on these assumptions, the displacement and rotation field of the beam
can be defined as expansions of the free vibration mode shapes, namely,

u(x, t) =
∞∑

n=1

Un(t)χn(x), χn(x) = Cos
(nπx

L

)
, (35)

φ(x, t) =
∞∑

n=1

ϕn(t)ψn(x), ψn(x) = Cos
(nπx

L

)
, (36)

w(x, t) =
∞∑

n=1

Wn(t)λn(x), λn(x) = Sin
(nπx

L

)
, (37)

Un, ϕn and Wn being the unknown generalized coordinates which stand for the amplitude of the
vibration. Moreover, the following functions χn(x), ψn(x), and λn(x) are introduced to satisfy all
boundary conditions of the system. By considering a single mode approximate solution and by
substitution of Equations (35)–(37) into Equations (32)–(34), after multiplying the results by χ, ψ, and λ
and after their integration over the domain of the system, the following nonlinear differential equations
of motion are obtained

g11Un + g12Wn + g13Wn
2 + g14ϕn = 0, (38)

g21Un + g22Wn + g23Wn
2 + g24ϕn = 0, (39)

g31Un + g32Wn + g33UnWn + g34Wn
2 + g35Wn

3 + g36ϕn + g37Wnϕn + g38Un
′′ + g39Wn

′′ + g310ϕn
′′ = 0, (40)

where coefficients g11, g12, . . . , g310 are detailed in Appendix A. The ordinary differential equation of
transverse motion can be obtained by solving Un and ϕn in terms of Wn from Equations (38) and (39)
and substituting the results in Equation (40). Thus, we get

Wn
′′ + α1Wn + α2Wn

3 = 0, (41)

where

α1 = ω2
L =

g14(g22g31 − g21g32) + g12(−g24g31 + g21g36) + g11(g24g32 − g22g36)

g24(−g12g38 + g11g39) + g14(g22g38 − g21g39) + (g12g21 − g11g22)g310
, (42)

α2 =
g14(−g23g33 + g21g35) + g13(g24g33 − g21g37) + g11(−g24g35 + g23g37)

g24(g12g38 − g11g39) + g14(−g22g38 + g21g39) + (−g12g21 + g11g22)g310
, (43)

and ωL is the natural frequency of the nanocomposite sandwich beam. According to the multiple
timescale approach [57,58], we approximate the solution of Equation (41) by means of the following
expansion,

W(t, ε) = εW1(T0, T1, T2, . . .) + ε2W2(T0, T1, T2, . . .) + ε3W3(T0, T1, T2, . . .) + . . . (44)

where ε is a small perturbation parameter and Tn = εnt refers to the independent variables for
n = 0, 1, 2, . . ., whose derivatives with respect to t are defined as follows:

d
dt =

dT0
dt

∂
∂T0

+ dT1
dt

∂
∂T1

+ . . . = D0 + εD1 + . . .
d2

dt2 = D2
0 + 2εD0D1 + ε2

(
D2

1 + 2D0D2
)
+ 2ε3D1D2 + ε4D2

2 + . . .
(45)
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where Dn = ∂/∂Tn. In our case, we apply the expansion up to O
(
ε3

)
, such that we need T0, T1 and T2.

By substitution of Equations (44) and (45) into Equation (41), expanding and equating coefficients of ε,
ε2, and ε3 to zero, we get the following relations:

Order ε: D2
0W1 +ω2

LW1 = 0 (46)

Order ε2: D2
0W2 +ω2

LW2 = −2D0D1W1 (47)

Order ε3: D3
0W3 +ω2

LW3 = −2D0D2W2 −D2
1W1 − 2D0D2W1 − α2W3

1 (48)

The solution of Equation (46) takes the following form:

W1 = A(T1, T2) exp(iωLT0) + A exp(−iωLT0) (49)

where A is an unknown complex function and A is its complex conjugate. By substitution of Equation
(49) into Equation (46) we obtain the following relation:

D2
0W2 +ω2

LW2 = −2iωLD1A exp(iωLT0) + cc (50)

cc being the complex conjugate of the previous term. Any particular solution of Equation (50) has a
secular term containing the factor T0 exp(iωLT0) unless D1A = 0. This means that A is independent of
T1, whereby the solution of Equation (50) is verified to be identically null.

By substitution of W2 = 0, together with Equation (49), into Equation (48) we get the
following expression

D2
0W3 +ω2

LW3 = −
[
2iωLD2A− 3α2A2A

]
exp(iωLT0) − α2A3 exp(iωLT0) (51)

In this last relation the secular terms containing exp(iωLT0) must be equal to zero to have a
periodic solution, which corresponds to enforce the following relation:

2iωLD2A− 3α2A2A = 0 (52)

whose solution can be found by defining A as

A =
1
2

a exp(iβ) (53)

where a and β are real functions of T2.
By substituting Equation (53) into Equation (52) and by equating the real and imaginary parts to

zero, we obtain
ωLa′ = 0 and ωLaβ′ − 3/8α2a3 = 0 (54)

where the prime denotes the derivative with respect to T2. Solving both relations in Equation (54),
it follows that a is a constant and

β = 3/8
α2

ωL
a2T2 + β0 (55)

where β0 is a constant. By combination of Equations (53) and (55) with Equation (49), we obtain the
following closed-form solution for the nonlinear frequency of the transverse vibration of GPL-reinforced
sandwich beams based on third-order shear deformation theory:

ωNL = ωL

1 +
3
8
α2

ω2
L

ε2a2

, (56)

where a is the amplitude of the vibration.
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4. Numerical Results

In this section, we present the numerical results from a large parametric investigation into
the nonlinear vibration behavior of thick sandwich beams reinforced with GPLs. To check for the
accuracy of the proposed model, our numerical results obtained for FG GPL-reinforced beams are
compared with those available from the literature. In this regard, the thickness of the core layer in
the present model is assumed to be zero (hc = 0). In Tables 1 and 2, the dimensionless free linear
(ωL = ωL × L ×

√
m10/A10) and nonlinear (ωNL = ωNL × L ×

√
m10/A10) frequencies are provided

for a simply supported, GPL-reinforced beam and compared with numerical results reported by
Feng et al. [30]. The reference model is based on a Timoshenko beam theory, whereby two different
patterns are considered for validation purposes. The following properties are assumed for the
beam: EM = 2.85 GPa, ρM = 1200Kg/m3, EGPL = 1.01 TPa, ρGPL = 1062.5Kg/m3, wGPL = 1.5 µm,
lGPL = 2.5 µm, and hGPL = 1.5 nm.

Table 1. First three dimensionless natural frequencies (ωL = ωL × L×
√

m10/A10) of simply supported
laminated beams reinforced with GPLs (L/ht = 20).

Pattern Reference
Mode

1 2 3

UD
(κ = 0)

Feng et al. [30] 0.21542 0.85226 1.88292

Present 0.23482 0.92903 2.05352

FG-X
(κ = 1)

Feng et al. [30] 0.25853 1.01309 2.20666

Present 0.26759 1.05199 2.30258

Table 2. First three dimensionless nonlinear frequencies (ωNL = ωNL × L ×
√

m10/A10) of simply
supported laminated beams reinforced with GPLs (L/ht = 20).

Pattern Reference
Mode

1 2 3

UD
(κ = 0)

Feng et al. [30] 0.27259 1.07270 2.33122

Present 0.29020 1.08015 2.41741

FG-X
(κ = 1)

Feng et al. [30] 0.31973 1.20509 2.54097

Present 0.31619 1.18544 2.62712

In Table 3, a comparison has been attempted between results from the present formulation for
the first four dimensionless frequencies (ωL = ωL ×

(
L2/h

)√
ρ/E11) of simply supported orthotropic

beams and those from the literature, based on different higher-order shear deformation theories [59–61].
The material properties are assumed to be E11 = 144.9 GPa, E22 = 9.65 GPa, G12 = G13 = 4.14 GPa,
G23 = 3.45 GPa, ρ = 1389.23Kg/m3, and ν12 = ν21 = 0.3.

Table 3. Comparison of the first four dimensionless natural frequencies (ωL = ωL ×
(
L2/h

)√
ρ/E11) of

orthotropic thick beams based on different higher-order shear deformable beam theories (L/ht = 10).

Reference
Mode

1 2 3 4

Shen et al. [61] 2.3100 6.9538 11.9707 17.0393

Li and Qiao [60] 2.3188 7.0204 12.0894 17.3139

Vo and Thai
[59] 2.3198 7.0091 12.1250 17.2949

Present 2.4038 7.2110 12.3975 17.6279
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As is clearly visible in Table 3, the numerical results based on the proposed model agree
very well with predictions from the literature based on other shear deformable models. It seems
that higher-order-models available in the literature [59–61] get more conservative results than our
formulation. At the same time, the proposed multiple timescale approach proves to be an efficient
analytical tool to solve nonlinear systems in a very easy and straightforward manner.

In the benchmark Tables 4 and 5, we report the numerical results in terms of the first-order
nonlinear frequency and nonlinear-to-linear frequency ratio for a GPL-reinforced sandwich beam.
The material and geometrical properties of the beam are considered to be EM = 2.85 GPa,
ρM = 1200Kg/m3, EGPL = 1.01 TPa, ρGPL = 1062.5Kg/m3, wGPL = 1.5 µm, lGPL = 2.5 µm,
and hGPL = 1.5 nm. These properties are kept constant for the following examples. The numerical
results are obtained for a different power-law parameter, length-to-total thickness of the beam ratio,
as well as for a different total weight fraction of the GPLs reinforced in the beam (Γb). As mentioned
before, Γb is defined such that the total amount of GPLs remains constant with respect to any
change in the power-law parameter or thickness of the face sheets. According to Tables 4 and 5,
an increased total weight fraction of GPLs (Γb) yields a meaningful increase of the nonlinear frequency
of the beam, while decreasing the nonlinear-to-linear frequency ratio. In addition, an increased
length-to-thickness ratio provides a decreasing effect on the nonlinear frequency of the system and its
associated nonlinear-to-linear ratio.

Table 4. First-order nonlinear frequency of a simply supported GPL-reinforced sandwich beam
(hc/ht = 0.6, N = 10, a/ht = 1).

L/ht Γb
κ

0.5 1 2 5

10
0.5 1.52551 1.53220 1.54115 1.54952

1 1.96610 1.97452 1.98470 1.99110

2 2.62940 2.63683 2.64207 2.63204

20
0.5 0.38485 0.38708 0.39006 0.39311

1 0.49821 0.50165 0.50612 0.51036

2 0.66931 0.67405 0.67978 0.68391

Table 5. First-order nonlinear-to-linear frequency ratio of a simply supported GPL-reinforced sandwich
beam (hc/ht = 0.6, N = 10, a/ht = 1).

L/ht Γb
κ

0.5 1 2 5

10
0.5 1.59007 1.56735 1.54135 1.51106

1 1.55652 1.53643 1.51484 1.49074

2 1.54324 1.52830 1.51607 1.50875

20
0.5 1.55431 1.53007 1.50227 1.47047

1 1.51103 1.48708 1.46023 1.42993

2 1.48700 1.46431 1.43990 1.41399

On the other hand, an increased power-law parameter gets an increased nonlinear frequency and
a decreased nonlinear-to-linear frequency ratio. A non-uniform behavior can be observed, sometimes,
for an increasing power-law parameter and for a large amount of Γb. This aspect is illustrated in detail
as follows.
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4.1. Effect of the Amplitude of the Vibrations

Figures 3 and 4 show the effect of an increasing amplitude on the nonlinear frequency and
the nonlinear-to-linear frequency ratio. According to both figures, the nonlinear frequency of a
GPL-reinforced sandwich beam generally increases by increasing the amplitude of the vibrations as
well as its nonlinear-to-linear frequency. However, an increased vibration amplitude significantly
affects the nonlinear frequency and its rational form, for smaller values of the power-law parameter. It
seems that for sandwich beams with a larger amount of GPL-reinforcement, the nonlinear frequency is
increasingly affected by larger vibration amplitudes.
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4.2. Effect of the Power-Law Parameter

Here, we study the effect of the power-law parameter on the nonlinear vibration behavior of the
nanocomposite structure. Figure 5 depicts the variation of the nonlinear frequency as a function of the
power-law parameter for different thickness ratios, hc/ht, and vibration amplitudes a/ht. Note that,
for a small amplitude of vibration, the nonlinear frequency of the system increases by increasing the
power-law parameter. The effect of an increasing power-law parameter on the vibration response of
the system is different depending on the amount of the thickness ratio. For an increased amplitude
of the vibration up to a threshold value, the results become non-uniform for an increased power-law
parameter. An increased amplitude of vibration will completely change the behavior of the system;
namely, by increasing the power-law parameter, the nonlinear frequency of the GPL-reinforced
sandwich beam decreases for a large amplitude of vibration.
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In Figure 6, we plot the variation of the nonlinear-to-linear frequency ratio of the nanocomposite
structure vs. the power-law parameter. It is worth noting that an increased power-law parameter has a
decreasing effect on the nonlinear-to-linear frequency ratio of the system. These effects become even
more pronounced for larger vibration amplitudes, while leaving the overall behavior almost unaltered.
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reinforcement in the beam (N = 10, a/ht = 1, L/ht = 10).
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beam due to an increasing power-law parameter for different core-to-beam thickness ratios and total
amounts of GPLs reinforcements in the beam (N = 10, a/ht = 1, L/ht = 10).

According to Figure 7, for a small amount of the GPLs weight fraction, the nonlinear frequency
increases by increasing the power-law parameter. Moreover, the effect of an increasing power-law
parameter becomes more pronounced for sandwich beams with thick face sheets. As the total weight
fraction of GPLs increases, a different response is noticed, in terms of nonlinear frequency, by increasing
the power-law parameter. More specifically, for a large GPL weight fraction, we notice a threshold
value after which the nonlinear frequency decreases by increasing the power-law parameter. Of course,
the value of the threshold point varies with the thickness of the face sheets. On the other hand,
the results for the nonlinear-to-linear frequency ratio show some opposite effects for an increasing
power-law parameter. An increased total amount of GPL reinforcement phase in the face sheets has a
pronounced effect on the general behavior of the system, which has to be studied carefully.

4.3. Effect of the Thickness of the Face Sheets

Figures 9 and 10 show the effect of the core-to-face thickness ratio on the nonlinear vibration
response of the structure. As visible in both figures, a decreasing thickness of the face sheets generally
increases the nonlinear frequency of the system for a small vibration amplitude. By increasing the
amplitude vibrations, the structural response changes due to an increased thickness ratio; namely,
for large amplitude vibrations, the frequency decreases by increasing the thickness ratio, and the
nonlinear-to-linear frequency ratio decreases accordingly. This behavior is almost unaffected by the
amplitude vibrations.
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4.4. Effects of the Total Weight Fraction of the GPLs

The last parametric investigation checks for the sensitivity of the response to an increased total
amount of GPL phase in the face sheets of a sandwich beam, both in terms of nonlinear frequency
and nonlinear-to-linear frequency. As shown in Figure 11, an increased total weight fraction of the
GPLs will increase the nonlinear frequency of the system. Different effects on the nonlinear-to-linear
frequency ratio are observable, depending on the value of the selected power-law parameter.
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Figure 11. Variation of the first-order nonlinear frequency and nonlinear-to-linear frequency ratio of a
GPL-reinforced sandwich beam with respect to an increasing total amount of GPLs in the beam, for
different power-law parameters (hc/ht = 0.6, N = 10, a/ht = 3, L/ht = 10).

5. Concluding Remarks

In the present paper we analyze the nonlinear free vibration response of thick sandwich beams
with FG GPL-reinforced face sheets, based on a novel dispersion model for the reinforcement phase.
A higher-order laminated beam model is associated with the Von Kármán strain-displacement
relationships to capture the shear and rotation effects on the structural behavior of the system.
The nonlinear equations of motion are determined through Hamilton’s principle, and they are
discretized to ordinary differential equations by means of Galerkin’s approach. An analytical solution
procedure based on the multiple timescales method is then used to obtain the nonlinear frequency
equation. A large numerical investigation analyzes the effect of the vibration amplitude, the thickness
of the face sheets, and the GPL dispersion on the nonlinear vibration response of the reinforced
sandwich structure, where the following conclusions can be summarized as follows:

- An increased amplitude of vibrations significantly increases the nonlinear frequency and its ratio
to linear frequency. The sensitivity of the nonlinear response varies with the total amount of
GPL reinforcement in the beam, as well as with the value of the power-law parameter and the
thickness of the face sheets.
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- An increased power-law parameter can have different effects on the stiffness of the GPL-reinforced
sandwich beam, depending on the value of the vibration amplitude and the total weight fraction
of the GPLs.

- There exists a threshold value for the vibration amplitude, after which the behavior of the system
can change for an increased thickness of the face sheets and power-law parameter.

- For low amplitude vibrations, the nonlinear frequency increases by increasing the power-law
parameter and by decreasing the thickness of the faces sheets. For large amplitude vibrations,
the contrary occurs by increasing both the power-law parameter and core-to-face thickness ratio.

- The effect of an increasing power-law parameter and a decreasing thickness of the face sheets on
the nonlinear-to-linear frequency ratio is independent of the vibration amplitude.

- An increasing total weight fraction of GPLs in the beam generally increases the nonlinear frequency
of the system. The sensitivity of the nonlinear-to-linear frequency ratio can be more or less
pronounced, depending on the GPL dispersion pattern in the face sheets.

- The proposed parametric study would be of great interest for optimization and design of materials
and for an appropriate evaluation of stability for sandwich beams under different environmental
conditions, which would prove useful in many space and aircraft applications.
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Appendix A

In the following, we provide the extended relations for the coefficients g11, g12, . . . in Equations
(38)–(40), i.e.,

g11 =
n2π2A11

2L
, (A1)

g12 = −
n3π3c1E11

2L2 , (A2)

g13 =

(
1 + (−1)n+1

)
n2π2A11

3L2 , (A3)

g14 =
n2π2(B11 − c1E11)

2L
, (A4)

g21 =
n2π2(B11 − c1E11)

2L
, (A5)

g22 =
n3π3

(
−c1F11 + c2

1H11
)

2L2 −

nπ
(
−A55 + 2c2D55 − c2

2F55
)

2
, (A6)

g23 =

(
1 + (−1)n+1

)
n2π2(B11 − c1E11)

3L2 , (A7)

g24 =
n2π2

(
D11 − 2c1F11 + c2

1H11
)

2L
−

L
(
−A55 + 2c2D55 − c2

2F55
)

2
, (A8)

g31 =
n3π3c1E11

2L2 , (A9)
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g32 =
n2π2

(
−A55 + 2c2D55 − c2

2F55
)

2L
−

n4π4c2
1H11

2L3 (A10)

g33 =
n2π2

(
−1 + (−1)n + 4

(
2 + (−1)n

)
Sin4

(
nπ
2

))
A11

3L2 , (A11)

g34 =
4
(
−2 + (−1)n+1

)
n3π3Sin4

(
nπ
2

)
c1E11

3L3 , (A12)

g35 = −
3n4π4A11

16L3 , (A13)

g36 =
nπ

(
−A55 + 2c2D55 − c2

2F55
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2
−

n3π3
(
−c1F11 + c2

1H11
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2L2 , (A14)
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n2π2

(
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(
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Sin4

(
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g38 =
nπc1m3
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