
applied  
sciences

Review

A Review of the Artificial Neural Network Models for
Water Quality Prediction

Yingyi Chen 1,2,3,4,* , Lihua Song 1,2,3 , Yeqi Liu 1,2,3, Ling Yang 1,2,3 and Daoliang Li 1,2,3,4

1 Precision Agricultural Technology Integration Research Base (Fishery), Ministry of Agriculture and Rural
Affairs, China Agricultural University, Beijing 100083, China; 874840197@cau.edu.cn (L.S.);
liuyeqi@cau.edu.cn (Y.L.); zppayl@cau.edu.cn (L.Y.); dliangl@cau.edu.cn (D.L.)

2 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
3 National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China
4 Beijing Engineering and Technology Research Centre for Internet of Things in Agriculture,

China Agricultural University, Beijing 100083, China
* Correspondence: chenyingyi@cau.edu.cn; Tel.: +86-10-6273-8489

Received: 13 July 2020; Accepted: 17 August 2020; Published: 20 August 2020
����������
�������

Abstract: Water quality prediction plays an important role in environmental monitoring, ecosystem
sustainability, and aquaculture. Traditional prediction methods cannot capture the nonlinear and
non-stationarity of water quality well. In recent years, the rapid development of artificial neural
networks (ANNs) has made them a hotspot in water quality prediction. We have conducted
extensive investigation and analysis on ANN-based water quality prediction from three aspects,
namely feedforward, recurrent, and hybrid architectures. Based on 151 papers published from 2008 to
2019, 23 types of water quality variables were highlighted. The variables were primarily collected by the
sensor, followed by specialist experimental equipment, such as a UV-visible photometer. Five different
output strategies, namely Univariate-Input-Itself-Output, Univariate-Input-Other-Output,
Multivariate-Input-Other(multi)-output, Multivariate-Input-Itself-Other-Output, and Multivariate-
Input-Itself-Other (multi)-Output, are summarized. From results of the review, it can be concluded
that the ANN models are capable of dealing with different modeling problems in rivers, lakes,
reservoirs, wastewater treatment plants (WWTPs), groundwater, ponds, and streams. The results of
many of the review articles are useful to researchers in prediction and similar fields. Several new
architectures presented in the study, such as recurrent and hybrid structures, are able to improve the
modeling quality of future development.
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1. Introduction

Water quality plays an important role in any aquatic system, e.g., it can influence the growth of
aquatic organisms and reflect the degree of water pollution [1]. Water quality prediction is one of the
purposes of model development and use [2], which aims to achieve appropriate management over
a period of time [3]. Water quality prediction is to forecast the variation trend of water quality at a
certain time in the future [4]. Accurate water quality prediction plays a crucial role in environmental
monitoring, ecosystem sustainability, and human health. Moreover, predicting future changes in
water quality is a prerequisite for early control of intelligence aquaculture in the future [5]. Therefore,
water quality prediction has great practical significance [6].

At present, there are many traditional water quality prediction methods, such as multiple linear
regression (MLR) [7], auto-regressive integrated moving average (ARIMA) [8], etc. MLR is not able to
detect a nonlinear relationship between water quality parameters because of its linear inherence [9].
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The main drawback of ARIMA is the pre-assumption of the linear model [10]. During the model
identification phase, the time series data must be checked to see whether they are stationary or
not, because it is critical in creating the ARIMA model. In fact, traditional methods are not able to
capture the non-linear [11] and non-stationarity [12] of water quality well due to their complex and
sophisticated nature.

With the increase in data scale, traditional techniques cannot meet the demand of researchers.
Owing to the improvement of computing power, artificial neural network (ANN) models,
data-driven models, have been further developed. They can capture functional relationships among
the water quality data from the examples [13]. When the underlying relationships of obtained data are
difficult to describe, ANN models still work. Moreover, ANNs require fewer prior assumptions [14]
and can achieve higher accuracy [15] compared with traditional approaches. In addition, ANNs are
suitable for solving the non-linear and uncertain problems due to their similar characteristics with the
brain nervous system [4], and have become a hotspot in water quality research [16].

ANNs are a family of models inspired by biological neural networks [17] which specifically
refers to the human brain [18], a kind of central nervous system of animals. In general, ANN can be
represented as a system of interconnected “neurons” [19] which form the basis of neural network
operation. Weight parameters and activation functions are part of the neurons [20]. ANNs are
generally divided into three layers of input, hidden and output. When neurons receive information
from different inputs, they obtain nonlinearity through activation functions. ANN models depend
heavily on the quantity of data [21]. Therefore, it is not recommended to use relatively small data
sizes for predictors (inputs). This is because some useful information is lost in short-term data,
which may lead to poor prediction results [3]. In addition, data dividing is a necessary step in the
modeling process. Furthermore, choosing the training algorithm to calibrate the model parameters
(e.g., connection weights) is a vital step so that the network can approximate complicated non-linear
input-output relationship [10]. The Levenberg–Marquardt [22] algorithm and the back-propagation
(BP) algorithm [23] are the most commonly used algorithms.

ANN models architectures determine the number of connection weights and the way information
flows through the network [20]. The most widely used architecture is Multilayer Perceptron (MLPs)
with only three layers in many types of feedforward ANNs. Radial Basis Function neural networks
(RBFNNs) [24], General regression neural networks (GRNNs) [25] and Extreme learning machines
(ELMs) [5] are three typical feedforward ANNs. A Long Short-Term Memory (LSTM) neural network
is an improvement of recurrent neural networks (RNNs), which aims to address the well-known
vanishing gradient problem [26]. The hybrid models in this review are three classes: model-intensive,
technique-intensive, and data-intensive [27]. The emerging frameworks, such as Convolutional Neural
Network (CNN) [28], widely used in the field of the image, are also included in this review.

In this review, ANN models for water quality variables prediction are summarized. Previous
reviews [20,27,29] about ANNs are more concerned about the water quantity (e.g., flow and
rainfall-runoff) prediction, while less attention has been paid to water quality prediction
(e.g., Suspended solids (SS)), and the major scenarios they investigated are river systems. At the
same time, previous reviews care about the development of the model while ignoring the output
strategies between input(s) and output(s) in a given prediction task. To overcome the limitations
above, this review focuses on the use of ANNs methods for water quality prediction, with more water
quality variables investigated than previous reviews, which are mainly divided into three categories,
namely chemical, biological and physical variables [30].

The research scenarios include not only the river system that was the focus of the previous review,
but also reservoirs, lakes, wastewater treatment plant (WWTP), groundwater, etc. It must be pointed
out that the review did not consider drinking water systems. The reason for this is that drinking
water is a system that includes source, treatment, and distribution, and should be considered as an
independent branch or subject for systematic research [30]. In addition to the increased number of
water quality variables reviewed and broader research scenarios, this review also summarizes five
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output strategies. The period of the investigated papers covered was from 2008 to 2019. This period
was chosen as it follows on from the period covered in the review by [27] (i.e., 1999–2007). The review
is organized as follows. Section 2 presents the process of the paper collection. Section 3 describes three
basic model structures in water quality prediction. In Section 4, the applications of artificial neural
networks in water quality are surveyed. Then, Section 5 represents the results of this review. Finally,
the discussions are given in Section 6. All the abbreviations are mentioned in Table 1.

Table 1. The abbreviations in this review.

Abbreviations Full Name Abbreviations Full Name Abbreviations Full Name Abbreviations Full Name

AH air humidity EC Electrical
conductivity ORP

Oxidation
reduction
potential

TCC total chromium
concentration

AODD August, October,
December, data Evap evaporation Q discharge TIC total iron

concentration

AP air pressure FTT flow travel
time pH Pondus

Hydrogenii TAC total anions and
cations

AT air temperature Fe iron Precip precipitation TNs total nutrients
As Arsenic F flow P phosphate TA total alkalinity

B boron HCO3 bicarbonate RH relative
humidity TP total

phosphorus

BOD
Biochemical

Oxygen
Demand;

HA Hydrogenated
Amine RP Redox

potential Tur turbidity

C carbon ICs ionic
concentrations RO runoff TDS total dissolved

solids
Cl chloride K potassium RF rainfall TN total nitrogen
Cu Copper Lon longitude RainP Rainy period TH total hardness

Ca calcium Lat latitude SR solar radiation TOC total organic
carbon

CO3
2- Carbonate LV lake volume Sth sunshine time

hours TSS total suspended
solids

Coli Coliform MDHM month, day,
hour, minute SD transparence VP volatile phenol

COD
Chemical
Oxygen
Demand

Mn manganese; SAR
sodium

absorption
ratio

WL Water Level

COD Mn
permanganate

index Mg magnesium SM Soil Moisture WT water
temperature

Chl-a Chlorophyll a Na sodium ST soil
temperature WS wind speed

DO dissolved
oxygen Ns nutrients SO4 sulphate WD wind direction

DOY day of year NO2 nitrite S salinity YMDH the year
numbers

2. Methods

This review focuses on the application of ANNs to water quality variables prediction excluding
drinking water from 2008 to 2019. The papers to be reviewed were selected using the following steps:

1. First, we identified ANN-related papers in influential water-related and environmental-related
journals to ensure that high-quality papers are included in the review. These papers are mainly
from journals whose subjects are environmental science and ecology, water resources, engineering
and application.

2. Thereafter, a keyword search of the ISI Web of Science was then conducted for the period
2008–2019 using the keywords; water quality, river, lake, reservoir, WWTP, groundwater, pond,
prediction, and forecasting, accompanied by the names of ANN methods (one or more), such as
neural network, MLP, RBFNN, GRNN, RNN, to name but a few.

3. Then, through the search process from 1 to 2, 151 articles in English relevant to our focus were
selected. The basic information of the papers, including authors (year), locations, water quality
variables, meteorological factors, other factors, output strategy, data size, time step, data dividing,
methods, and prediction lengths are provided in Appendix A.
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3. Three Basic Model Structures in Water Quality Prediction

In this review, the model architecture refers to the overall structure and manner of how information
flows from one layer to another. The three model architectures include feedforward, recurrent networks,
and hybrid models (see Figure 1) [31]. In addition to categorizing each architecture, Table 2 summarizes
the foundation and advantage(s) of the development model structure.

3.1. Feedforward Architectures

The term ‘feed-forward’ means that a neuron connection only exists from a neuron in the input
layer to other neurons in the hidden layer or from a neuron in the hidden layer to neurons in the output
layer. However, the neurons within a layer are not interconnected [9]. MLPs with only three layers are
the most widely used architectures [59] in many types of feedforward ANNs (see Figure 2), followed by
BPNNs [37] which use the back-propagation algorithms to train networks. Other commonly used
feed-forward network architectures in water quality prediction include TDNNs [36], RBFNNs [60],
GRNNs [61], WNNs [62], ELMs [5], CCNN [63] and MNN [50].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 51 

DO 
dissolved 

oxygen 
Ns nutrients SO4 sulphate WD 

wind 
direction 

DOY day of year NO2 nitrite S salinity YMDH 
the year 
numbers 

2. Methods 

This review focuses on the application of ANNs to water quality variables prediction excluding 
drinking water from 2008 to 2019. The papers to be reviewed were selected using the following steps:  

1. First, we identified ANN-related papers in influential water-related and environmental-related 
journals to ensure that high-quality papers are included in the review. These papers are mainly 
from journals whose subjects are environmental science and ecology, water resources, 
engineering and application. 

2. Thereafter, a keyword search of the ISI Web of Science was then conducted for the period 2008–
2019 using the keywords; water quality, river, lake, reservoir, WWTP, groundwater, pond, 
prediction, and forecasting, accompanied by the names of ANN methods (one or more), such as 
neural network, MLP, RBFNN, GRNN, RNN, to name but a few. 

3. Then, through the search process from 1 to 2, 151 articles in English relevant to our focus were 
selected. The basic information of the papers, including authors (year), locations, water quality 
variables, meteorological factors, other factors, output strategy, data size, time step, data 
dividing, methods, and prediction lengths are provided in Appendix A. 

3. Three Basic Model Structures in Water Quality Prediction 

In this review, the model architecture refers to the overall structure and manner of how 
information flows from one layer to another. The three model architectures include feedforward, 
recurrent networks, and hybrid models (see Figure 1) [31]. In addition to categorizing each 
architecture, Table 2 summarizes the foundation and advantage(s) of the development model 
structure. 

 
Figure 1. Three main model architectures in the reviewed papers. 

Table 2. The developments and addressed problem of different ANNs architectures. 

Categories Structure(s) Advantage(s)  Reference(s) 

MLPs 
They are based on an understanding 

of the biological nervous system 
Solving the nonlinear problems 

[19,23,30,32–
35] 

Figure 1. Three main model architectures in the reviewed papers.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 51 

3.1. Feedforward Architectures 

The term ‘feed-forward’ means that a neuron connection only exists from a neuron in the input 
layer to other neurons in the hidden layer or from a neuron in the hidden layer to neurons in the 
output layer. However, the neurons within a layer are not interconnected [9]. MLPs with only three 
layers are the most widely used architectures [59] in many types of feedforward ANNs (see Figure 
2), followed by BPNNs [37] which use the back-propagation algorithms to train networks. Other 
commonly used feed-forward network architectures in water quality prediction include TDNNs [36], 
RBFNNs [60], GRNNs [61], WNNs [62], ELMs [5], CCNN [63] and MNN [50]. 

 
Figure 2. The common architectures of MLPs. 

TDNNs is a subclass of MLPs that learns temporal behavior from continuous past and present 
signals [36]. The major difference between RBFNNs and MLPs is that the hidden layer of RBFNNs is 
self-organizing while the latter is not, although the structure of RBFNNs is similar to MLPs. As the 
center of RBF, the training weights can be defined by a clustering algorithm. For example, the k-
means algorithm is a commonly used one [24]. GRNNs is a modified form of the RBFNNs model, but 
it differs from RBFNNs in structure. Patten and summation layers are located between the input and 
output layers [27]. The training between the input and pattern layer of GRNNs is equivalent to the 
research on the input and hidden layer of the RBFNNs. WNNs have made some changes based on 
the traditional MLPs, in which the non-linear sigmoid activation functions is replaced by the Morlet 
wavelet function commonly used in the WNNs hidden layer. Therefore, WNNs are suitable for 
solving non-stationary time series problems [64]. The biggest innovation of ELMs is the random 
selection of hidden nodes and the use of a least squares method to determine the output layer weight. 
CCNN is different from the above feedforward networks because it constructs the neural network 
without a hidden layer at first and automatically adds hidden units instead of fixing the network 
architectures and then training the weights and thresholds. The first step of MNN, a special 
feedforward network, is data clustering using the fuzzy c-means method [65]. The second step is 
updating the clusters by adding the new datasets. To achieve better prediction accuracy, a neural 
network with the maximum similarity between the inputs and centroids of the cluster is chosen. 

3.2. Recurrent Architectures 

Compared with feedforward ANNs, RNNs differs in that neurons within a layer are 
interconnected and allow feedback [53]. Different types of RNNs are developed so that the neural 
networks have better memory ability (see Figure 1). LSTM, an improvement over RNN, adds a 
processor called “memory cell state” to its hidden layer to determine whether the information is 
useful or not [66], and this is also suitable for SRU (Simple Recurrent Unit) [67]. Furthermore, the 

Figure 2. The common architectures of MLPs.



Appl. Sci. 2020, 10, 5776 5 of 49

Table 2. The developments and advantages of different ANNs architectures.

Categories Structure(s) Advantage(s) Reference(s)

MLPs They are based on an understanding of the
biological nervous system Solving the nonlinear problems [19,23,30,32–35]

TDNNs They are based on the structure of MLPs Using time delay cells to deal with the
dynamic nature of sample data [36]

RBFNNs

The structure of RBFNNs is similar to
the MLPs

The radial basis activation function is in the
hidden layer

To overcome the local
minimum problems [5,18,37,38]

GRNNs
A modified form of the RBFNNs model

There is a pattern and a summation layer
between the input and output layers

Solving the small sample problems [24,39–43]

WNNs Wavelet function replace the linear sigmoid
activation functions of MLPs Solving the non-stationary problems [16,44]

ELMs The structure of ELMs is similar to the MLPs
Only need to learn the output weight

Reducing the computation problems
because the weights of the input and

hidden layer need not be adjusted
[31,45–48]

CCNN Start with input and output layer without a
hidden layer

A constructive neural network that
aims to solve the problems of the

determination of potential neurons
which are not relevant to the

output layer

[49]

MNNs

A special feedforward network Choosing the
neural network which have the maximum

similarity between the inputs and centroids
of the cluster

Solving the problem of low
prediction accuracy [30,50]

RNNs The RNNs are developed with the
development of deep learning

Solving the problems of long-term
dependence which are not captured

by the feedforward network
[12,31,38,51,52]

LSTMs Its structure is similar to RNNs
Memory cell state is added to hidden layer

Addressing the well-known vanishing
gradient problem of RNNs [15,26,45,53,54]

TLRN
Its structure is similar to MLPs

It has the local recurrent connections in the
hidden layer

Reducing the influence of the noise
and owning the advantage of

adaptive memory depth
[55]

NARX
Sub-classes of RNNs

Their recurrent connections are from
the output

Solving the problems of
long-term dependence [12]

Elman
A context layer that can store the internal

states is added besides the traditional
three layers

It is useful in dynamic system
modeling because of the context layer [3]

ESN

Different from the above recurrent
neural networks

The three layers are input, reservoir, and
readout layer

To overcome the problems of the local
minima and gradient vanishing [3]

RESN They are based on the structure of ESN which
has a large and sparsely connected reservoir

To overcome the ill-posed problem
existing in the ESN [3]

Hybrid
methods

The combination of conventional or
preprocess methods with ANNs

The internal integration of ANN methods or

Exploring the advantages of
each methods [56]

CNN Input, convolution, fully connection, and
output layers

An emerging method to solve the
dissolved oxygen prediction problem [57]

SODBN
They are based on the structure of DBN

whose visible and hidden layers are
stacked sequentially

Investigating the problem of
dynamically determining the

structure of DBN
[58]
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TDNNs is a subclass of MLPs that learns temporal behavior from continuous past and present
signals [36]. The major difference between RBFNNs and MLPs is that the hidden layer of RBFNNs is
self-organizing while the latter is not, although the structure of RBFNNs is similar to MLPs. As the
center of RBF, the training weights can be defined by a clustering algorithm. For example, the k-means
algorithm is a commonly used one [24]. GRNNs is a modified form of the RBFNNs model, but it
differs from RBFNNs in structure. Patten and summation layers are located between the input and
output layers [27]. The training between the input and pattern layer of GRNNs is equivalent to the
research on the input and hidden layer of the RBFNNs. WNNs have made some changes based on
the traditional MLPs, in which the non-linear sigmoid activation functions is replaced by the Morlet
wavelet function commonly used in the WNNs hidden layer. Therefore, WNNs are suitable for solving
non-stationary time series problems [64]. The biggest innovation of ELMs is the random selection of
hidden nodes and the use of a least squares method to determine the output layer weight. CCNN is
different from the above feedforward networks because it constructs the neural network without a
hidden layer at first and automatically adds hidden units instead of fixing the network architectures
and then training the weights and thresholds. The first step of MNN, a special feedforward network,
is data clustering using the fuzzy c-means method [65]. The second step is updating the clusters by
adding the new datasets. To achieve better prediction accuracy, a neural network with the maximum
similarity between the inputs and centroids of the cluster is chosen.

3.2. Recurrent Architectures

Compared with feedforward ANNs, RNNs differs in that neurons within a layer are interconnected
and allow feedback [53]. Different types of RNNs are developed so that the neural networks have
better memory ability (see Figure 1). LSTM, an improvement over RNN, adds a processor called
“memory cell state” to its hidden layer to determine whether the information is useful or not [66],
and this is also suitable for SRU (Simple Recurrent Unit) [67]. Furthermore, the forget gate also
determines what information should be discarded from the cell state [66]. TLRN has a similar structure
to MLPs, but has local recurrent connections in the hidden layer (see Figure 3), with the advantages of
low noise sensitivity and adaptive storage depth [55]. NARX networks are also sub-classes of RNNs
and can be utilized to establish a long-term temporal relationship. The recurrent connections of NARX
networks come from the output (see Figure 3) [12]. In addition to the input, hidden, and output
layers, the Elman neural network has a context layer to store the internal states [3]. The Elman neural
network is sensitive to the historical information of inputs because of the self-connections of the context
nodes (see Figure 3). The three layers of ESN are different from the above recurrent neural networks.
The three layers are input, reservoir, and readout layer. The feature of the reservoir layer is randomly
and sparsely connected. The echo state property whose internal states are particularly dependent on
the inputs is the key to the ESN. To overcome the ill-posed problem existing in the ESN, an RESN
method using the ridge regression algorithm instead of linear regression to calculate output weights is
proposed [38].

3.3. Hybrid Architectures

There is a growing tendency to use hybrid ANNs models, which play a huge role in modeling,
for their ability to integrate with other conventional and more advanced modeling techniques [68],
to create flexible and efficient models in recent years (see Figure 1). Hybrid models are divided into three
categories, namely model-intensive, technique-intensive, and data-intensive [27]. The model-intensive
approaches model the sub-components of the whole physical system and aggregate the overall response
of each model. Relevant forms, such as LSTM-RNN [26] or FNN-WNN [69], are model-intensive
methods. The core of the technique intensive methods is to develop a modeling framework that is
able to take advantage of different technologies. Methods that combine ensemble approaches [32]
or time series models that remove trends or periodicities like Autoregressive Integrated Moving
Average-Radial Basis Function neural networks (ARIMA-RBFNNs) [70] or ARIMA-ANN [71] are
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technique-intensive methods. In this review, data-intensive approaches are to combine different
technologies to preprocess the data. Wavelet analysis approaches such as WANN [72] can provide
some useful information about the physical structure of the data. ANNs models the approximation and
details component from the discrete wavelet transformation (see Figure 4). Dimensionality reduction
methods such as PCA can reduce the dimension of the input data space to prevent redundancy [73].
Then, ANNs models some aggregative indices obtained by PCA (see Figure 4). Clustering methods [50]
such as K-means-MLP [43] identify the data belonging to a particular class. Other data-intensive
approaches include decomposition [5] and evolution-related [16] methods. ANN models the Intrinsic
Model Function (IMF) obtained from the decomposition of complicated signals.
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3.4. Emerging Methods

CNN is a feed-forward neural network, primarily used in the image field. Input, convolution,
pooling, full connection, and output layers are the basic elements of the traditional CNN. In recent
years, CNN has been used as an emerging method in water quality prediction. The operation of
convolution can be implemented more than one time to reveal the relationship between the parameters
hidden in the input matrix [57]. However, since the purpose of the prediction model is to extract
potential factors rather than simply raise the convolutional layer’s results to a higher level, the pooling
layer is removed (see Figure 5). In the meantime, the number of calculations can be reduced.
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Figure 5. The architecture of a Convolutional Neural Network.

Deep belief network (DBN) is a kind of neural network based on deep learning which is similar to
feedforward structure and has been widely used in recent years. The blue virtual box in Figure 6 shows
several visible and hidden layers, stacked in order to make up the DBN [74]. However, the researches
about dynamically determining the structure are seldom investigated. To overcome the limitations
above, a SODBN has been proposed. The structure of the SODBN is not determined by artificial
experience but the automatic growing and pruning algorithm (AGP) [58]. Especially, the hidden layers
and neurons are changed by the AGP at first. Then, the weights of the SODBN are continuously
adjusted in the process of self-organization. Finally, some aspects of network performance, such as
running time and prediction accuracy have been improved.
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4. Artificial Neural Networks Models for Water Quality Prediction

From 2008 to 2019, the use of the ANN technique has been very popular in the field of water quality
prediction. Many researchers have utilized ANNs to model and predict water quality. Dogan et al. [75]
adopt ANN to predict the BOD, which is difficult to measure and needs at least five days to get the final
results in WWTP. Results showed that COD was the most effective variables on BOD estimation after
conducting the sensitivity analysis. Elhatip and Kömür [76] revealed that ANN techniques depend
on using more input data to solve the water quality problems, although they did not illustrate the
size of the appropriate datasets. Palani et al. [40] tested MLP and GRNN models with various input
selected by stepwise constructive methods for multistep prediction of S, DO, and Chl-a. They pointed
out that the limited data set was one of the drawbacks of their research and encouraged others
to collect more data to recalibrate and revalidate the model. Wang et al. [19] employed a typical
three-layer of MLP structure [77–89] with the BP algorithm to achieve Chl-a prediction. They divided
the dataset into training (75%) and testing parts (25%). Results indicated that ANNs could establish
a stable and effective model for Chl-a prediction. This result is also suitable for other parameters
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prediction. Yeon et al. [90] evaluated ANN, MNN, and adaptive neuro-fuzzy inference system (ANFIS)
performance in 1-h and 2-h ahead prediction of DO and TOC. They added Q to inputs because rainfall
affected the water quality prediction. It was found that using the Levenberg–Marquart algorithm to
train the MNN could provide the least error and better results. Dogan et al. [91] divided the data
into training (60%), validation (20%), and testing sets (20%). They adopted a sensitivity analysis
method to find out the important water quality parameters and excluded fewer influence variables,
resulting in a compact network. Miao et al. [92] used BPNN to COD and ammonia nitrogen (NH3-N)
prediction. The whole datasets were normalized at first and then divided into training (80%) and
testing (20%) sets. The sigmoid transfer function that can establish the random nonlinear map between
inputs and outputs were adopted. Oliveira Souza da Costa et al. [93] divided the data into training
(50%), validation (25%), and testing sets (25%). Shen et al. [94] employed a golden section method
to select the hidden layer nodes of BPNN. Singh et al. [95] investigated the partition approach in
evaluating the relative importance of eleven environmental variables to the output layer. They divided
the datasets into training (60%), validation (20%), and testing sets (20%). Results showed that the
predicted values of the ANN model were close to the measured value. Yeon et al. [96] combined Precip
and Q to realize a one-step prediction of Q. Then, the connected system utilized the prediction value
of Q and historical TOC to fulfill the one-step prediction of TOC. Finally, the connected system had
better performance than a single ANN model. Zuo and Yu [97] pointed out that ANN models could
process complex and multivariable problems. Akkoyunlu and Akiner [98] verified the feasibility of
ANN technique, data-driven models, in predicting DO. Results showed that the ANN method was
superior to the nonlinear regression (NLR) technique. Chen et al. [99] scaled the datasets to lie between
0 and 1 [9,16,59,62,100–104] so that it could be compatible with the sigmoid transfer functions used in
the hidden layer and applied the constructive and pruning of stepwise methods that aim to maximize
the model’s performance through a constant adjustment to surface water quality prediction. Markus et
al. [105] purely relied on a trial-and-error approach to determine the model structure and dividing the
data into training (50%) and testing sets (50%). Result found that ANN could improve the forecast
accuracy of NO3 compared with previous studies. Merdun and Çinar [106] preprocessed the data set
by normalization and moving average techniques. They improved the representation of the acquisition
data through a data preprocessing technique. Ranković et al. [107] used a sensitivity analysis method
to determine the influence of input variables on outputs and found out that 15 hidden neurons gave
the best choice. Zhu et al. [108] not only predicted the water quality using ANN models but also
introduced a remote wireless monitoring system. Banerjee et [109] checked that ANN models were
an accurate alternative to the numerical methods. They used quick propagation algorithm to realize
super linear convergence speed. Han et al. [110] demonstrated the effectiveness of a flexible structure
RBFNN which using neuron activity and mutual information (MI) to add or remove hidden neurons to
reduce network complexity and improve computational efficiency. The connected weights are trained
by an online learning algorithm. Zare et al. [10] used a UV-visible photometer to measure the NO3

concentration in the laboratory.
Asadollahfardi et al. [111] utilized Q to forecast TDS when TDS was not available.

Al-Mahallawi [77] revealed that the reason why ANN models could model complex water quality
phenomena was that they provided a non-linear function mapping from input to corresponding network
outputs. Ay and Kisi [112] divided the data into training (50%), validation (25%), and testing sets (25%).
In the three parts of data division, the validation set can be implemented more than once to monitor
whether the model is overfitting or not. Comparison results showed that the RBNN model performed
better than MLP in DO prediction. Baek et al. [50] chose the neural network of MNN, which has
the maximum similarity between the inputs and centroids of the cluster, to solve the problem of low
prediction accuracy. They introduced Gradient descent with momentum and Levenberg–Marquardt
backpropagation (TRAINLM) to train the neural network. Bayram et al. [79] used the one-year Tur
data whose time step is fortnightly to achieve the prediction of SS. Gazzaz et al. [113] scaled the data
into the scope between 0 and 1 and utilized cross-validation to improve the generalization ability
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and limit the overfitting problem. Cross-validation was suitable for the situation where the size of
the training data was small or the number of parameters in the model was large. Overfitting refers
to the situation that when the error on the training set is driven to a very small value, the test data
are presented to the network with a large error. That means the network has memorized the training
examples, but it has not learned to generalize to new situations. Hong [78] took the AT, AP, WD,
and WS variables measured by meteorological station into account. They divided the data samples
into training (70%) and testing (30%) sets. Results indicated that MLP also could deal with large data
samples. Liu and Chen [114] recorded the location information to complete the three-dimensional
DO prediction. Tota-Maharaj and Scholz [22] assessed the influence of bp, Levenberg–Marquardt,
Quasi-Newton, and Bayesian Regularization algorithms on BOD prediction. Results showed that the
combination of bp and ANN had low minimum statistical errors. Kakaei Lafdani et al. [115] firstly used
M-test to obtain several data points through the winGamma software. Then, the genetic algorithm
(GA) method was implemented to make the best combination which extracted from a list of possible
inputs as inputs. Karakaya et al. [116] conducted research, namely temporal partitioning, to divide
the data into diel, diurnal, and nocturnal in order to obtain continuous records, and chose MLP as
a prediction model. Antanasijević et al. [117] utilized Monte Carlo simulation (MCS), a sensitivity
analysis method that involves repeatedly generating a probability distribution of random input
values, to ultimately create an ANN model with fewer inputs. Moreover, other input selection
techniques include correlation analysis and genetic algorithm were tested. Chen and Liu [118]
utilized sigmoid and linear transfer function in the hidden and output layer, respectively. Results
showed that ANFIS and BPNN could predict DO with reasonable accuracy. Han et al. [119] adopted
linear interpolation whose data increment was calculated by the slope of the assumed line to fill the
missing data. Then, hierarchical ELM based on a hierarchical structure was chosen to model the
DO, pH, and SS. The advantage of hierarchical ELM is able to learn sequential information online.
Results demonstrated the effectiveness of the proposed methods. Researchers tended to divide the
training set data into 70% to 90% of the total data [39,42,49,52,72,120–127]. Iglesias et al. [35] divided
the data into training (90%) and testing sets (10%). Then, they applied three typical MLP architectures
to complete the Tur prediction whose inputs were NH3-N, EC, DO, pH, and WT. Klçaslan et al. [128]
randomly divided the datasets and pointed out that when the data tended to be roughly periodic after
a year, the time length of data acquisition, covering a long period such as a year or more was highly
recommended in order to capture long-term variation. Yang et al. [129] found the most significant
parameters by using analysis of variance (ANOVA) techniques. Result indicated that rainfall records
were the most significant parameters for turbidity forecasting. Khashei-Siuki and Sarbazi [130] took
the normalization step to control the scale of each feature, in the same range in case the difference
of the order of magnitude will lead to the dominance of larger attributes thereby slowing down the
iterative convergence. However, they did not give clear details about normalization. Gholamreza
et al. [36] used time delay cells of TDNNs, designed based on the structure of MLPs, to deal with
the dynamic nature of sample data. Then, they applied factor analysis to select the model inputs.
Results illustrated that TDNN with 2 hidden layers of 15 neurons in each of the layers was the best
architecture. Nourani et al. [9] provided a new solution to EC and TDS prediction. When the predictive
variables were not available, researchers could realize the final predictions through modeling other
relevant variables. They utilized monthly meteorological data RF, RO, and WL to forecast EC and TDS
due to the lack of historical records of outputs. Zounemat-Kermani [82] introduced a Quasi-Newton
method, Broyden–Fletcher–Goldfarb–Shanno (BFGS), to train the parameters of MLP in SS forecasting.
Hameed et al. [60] conducted the sensitivity analysis of the obtained data and scaled it to between 0.1
to 0.9. Results indicated that RBFNN could achieve high-performance accuracy. Heddam and Kisi [47]
utilized open-source data from Eight United States Geological Survey stations (USA) and preprocessed
the data by standardization method. Several ELM models are applied for DO prediction. Yousefi [131]
discussed the Garson method to find the relative importance of each input variable. Results indicated
that including meteorological and hydrologic variables could improve the accuracy of the models
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with fewer influential variables. Elkiran et al. [32] and Najah et al. [132] demonstrated the feasibility
of the ANFIS method in predicting river water quality. This model overcame the shortcomings of
ANN models such as overfitting and local minima, and combined fuzzy logic with ANN to provide
a method to solve uncertain problems. Sinshaw et al. [133] took interrelated and easily measurable
parameters of pH, EC, and Tur, as inputs to realize TN and TP predictions.

Liu et al. [3] pointed out that if more historical data were available [15], ANN models may provide
better predictions than a relatively small data set. Antanasijević et al. [41] tested the performance
of RNN, GRNN, and MLP in small samples prediction. Results indicated that the error of RNN
in test data was less than 10%. Besides, the error of GRNN was lower than MLP. Evrendilek and
Karakaya [55] deleted the missing data directly. Then, discrete wavelet transforms (DWT) with the
orthogonal wavelet families was applied to denoise the data measured by proximal sensors. The result
indicated that the modeling effect of using TLRN to the data after noise reduction was superior
to TLRN, TDNN, and RNN. Chang et al. [12] attempted to use NARX, a dynamic neural network,
to model ten-year seasonal water quality data. Then, 42-fold cross-validation was used to divide the
data. Results demonstrated that the NARX network outperformed BPNN because it could capture the
important dynamic features of TP data. Wang et al. [6] tested the prediction performance of LSTM,
BPNN, Online sequential (OS)-ELM in DO, and TP. The results indicated that LSTM was more accurate
and generalizable than the above feedforward ANNs. Zhao et al. [38] used an improvement of the
ESN, namely RESN, to predict the BOD and TP. This new method used the ridge regression algorithm
to calculate the output weights to solve the ill-posed problem existing in the ESN. Hu et al. [66]
fully preprocessed the acquired water quality data. They firstly imputed, corrected, and denoised
the data by using linear interpolation, smoothing which could attenuate high-frequency signals,
and moving average filtering techniques. Then, correlation analysis, which belongs to analytical
methods, was carried out. The LSTM was adopted for model establishment. Experimental results
showed that the prediction accuracy was high and could reach 98.97% and LSTM was suited for
long-term prediction. J. Liu [67] introduced Back-propagation through time (BPTT) to train the SRU
model. The main difference between SRU and RNN is the “cell state” part added in the hidden layer.
They proposed an Improved mean value method to solve the breakpoint phenomenon of the mean
value method and the linear interpolation method. Results showed that the prediction error was small,
within the range of 1%. Lim et al. [53] converted the irregular data into daily data by using a linear
interpolation method and provided a solution to abnormal data identification. They used a fixed
threshold method to set the upper and lower threshold ranges and proved that linear interpolation had
better robustness than spline interpolation, nearest-neighbor interpolation, and cubic interpolation
according to model results when water quality changed dramatically. Results showed that the removal
of abnormal data beyond the threshold value could preliminarily improve the data convergence.

Partal and Cigizoglu [134] decomposed the measured SS data into wavelet components via
DWT. The DWT-ANN method could more accurately approximate the peak values, which have lesser
distributions compared with non-peak values. Anctil et al. [135] applied MLP to forecast daily SS
and NO3 without considering missing data. They applied a self-organizing map (SOM), a stratified
method, to construct a topological map to visualize the clustered input variables, thereby ensuring that
the statistical properties of the subsets were similar. Levenberg–Marquardt algorithm [24,136–139]
and Bayesian methods were conducted to train the network. Results showed that ANN models could
achieve high accuracy. Sahoo et al. [140] used the SR and AT meteorological data to achieve the WT
prediction. They introduced micro-genetic algorithms (u GA), a creep mutation in small populations,
to update the weights. Wu et al. [141] reported that the GA-BP algorithm whose relative errors were
below 35% was more suitable for TP, TN, and Chl-a prediction than simple multivariate regression
analysis. Kişi [142] utilized neural differential evolution (NDE) models, a combination of neural
networks and differential evolution approaches, to model SS. The result showed that NDE has a low
mean square error. Ömer Faruk [71] investigated the performance of ARIMA-ANN in WT, DO, and B
prediction. Afshar and Kazemi [143] combined PSO and ANN methods in water quality parameter
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prediction. Han et al. [1] used cross-correlation and mutual information to select the input to achieve
the prediction of BOD and DO, respectively. The conjugate gradient algorithm was carried out to train
the model. Areerachakul et al. [144] presented two cluster technique, namely K-means, fuzzy c-means
(FCM) in DO prediction. Results indicated that the performance of hybrid methods was better than
single models. Y. Wang [64] designed a missing–refilling scheme which divided the data into incidental
missing (ID) and structural missing (SD). Then, a temporal exponentially moving average was applied
to fill the missing data. They investigated the time relationship of the DO, NH3-N univariate time
series using a bootstrapped wavelet neural network (BWNN). Aleksandra and Antanasijevi [42] used
the databases of the European Statistical Office and World Bank to complete the BOD prediction.
Ay and Kisi [43] integrated k-means clustering and MLP in daily COD concentration modeling by
using SS, pH, and WT. Result indicated that this hybrid methods performed better than MLP, RBFNN,
and two different ANFIS approaches (subtractive clustering and grid partition). Ding et al. [120]
collected 23 water quality parameters and considered the problems of data dimensionality. Therefore,
the PCA techniques was used to compress the original data into 15 aggregative indices. Then, the GA
approach was applied to optimize the parameters of BPNN. The result showed that the average
prediction accuracy was up to at least 88%. Gazzaz et al. [145] developed a data mining method,
namely re-sampling, to solve the unbalance problem. Heddam [146] recommended collecting more
than one-year water quality data, because they wanted to include all four seasons in the validation
and testing phases. Liu et al. [147] proposed a hybrid model, namely empirical mode decomposition
(EMD)-BPNN. BPNN predicted each sub-series which are IMFs and the residue decomposed by EMD.
The results demonstrated that a hybrid model could capture the non-stationary characteristics of WT
after EMD. Qiao et al. [44] scaled the datasets between -1 and 1 and then used phase space reconstruction
(PSR) of chaos theory to extract much more information from BOD datasets. Results showed that the
hybrid model, namely chaos theory-PCA-ANN, had high prediction accuracy. Sakizadeh et al. [73]
applied early stopping which is fit for small networks and datasets to determine the model structure.

Yu et al. [148] utilized 5-fold cross-validation to divide the data and applied RBFNN to fuse data
from multiple sensors. The convergence rate and the solution accuracy could be improved through
the variant of PSO (IPSO). The comparison of prediction results validated the effectiveness of the
hybrid model. Zhao et al. [149] converted the signal into an output linear system by the Kalman
filter. The result showed that this hybrid method was a good and effective approach to water quality
prediction. Huang et al. [69] simulated the nonlinearity of data by the combination of the neural
network, fuzzy logic, wavelet transform, and the GA. Results showed that this hybrid model could
handle the problems of data fluctuation. Li et al. [123] adopted the most extreme form of K-fold
cross-validation, namely leave-one-out cross-validation to divide the datasets. Zhang et al., 2017 [16]
divided the dataset into training (98%) and testing sets (2%) and adopted the PSO algorithm to
accelerate the training speed of WNN. Karaboga proved that artificial bee colony (ABC) algorithms
were more precise than GA and PSO [150]. Chen et al. [4] proposed an improved method of ABC
(IABC) which added the optimal and global optimal solution to the updated formulas. The result
indicated that the limitation of the method above was that water quality data needed to obey the
normal distribution appropriately. Li et al. [54] used sparse auto-encoder (SAE) to pre-train the hidden
layer data because SAE contained deep latent features. Qiao et al. [58] determined the structure of DBN
by growing and pruning algorithms instead of artificial experience (SODBN). Results showed that
SODBN could short running time and improve accuracy. Ta and Wei [57] applied Adam optimization
method which could handle sparse gradients on noisy problems to train the parameters of CNN.
Zhou et al. [151] focused on the Improved Grey Relational Analysis (IGRA) method which calculated
the similarity and proximity by relative area change ratio. Fijani et al. [5] used variational mode
decomposition (VMD) algorithm to decompose the highest frequency component produced by a
complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN).
ELM was applied for modeling. Results indicated that this hybrid model could reduce error whether
in root mean square or mean absolute error. Jin et al. [152] proposed an improvement variant namely
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improved genetic algorithm (IGA) to avoid the situation where excellent individuals are discarded by
the GA. Li et al. [15] introduced evidence theory, that has good data fusion ability, since it is able to
reason with uncertainty to synthesize the evidence from SRU, Gated Recurrent Unit (GRU), LSTM
sources in DO, pH, TP prediction, and eventually reached a certain level of belief. The improved
probability assignment function of the evidence theory, designed based on the softmax function,
could solve the failure of weight allocation problems existing in the traditional probability assignment
function. As a general framework of uncertain reasoning, the application of evidence theory can be
further extended. Tian et al. [153] combined transfer learning (TL) and ANNs approaches which do
not require a large amount of training data because TL has the ability to transfer knowledge from past
tasks to predict Chl-a dynamics. The biggest difference between TL and traditional ANNs methods is
that the former does not need to learn each task from scratch while the latter does. Results indicated
that the hybrid models enhanced the generalization ability compared with the dropout and parameter
norm penalties methods in the long-term application. At the same time, the impact of mutable data
distribution on the models was decreased. Yan et al. [154] utilized mean value method using a median
of k data before and after to correct wrong data and got the missing data by the values of model
prediction of other water quality variables at the missing point. The restricted condition of the model
was that the data were appropriately and normally distributed. Therefore, it is uncertain whether
the above method can be applied to other prediction tasks that do not meet the above conditions.
Yan et al. [68] proposed a hybrid optimized algorithm, namely PSO and GA, to optimize BPNN with
reasonable accuracy. Y. Liu [45] investigated the DO prediction, which considered a temporal and
spatial relationship. Spatial relationship refers to the spatial correlations between external variables
instead of the geographic distributions. The newly proposed attention-RNN model achieved excellent
performance whether in short-term and long-term prediction. Zounemat-Kermani et al. [63] tested the
performance of decomposition approaches, DWT and VMD, in DO prediction. They concluded that
these two methods are an alternative tool for accurate prediction when the input was combination III
and model was MLP.

5. Result

The year of the publication is analyzed at first. Figure 7 plots the number of articles published
from 2008 to 2019 each year. There is a growing number of publications since 2008 that use the ANN
models to predict the water quality, including above 50% of the papers published since 2015, despite the
fact that there are some fluctuations in the quantity of papers—which was in decline in 2010 and
2011. The increasing popularity of ANNs in the field of water resources [155] and environmental
engineering [16] may be explained by the major advantage of the ANNs—that researchers can utilize
them to model nonlinear and complex phenomena even if they do not fully understand the underlying
mechanisms [156]. The popularity of ANNs above is also in agreement with the observations of other
researchers [27,30]. Moreover, the number of papers for different prediction variables is summarized in
Figure 8. The majority of the reviewed papers used chemical water quality variables, such as DO, BOD,
and COD as outputs [30] in the systems of the river, lake, and WWTP. Furthermore, attention was also
directed towards physical variables like pH, WT, and biological variables such as Chl-a.

The number of diverse forecast lengths is shown in Figure 9. The forecast length in this review
refers to the length of time to predict in advance. For example, if researchers used the historical data
of the previous three days to predict the values of the current day, then the forecast length would be
1 [157]. However, 107 papers did not provide details about the forecast length which cast ambiguity
and doubts to researchers in parameter settings [31]. It seems ideal to utilize ANN models to capture
short-term (length = 1) relationships, as the process was carried out 30 times in 44 papers which provide
details about the forecast length, while only 10 papers consider long-term (length > 1) forecasting.
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As mentioned in the Introduction, this review not only includes more water quality parameters but
also more extensive research scenarios compared with the previous reviews. On the whole, there are
23 types of water quality variables examined in this review. They are mainly physical, chemical,
and biological variables. In the field of water quality prediction, relatively mature sensors include
DO, WT, Chl-a, pH, EC, and NH3-N. There are different application scenarios among the investigated
water quality variables. Table 3 summarizes the main application scenarios of various water quality
variables. Researchers conducted more prediction studies on DO, WT, Chl-a, pH, EC, NH3-N, Tur,
and S than other water quality variables. It can be seen from Table 3 that there are simple and practical
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sensors that can measure these water quality variables. Therefore, the extensive research of the above
variables may benefit from the wide application of these sensors [148].

Table 3. Basic information of water quality variables.

Water Quality
Variables Categories Unit Major

Sensors Research Scenarios

DO chemical mg/L X
river, lake, reservoir, WWTP, ponds, coastal waters,

creek, drain
BOD chemical mg/L - river, lake, WWTP, mine water experimental system
COD chemical mg/L - river, lake, reservoir, WWTP, groundwater, mine water
WT physical ◦C X river, lake, ponds, catchment, stream, coastal waters

Chl-a biological µg/L X lake, reservoir, surface water, coastal waters
pH physical none X river, lake, WWTP, stream, coastal waters
SS physical mg/L - river, stream, coastal waters, creek, catchment
EC physical us cm−1 X river, lake, reservoir, groundwater, stream
TP physical µg/L - river, lake, WWTP

NH3-N chemical mg/L X river, lake, reservoir, groundwater experimental system
Tur physical FNU X river, stream

NO3 chemical mg/L - river, groundwater, catchment, wells, aquifer
experimental system

TDS physical mg/L - river, groundwater, drain
S physical psu X groundwater, coastal waters

TN chemical mg/L - lake, WWTP, coastal waters
B physical mg/L - river

TH physical mg/L - river
TOC chemical mg/L - river
TSS physical mg/L - river

COD Mn chemical mg/L - river
NO2 chemical mg/L - groundwater

P physical mg/L - experimental system
SD physical cm - lake

Table 4 summarizes the data set sizes of feedforward and recurrent neural networks involved in
this review. According to Table 4, the number of samples applied for water quality prediction varies
from 28 [39] to 45,594 [78] which illustrates the fact that ANN models are capable to deal with different
size of the dataset. However, there has been no research studying the optimal amount of data required
for each ANN model. As can be seen from Table 4, the recurrent neural networks [55] generally need
more datasets compared with feedforward neural networks [139]. Research into the water quality
parameter prediction have focused on rivers, WWTP, lake, and reservoir. In contrast, researchers
have done little on artificial facilities, such as stream and pond. In the river system, most researchers
use feed-forward neural networks for modeling, which may be due to the fact that the river system
can be well analyzed using only the feed-forward neural network. This result also applies to WWTP
systems. In the lake system, recurrent neural networks have shown significant results. These two
kinds of neural networks have applications in reservoirs. In contrast, feed-forward neural network can
predict water quality with relatively little data. In addition to being able to perform prediction tasks,
GRNN is also suitable for small data sets (28, 32, 61, 151, 159, 265 samples) compared with other types
of ANNs [24,39–43], so researchers should pay some attention to it.
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Table 4. Datasets of feedforward and recurrent neural networks.

Categories Authors (Year) Methods Scenario (s) Time Step Dataset (Samples)

Feedforward

[39] GRNN, BPNN,
RBFNN lake weekly 28 (6 months)

[40] ANN(MLP), GRNN coastal waters No details 32 (5 months)
[59] BPNN river No details 39 (3 days)
[158] ANN mine water No details 73
[97] ANN groundwater No details 97
[106] ANN(MLP) surface water No details 110
[159] MLP river No details 110 (8 hours)
[130] ANN(MLP) plain No details 122
[128] ANN groundwater monthly 124 (1 year)
[80] ANN(MLP) stream No details 132 (11 months)
[79] ANN(MLP) basin fortnightly 144 (1 year)
[131] ANN(MLP) river monthly 144 (12 years)
[121] RBFNN river weekly 144

[24] GRNN, ANN(MLP),
RBFNN, MLR river monthly More than 151

samples (6 years)

[42] GRNN, MLR Open-source
data No details 159 (9 years)

[160] ANN(MLP) river monthly 164 (over 6 years)
[107] ANN reservoir No details 180 (3 years)
[22] ANN system No details 195 (4 years)
[161] ANN(MLP), RBFNN river monthly 200 (17 years)
[139] ANN river No details 200 (16 years)
[93] ANN river No details 232 (3 years)
[63] CCNN, MLP river half a month 232 (12 years)
[122] ANN river No details 252 (21 years)
[113] ANN(MLP) river No details 255 (7 months)

[43] ANN(MLP), RBFNN,
GRNN WWTP daily 265 (3 years)

[119] ELM WWTP daily 360
[75] ANN WWTP daily 364 (1 year)
[118] BPNN reservoir No details 400 (20 years)
[94] BPNN NA No details 500
[95] ANN river monthly 500 (10 years)
[10] ANN groundwater 30 minutes 818 (nearly 17 days)
[162] BPNN river No details 969
[77] MLP, RBF, GRNN Well No details 975 (16 years)
[163] ANN(MLP) stream daily 982 (6 months)
[88] MLP lake No details 1087 (6 years)
[133] ANN lake No details 1217

[127] RBFNN, GRNN,
MLR river No details More than 1300

samples (6 years)
[36] RBFNN, TDNN river monthly 1320 (10 years)
[117] GRNN river No details 1512 (9 years)
[50] MNN WWTP No details 1900
[83] ANN(MLP), RBFNN river daily 2063 (6 years)
[137] ANN river No details 3001

[112] RBFNN, ANN(MLP),
MLR

upstream and
downstream daily 2063 and 4765

samples (18 years)

[115] ANN river daily more than 3000
samples (11 years)

[116] ANN lake 15 minutes 6674 (86 days)
[164] ANN river No details 13,800 (5 years)

[25] GRNN river No details more than 32,000
samples

[47] ELM, ANN(MLP) Open-source
data hourly 35,064 (4 years)

[78] ANN(MLP) power station 10 minutes 45,594 (2 years)
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Table 4. Cont.

Categories Authors (Year) Methods Scenario (s) Time Step Dataset (Samples)

Recurrent

[41] Elman, GRNN,
BPNN, MLR river monthly or

semi-monthly 61

[12] NARX, BPNN, MLR river monthly 280 (11 years)
[26] LSTM river 12 hours 460 (14months)
[6] LSTM, BPNN lake monthly 657 (7 years)

[66] LSTM, RNN Mariculture
base 5 minutes 710 (21 days)

[67] SRU Mariculture
base No details 710

[3] Elman pond No details 816 (34 days)
[153] RNN, LSTM reservoir 5 minutes 1440 (5 days)
[15] RNN, BPNN river No details 1448
[165] LSTM lake No details 1520
[54] LSTM, BPNN pond 10 minutes 2880 (20 days)
[38] RESN WWTP No details 5000
[45] RNN Freshwater 10 minutes 5006 (1 year)
[55] TLRN, RNN, TDNN lake 15 minutes 13,744 (573 days)
[154] LSTM WWTP hourly 23,268 (4 years)

The artificial neural network has been widely used in water quality prediction. If researchers only
look at the modeling process, various studies follow some of the steps of the modeling framework
below (see Figure 10).
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5.1. Data Collection

The data collection process is not easy due to the requirement of costly measuring instruments
(e.g., water quality sensors, meteorological stations), laboratory equipment, and good operating
conditions. Water quality variables are primarily collected by the sensors. Meteorological variables,
such as AT, WS, RF, SR, Precip, and AP, often influence water quality. Therefore, some researchers took
the meteorological station to obtain the data. In addition, some parameters, such as BOD, COD, need to
be measured by auxiliary laboratory equipment [44]. Location information is essential when researchers
want to make a three-dimensional prediction of water quality. In the above case, the required data is
obtained through the device (see Figure 10). In some studies [42,47], the researchers conduct studies
based on an open-source dataset.

Based on the obtained data, researchers can perform three modeling types. The first type
of modeling is where the researcher models only historical information about the output variable.
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The second type of modeling is when the output variables are difficult to measure, and the researchers
can use easily measured water quality or meteorological data to complete the prediction. In the first
two modeling types, the researchers utilized univariate historical information. However, for the third
type of modeling, the researchers used multivariable historical information. Overall, the researchers
utilized water quality, atmosphere, and other variables such as location data for the prediction task.
The above three modeling types are analyzed from the perspective of data. If analyzed from the
perspective of studying the temporal and spatial relationship between input and output, the above
modeling types can be further divided.

5.2. Output Strategy

The output strategies can be further divided into five categories based on the three modeling
types (see Figure 10). Temporal relationship refers to the relationship learning in the time
dimension. Spatial relationship [45] refers to the spatial correlations between external variables
(see Figure 11). The black origin describes a variety of input variables. Table 5 summarized
the detailed descriptions of the five output strategies. Simply speaking, external variables
are the other variables (more than one) in Multivariate-Input-Itself-Other(multi)-Output.
Univariate-Input-Itself-Output [64] and Univariate-Input-Other(one)-Output [79] refer to the univariate
case, while Multivariate-Input-Other (multi)-Output [35], Multivariate-Input-Itself-Other-Output [52],
and Multivariate-Input-Itself-Other (multi)-Output are multivariate [45] (see Table 5). The model learns
the temporal relationship from five output strategies, while the spatial relationship is only considered
in Multivariate-Input-Itself-Other (multi)-Output. The distinctions between Univariate-Input-Other
(one)-Output and Multivariate-Input-Other (multi)-Output are not only the number of input
variables, but also the fact that the former’s output strategy focuses on time series data while
the latter contains more. The main difference between Multivariate-Input-Itself-Other-Output and
Multivariate-Input-Other (multi)-Output is that the former uses the historical information of the output
variable, while the latter does not.
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Table 5. Five different output strategies.

Category Type Relationship Description

Univariate-Input-Itself-Output
(Category 0) Univariate Temporal relationship

The output(s) at a specific point
are learned from its own

historical information

Univariate-Input-Other(one)
-Output (Category 1) Univariate Temporal relationship

The output(s) at a specific point
are learned the historical
information from other

variables (one)

Multivariate- Input-Other
(multi)-Output (Category 2) Multivariate Temporal relationship

The output(s) at a specific point
are learned the historical

information from other variables
(more than one)

Multivariate-Input-Itself
-Other-Output (Category 3) Multivariate Temporal relationship

The output(s) at a specific point
are learned the historical

information from both its own
and other variables

Multivariate-Input-Itself-Other
(multi)-Output (Category 4) Multivariate Temporal relationship

and spatial relationship

The output(s) at a specific point
are learned the historical

information from both its own
and other variables

(more than one)

5.3. Input Selection

There are two main approaches to select the most significant predictors of ANN models which
are model-free and model-based methods (see Table 6) [166]. The biggest difference between the two
methods is that the former does not consider model performance, while the latter does. In the majority
of the studies, many researchers utilized ad-hoc [27] methods to select the inputs, whether in model-free
or model-based methods. Some researchers used cross-correlation and analytical approaches to explore
the linear and non-linear relationship between input(s) and output(s). Other input selection methods
are summarized in Table 6.

Table 6. Model-free and model-based methods in input selection.

Categories Methods Comments

model-free
ad-hoc Based on domain knowledge or casual way
analytic The linear and non-linear relationship between input and output

other IGRA, Garson method

model-based

ad-hoc e.g., trial-and-error
stepwise Constructive and pruning methods

sensitivity analysis e.g., MCS
global optimization e.g., GA

5.4. Data Dividing

Data dividing is an important step in the modeling process (see Table 7). The training set is used for
data samples of model fitting [95]. The validation set, which can adjust the model’s hyperparameters,
is a set of samples set apart during model training. Finally, the testing set is to check the model’s
generalization ability [139] and its error is utilized to compare different model’s predictive performance.
Not all data needs to be divided into three sets, because regularization [55] is an approach that can
divide the datasets into two sets—namely training and validation sets—and has the advantage of
providing more data points for the model training and stopping the models from over-fitting [167].
Data dividing methods can be categorized into supervised and unsupervised methods [31]. There are
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no uniform rules for how to divide the training set, the validation set, and the test set which also
applies to the division of training sets and test sets. Most researchers divided the data either by domain
knowledge or in any arbitrary manner. In the majority of the reviewed papers, the data set was divided
into the training and testing two parts (see the ninth column in Appendix A). The division range of the
training set is from 50% to 98% [16], and the test set varies from 2% to 50% [105]

Table 7. Supervised and unsupervised methods in data dividing.

Categories Methods Comments

supervised
trial-and-error Taking the statistical properties of each subset into consideration

temporal partitioning Dividing the data into diel, diurnal, and nocturnal
M-test The number of the data points was obtained through the winGamma software

unsupervised

ad-hoc Based on domain knowledge or a casual way
random Divide the data randomly

cross-validation e.g., K-fold cross-validation, leave-one-out cross-validation
stratified method e.g., SOM

5.5. Data Preprocessing

It should be noted that data preprocessing is carried out after the data dividing. Normalization,
missing values imputation and data correct are three primary preprocessing methods in the field of
water quality modeling (see Table 8). Most reviewed papers took the normalization step, although
they did not give clear details about normalization. As [31] pointed out, this step requires matching
the range of the predictors to the transfer function in the hidden layer. Range scaling [132] and
standardization [113] are two popular categories in normalization. There are three main scopes,
namely [0, 1], [−1, 1] and [0.1, 0.9], under range scaling. Although missing data often occurs in
transmission, only a few investigated papers dealt with this phenomenon. The majority of researchers
deleted the missing data directly. This is not a recommended practice, as the obtained data are precious
and limited. As a whole, researchers pay less attention to data imputation, correct, and identification
of abnormal data. Table 4 presented some data preprocessing techniques.

Table 8. The data preprocessing approaches.

Categories Methods Comments

Normalization
No details Built-in functions in platforms

Range scaling The scale of each feature is in the same range
Standardization A new variable with zero mean and unit standard deviation

Missing data
imputation

Only mentioned Not recommend
Deletion Not recommend

Linear interpolation The slope of the assumed line to calculate the data increment

Improved mean value method Solve the breakpoint phenomenon of mean value method and linear
interpolation method

Missing–refilling scheme Dividing of ID and SD and using Temporal exponentially moving
average to fill the missing data

Gap-filling Temporal partitioning as gap-filling in order to get continuous
records

Filling in the predicted values
of the model

The missing values of predictors at time T0 are obtained by
prediction values of the model at time T0 by other predictors

Data correct
Smoothing method The moving average filtering can attenuate high-frequency signals
Mean value method Need to be corrected as a median of k data before and after

Data abnormal The fixed threshold method Setting the upper and lower threshold ranges (discard)

5.6. Model Structure Determination

Until recently, a general method for determining the optimal model structure remains unknown [31].
Therefore, different approaches have been adopted to determine the ANN model structure to avoid
the initial difficulty in model building step as much as possible. There are three mainstream
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methods—namely ad-hoc, stepwise trial-and-error, and global methods—for the determination of
an optimal model structure [31] (see Table 9). The neural network structure defines the functional
form of the input–output relationship [59]. The model structure determination, an essential step in
the model development, refers to the number of layers, the number of nodes in each layer and the
way they connect [30], aiming to strike a balance between network complexity and generalization
ability [27]. The model structure determination and model training process are often conducted
together. For example, when the trial-and-error method is implemented, the weights of the MLPs are
optimized at the same time. Categories and comments on the ANN methods in the model structure
determination are given in Table 9. M, N, and O are the number of neurons of the hidden layer,
input layer, and output layer. A is a constant from 1 to 10. Sqrt is a mathematical function [83] used to
calculate the square root of a non-negative real number. Nearly half of the investigated papers did not
provide details on the methods used to determine the ANNs structure. When using fixed network
structures such as GRNNs, this step is not necessary to carry out, although its proportion is relatively
small compared with papers that did not mention this step (see the last two lines in Table 9). In 73 of
the 90 times which provide details of the methods, ad-hoc approaches were utilized to determine the
structure of model. That is to say, most studies still rely on trial-and-error approach to determine the
model structure. This also reveals that researchers have not been very innovative in the methodology
of model structure determination. Seven empirical formulas can help to determine the structure of
the model to a certain extent in the investigated articles. Table 9 also presents the various global
approaches and their improvements in the reviewed articles.

Table 9. Three main model structure determination methods.

Categories Methods Comments Typical Examples

Ad-hoc

Empirical formula
and trial-and-error

approach

Rule 1: M is less than N minus 1
Rule 2: one range of M is equal to the sqrt of N

plus O and finally plus A
Rule 3: the other range of M is equal to log base

2 logarithm of N

[123]

Rule 4: M is equal to 5 multiplied by sqrt of N [102]
Rule 5: M is equal to half of the sum of N and O

plus square root of the number of
training patterns

[102]

Rule 6: M is equal to sqrt of N plus one and
finally plus A [33]

Rule 7: M is equal to sqrt of N multiplied by O [99]

Trial-and-error Purely on a trial-and-error approach [105]

Stepwise
trial-and-error

Stepwise
trial-and-error

With each modification of the trial, a structure
that is neither too complex nor too simple

is building
[99]

Global
methods

GA Searching the solution space through simulated
natural evolution [166]

u GA Introducing creep mutation in a
small population [140]

IGA Selecting excellent individuals effectively to
avoid the situation of discarding by GA [152]

PSO Excitation function does not need to be
differentiable and derivable [143]

IPSO The convergence rate and accuracy of the
solution are improved [148]

ABC More precise than PSO and GA [4]
IABC Updating formulas just like the PSO algorithm [4]

Others
Not mentioned Not recommend [40]

Not required Fixed structures such as GRNNs [25]
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5.7. Model Training

There are two main training methods, namely deterministic and stochastic methods [31]
(see Table 10). Deterministic methods look for a single parameter vector while the stochastic
methods search for the distribution of the model parameters with the purpose of minimizing
the model error [27]. In a more detailed division, local methods (L) that often work on
gradient information and global optimization approaches are two kinds of deterministic methods.
Gradient methods can be further sub-divided into first-order methods or second-order methods.
Deterministic methods based on gradient information have been widely used in model training
algorithm. The Levenberg–Marquardt algorithm, a second-order method, was most widely used
in deterministic methods. The Levenberg–Marquardt method combines the advantages of BP and
Newton algorithm, and its training speed is obviously faster than BP and momentum algorithm [81].
However, it has the disadvantage of being incompatible with regular terms, and requires a lot of
memory when datasets are large. Sixty-two of the papers did not provide details about the model
training algorithm. Seven categories of local methods (see line 1 to line 7 in Table 10) are summarized.
Relatively speaking, there were few works on network training using Bayesian [27] and the Adam
optimization methods [57].

Table 10. The deterministic and stochastic methods in model training.

Categories Methods Comments

Deterministic

BP algorithm(L) Computing the direction of gradient descent
Newton’s methods(L) The computing tasks are implemented by Hessian matrix

Conjugate gradient
method(L)

The search direction is carried along the conjugate
direction and does not need to use Hessian matrix

Levenberg–Marquardt
method(L)

A method, combination of BP and Newton algorithm,
use Jacobian matrix to do the computing tasks

The Quasi-Newton
method(L)

It is applied to the situation of that Jacobian matrix or
Hessian matrix is difficult or even impossible to compute

BFGS A Quasi-Newton method implemented by the built-in
function in R

TRAINLM A gradient descent with momentum and
Levenberg–Marquardt backpropagation

Global optimization See Table 9

Stochastic methods
Bayesian methods Prediction limits can be obtained

Adam optimization method It implemented a reverse gradient update with the value
obtained by Mini batch data

Emerging methods Online learning algorithm Quickly adjust the model in real time

6. Discussion

6.1. Data Are the Foundation

Data selection strategy: Data collection is a costly and time-consuming process. This is mainly
due to the expensive equipment, limited experimental time, and conditions. The ANN model is a
data-driven model, so obtaining enough data is the basis of modeling. The need to collect as much data
as possible has been put forward in the existing literature. To address this need, researchers need to
consider two factors. One is whether the historical information of the output variable can be collected.
The second is what strategy researchers need to choose when the historical information of output
variables are difficult to measure. If researchers can collect historical observations of target variables,
they can process the data and model it. If target variables cannot be obtained, researchers can collect
variables such as water quality and meteorology data associated with output variables. Part of the
literatures collect target variables by means of obtaining open-source data. This approach has benefited
from a number of government data collection programs. However, research to obtain open-source
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water quality data is rather limited. Therefore, researchers are encouraged to open up their own data
resources in the future to make contributions to themselves, others, and society.

Data volume demand: According to the results of the existing literature review, there is no
systematic research to investigate how to determine the optimal number of samples required for
each type of ANN model. In general, RNN requires more data than feedforward artificial neural
networks. In addition, GRNN in feedforward artificial neural networks can handle small sample
problems. When researchers use the RNN method to make water quality predictions, they need about
a thousand pieces of data. When the researchers utilized the feedforward artificial neural networks
method to make the prediction, about 500 pieces of data are needed. When researchers used the GRNN
method to make predictions, they need about 100 pieces of data. When researchers want to make
long-term forecasts of water quality data that are periodic after a year, at least one year of data needs to
be collected. This also applies when researchers want to include four seasons in the model validation
and testing phase.

6.2. Data Processing Is Key

Data imbalance problem: Both the peak and the extreme value occupy a relatively small proportion
of the distribution. Only a handful of researchers currently consider data imbalances. In order to obtain
higher prediction accuracy and reduce the error of the peak, some new prediction approaches, such as
wavelet analysis method, can be used for reference. Besides, modelers in the future can develop a
form of extreme value loss for detecting the future occurrence of extreme values (Ding et al., 2019) and
apply it to the water quality prediction.

Input selection problem: The quality of data sets has been affected by many factors. These factors
include but are not limited to temporal resolution (e.g., monthly vs. hourly), number of predictors,
or noise in the data. Therefore, it is very important to select the appropriate input and preprocess
the data. This review found that the vast majority of researchers chose inputs based on their domain
knowledge or in any arbitrary manner. Such input selection methods have some limitations because
they neither analyze the relationship between input and output, nor consider the performance of the
model. Some studies use cross-correlation to explore the relationship between inputs and outputs.
It is a linear approach, which is contrary to the premise of using a nonlinear neural network model.
Researchers can use nonlinear analysis methods such as mutual information to select inputs.

Output strategies problem: A variety of output strategies were adopted in the reviewed
papers—the quantity of which is 18—because researchers hope to select the most suitable through
comparison to illustrate the relationship between input(s) and output(s), which is good practice.
Multivariate-Input-Other (multi)-Output is the most popular output strategy which represents the
case where the output(s) at a specific point is learned the historical information from other variables
(more than one). Few studies have considered the spatial relationship between exogenous variables.
This may be due to the fact that external variables do not influence the outcome of the forecast most
of the time. However, researchers must be aware that exogenous variables can have a significant
impact on predictions at some point. For example, the effect of water circulation on dissolved oxygen.
A recent research used the mechanism of attention to simultaneously explore the relationship between
temporal and spatical, and applied it to DO prediction. Researchers can use this method for reference
to further explore the spatial relationship of other water quality variables.

Forecasting length problem: At present, the research mainly focuses on the short-term prediction,
and the research on the long-term prediction is relatively limited. The reason for this phenomenon
is that with the increase in the prediction length, the uncertainty factors also increase, which leads
to the accumulation of errors and thus reduces the accuracy of the prediction. Researchers can
adopt appropriate strategies to solve such problems in forecating field, such as Recursive, DirRec,
and Multiple Output Strategies [168].

Data dividing problem: At present, researchers tend to use ad-hoc method to divide the training
set data into 70% to 90% of the total data. The most common percentage of the training, validation,
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and testing is 60%, 20%, 20%, and 50%, 25%, 25%. Such methods based on the expertise of researchers
or divide data in arbitrary ways has certain universality. However, this approach has not promoted
the development of data partitioning methods. It is always difficult to determine the number of K
for common K-fold cross-validation, as the results may have a considerable bias [169]. Therefore,
leave-one-out cross-validation, the most extreme form of K-fold cross-validation, should be encouraged
for use because it has been shown to provide a good estimation of the model’s true generalization
capabilities in the case of fewer training data or more model parameters despite the limited usage.

Data preprocessing problem: Most studies use the normalization method for pre-processing data,
but it does not disclose specific details. This is probably due to the use of built-in functions to deal
with normalization in many platforms. However, this basic information should be clearly defined,
because different scaling ranges have different effects on the final result of the model. In the face
of missing data, researchers will simply delete it. This approach is not worth advocating because
data is precious. Researchers can adopt appropriate populating strategies to deal with missing data.
Some imputation methods besides linear interpolation—such as the improved mean value method
that can solve the breakpoint phenomenon of linear interpolation, and designing filling schemes such
as missing–refilling schemes or gap-filling to obtain continuous records—are worthy of exploring.
The restricted condition of the model forecasting methods using prediction values to fill the missing
vales is that the data are appropriately and normally distributed. Therefore, it is uncertain whether
the above method can be applied to other prediction tasks that do not meet the above conditions.
Existing literature has shown that the identification of error and abnormal data is a difficult task
because they are difficult to define in water quality prediction. How to deal with such data still needs
further exploration by researchers.

6.3. Model Is the Core

Model structure determination problem: Most researchers use a trial-and-error method to
determine the ANN structure, which does not fundamentally promote the further development of the
model. This review summarizes some empirical formulas to determine the number of neurons in the
hidden layer that future researchers can apply to their studies. This review does not reveal the science
behind these formulas or the conditions under which they apply. To some extent, the use of these
empirical formulas contributes to the determination of the model structure, because researchers build
on previous studies rather than stay at the level of trial-and-error with no rules to find. Global methods
can obtain topology and network weights, which have been developed to some extent in recent
years. Compared with the trial-and-error method, the global method has a sound theoretical basis.
Researchers can further study and improve global methods.

Activation function determination problem: Most of the time, researchers choose S-shaped
functions because they create a random nonlinear mapping between the input and output. The essential
reason is that the S-type transfer function is differentiable, continuous, and monotonically increasing
in its domain. Purelin is used more frequently in the output layer than other functions because its
output can be arbitrary rather than limited to a small range compared to the sigmoid function.

Model training problem: The reason for developing so many subclasses of training algoriths
is that researchers want to use the appropriate matrix (e.g., Hessian matrix, Jacobian matrix) to
accomplish the computing tasks easily. The Quasi-Newton method is suited for the situation that
the matrix (whether Hessian or Jacobian) is difficult or even impossible to compute. In water quality
prediction, the deterministic methods are more mature than the stochastic methods. One possible
reason is that the former only looks for a single parameter vector, while the latter looks for the model
parameter distribution, so the latter parameter is more uncertain. The online learning algorithm has
the characteristics of real-time and rapid adjustment model which is suitable for prediction tasks.
However, its application in water quality prediction is still very limited. Therefore, the algorithm is
worthy of further study.
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Model structure selection problem: Many researchers utilized MLP architectures in ANN to
complete prediction tasks between 2008–2019. This result is as same as the conclusion of the review
between 1999 to 2007, which may be due to the fact that the MLPs architecture has the advantage of
being easy to use, and they can approximate any relationship between input(s) and output(s) through
the typical three layers [81]. Global methods (see Table 9), obtaining topology structure and network
weights, are drawing the attention of researchers—in contrast to the previous review [27]. It must
be noted that the GA, PSO, and ABC methods are typical examples of evolution-related methods.
In general, evolutionary methods are combined with ANNs to meet different constraints.

Much effort has been made regarding the data-intensive methods, while the model-intensive and
technique-intensive approaches were implemented relatively infrequently. Wavelet analyses were
widely used in data-intensive methods, while the decomposing approaches were used less. This may
be because wavelet analysis has the ability to extract the trends, discontinuities, and breakdown points
of the original data. Furthermore, it is also able to process signals by compressing or denoising.

In recent years, CNN, as a new feedforward neural network method, has been used in water
quality prediction. However, its application is rather limited. Researchers can further expand CNN’s
reach. RNN has good memory ability, so it can make full use of historical information and lay
a solid foundation for realizing long-term prediction of water quality. Hybrid Models should be
further developed because they are not a substitute for traditional technologies, but a combination
of their strengths. Researchers can refer to the ensemble approaches, transfer learning technology,
and evidence theory in the literature to improve the prediction accuracy and generalization ability,
and accommodate uncertainty.
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Appendix A

Table A1. Details of the reviewed papers.

Categories Authors
(Year) Locations Water Quality

Variables
Meteorological

Factors
Other

Factors
Output
Strategy Dataset Time Step Data Dividing Methods Prediction

Lengths

Feedforward [75] WWTP(Turkey) BOD; SS, TN,
TP NA Q Category 2 364 samples

(1 year) daily Train: 67%,
test:33% ANN, MLR NA

Feedforward [76]
Mamasin dam

reservoir
(Turkey)

DO, EC; SS,
TN, WT RF AODD Category 2 No details No details No details ANN(MLP) NA

Feedforward [40]
Singapore

coastal waters
(Singapore)

S, DO, Chl-a;;
WT NA NA Category 3 32 samples

(5 months) No details No details ANN(MLP),
GRNN 1

Feedforward [19] Feitsui Reservoir
(China) Chl-a; NA Bands Category 2 No details No details Train: 75%,

test:25% ANN(MLP) NA

Feedforward [90] Pyeongchang
river (Korea) DO, TOC; WT NA Q Category 3 No details

(3 months) 5 minutes No details
ANN,
MNN,
ANFIS

12,24

Feedforward [170] Feitsui Reservoir
(China) Chl-a; NA Bands Category 2 No details

(7 years) No details
Train:57%,

validate: 29%,
test: 14%

ANN(MLP) NA

Feedforward [91] Melen River
(Turkey)

BOD; COD,
WT, DO, Chl-a,
NH3-N, NO3,

NO2

NA F, Ns Category 2 No details
(over 6 years) monthly

Train:60%,
validate: 20%,

test: 20%
ANN(MLP) NA

Feedforward [92] Moshui River
(China) COD, NH3-N;; NA mineral

oil;; Category 0 No details
(5 years) No details Train:80%,

test: 20% BPNN NA

Feedforward [93] Doce River
(Brazil)

WT, pH, EC,
TN NA other ions Category 2 232samples

(3 years) No details
Train:50%,

validate: 25%,
test: 25%

ANN NA

Feedforward [94] NA (China)
pH, DO;; WT,

S, NH3-N,
NO2

NA NA Category 3 500 samples No details Train:80%,
test: 20% BPNN NA

Feedforward [95] Gomti river
(India)

DO, BOD; pH,
TA, TH, TS,

COD, NH3-N,
NO3, P

RF NA Category 2 500 samples
(10 years) monthly

Train:60%,
validate: 20%,

test: 20%
ANN NA
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Table A1. Cont.

Categories Authors
(Year) Locations Water Quality

Variables
Meteorological

Factors
Other

Factors
Output
Strategy Dataset Time Step Data Dividing Methods Prediction

Lengths

Feedforward [96] Pyeongchang
River (Korea) TOC;; Precip Q;; Category 3 No details

(7 years) No details No details ANN NA

Feedforward [97] Groundwater
(China) NO2, COD;; NA other 7

variables Category 3 97 samples No details Train:56%,
test: 44% ANN NA

Feedforward [98] Omerli Lake
(Turkey)

DO; BOD,
NH3-N, NO3,

NO2, P
NA NA Category 2 No details

(17 years) No details No details ANN,
MLR, NLR NA

Feedforward [99] Changle River
(China)

DO, TN, TP;;
WT RF F, FTT Category 3 No details

(18months) monthly No details BPNN NA

Feedforward [105] Sangamon River
(USA) NO3;; AT, Precip Q Category 3 No details

(6 years) weekly Train:50%,
test: 50% ANN 1

Feedforward [106] Surface water
(Turkey) Chl-a; NA other 12

variables Category 2 110 samples No details Train:67%,
test: 33% ANN(MLP) NA

Feedforward [107] Gruˇza reservoir
(Serbia)

DO; pH, WT,
CL, TP, NO2,
NH3-N, EC

NA Fe, Mn Category 2 180samples
(3 years) No details Train:84%,

test: 16% ANN NA

Feedforward [108] The tank (China) DO;; pH, S, WT AT NA Category 3 No details
(22 months) 1 minute

Train:57%,
validate: 29%,

test: 14%
ANN 30

Feedforward [109] Groundwater
(India) S; EC NA

WL, T,
Pumping,

Rainp
Category 2 No details

(7 years) No details Train:29%,
test: 71% ANN NA

Feedforward [110] WWTP(China) BOD; COD, SS,
pH, NH3–N NA Oil Category 2 No details No details Train:50%,

test: 50% RBFNN 5

Feedforward [10] Groundwater
(Iran)

NO3; pH, EC,
TDS, TH NA

Mg, Cl, Na,
K, HCO3,
SO4, Ca,

ICs

Category 2
818samples

(nearly
17days)

30 minutes Train:70%, test:
30%

ANN,
Linear

regression
(LR)

NA

Feedforward [77] Wells (Palestine) NO3; NA
Q, other

five
variables

Category 2 975samples
(16 years) No details No details MLP, RBF,

GRNN NA

Feedforward [112]
Upstream and
downstream

(USA)

DO; pH, WT,
EC NA Q Category 2

2063, 4765
samples

(18 years)
daily

Train:50%,
validate:25%,

test: 25%

RBFNN,
ANN(MLP),

MLR,
NA

Feedforward [50] WWTP (Korea) DO;; NH3-N NA NA Category 3 1900 samples No details
Train:45%,

validate:5%, test:
50%

MNN NA
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Table A1. Cont.

Categories Authors
(Year) Locations Water Quality

Variables
Meteorological

Factors
Other

Factors
Output
Strategy Dataset Time Step Data Dividing Methods Prediction

Lengths

Feedforward [79]
Eastern Black

Sea Basin
(Turkey)

SS; Tur NA NA Category 1 144 samples
(1 year) fortnightly

Train:75%,
validate:8%,

test: 17%
ANN(MLP) NA

Feedforward [113] Kinta River
(Malaysia)

DO, BOD,
NH3-N, pH,
COD, Tur;;

NA NA Category 2 255 samples
(7 months) No details

Train:80%,
validate:10%,

test: 10%
ANN(MLP) NA

Feedforward [78] Power station
(New Zealand) WT; AT, AP, WD,

WS
other 8

variables Category 2
45,594

samples
(2 years)

10 minutes Train:70%,
test: 30% ANN(MLP) 12

Feedforward [114] Yuan-Yang Lake
(China) WT; SR, AP, RH,

AT, WS, WD ST Category 2 No details
(2 months) 10 minutes

Train:70%,
validate &
test: 30%

ANN(MLP) 1

Feedforward [22] Experimental
system (UK)

BOD, NH3-N,
NO3, P; DO,
WT, pH, EC,

TSS, Tur

NA RP Category 2 195samples
(4 years) No details Train: 62%,

test: 38% ANN NA

Feedforward [11] Lake Fuxian
(China)

DO, TP, SD,
Chl-a;; TN, WT,

pH
NA Month;

Category 2
and

Category 3
No details No details No details ANN NA

Feedforward [115] Doiraj River
(Iran) SS; RF Q

Category 1
and

Category 2

more than
3000 samples

(11 years)
daily No details

ANN,
Support
vector

regression
(SVR)

1

Feedforward [116] Lake Abant
(Turkey)

DO, Chl-a; WT,
EC NA MDHM Category 2 6674 samples

(86 days) 15 minutes
Train:60%,

validate:15%,
test: 25%

ANN,
Multiple
nonlinear
regression
(MNLR)

NA

Feedforward [37]
Johor River,

Sayong River
(Malaysia)

TDS, EC, Tur; NA NA Category 1 No details
(5 years) No details

The test set is
approximately
10–40 % of the

size of the
training data set

ANN(MLP),
RBFNN,

LR
NA

Feedforward [158] Mine water
(India)

BOD, COD;
WT, pH, DO,

TSS
NA other Category 2 73 samples No details Train:79%,

test: 21% ANN NA
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Table A1. Cont.

Categories Authors
(Year) Locations Water Quality

Variables
Meteorological

Factors
Other

Factors
Output
Strategy Dataset Time Step Data Dividing Methods Prediction

Lengths

Feedforward [160] Heihe River
(China)

DO; pH, NO3,
NH3-N, EC,

TA, TH
NA Cl, Ca Category 2 164 samples

(over 6 years) monthly
Train:60%,

validate:20%,
test: 20%

ANN(MLP) NA

Feedforward [117] Danube River
(Serbia)

DO; WT, pH,
NO3, EC

Na, CL,
SO4, HCO3,

other 11
variables

Category 2 1512 samples
(9 years) No details

Train:70%,
validate:20%,

test: 10%
GRNN NA

Feedforward [80] Stream Harsit
(Turkey) SS; Tur NA TCC, TIC

Category 1
and

Category 2

132 samples
(11months) No details No details ANN(MLP) NA

Feedforward [118] Feitsui Reservoir
(China)

DO; WT, pH,
EC, Tur, SS, TH,

TA, NH3-N
NA NA Category 2 400 samples

(20 years) No details No details
BPNN,
ANFIS,
MLR

NA

Feedforward [163] Stream (USA) WT; AT

Form
attributes,
forested

land cover

Category 2 982
(6 months) daily

Train:90%,
validate &
test: 10%

ANN(MLP) NA

Feedforward [49] The Bahr Hadus
drain (Egypt) DO, TDS;; NA NA Category 0 No details monthly Train:80%,

test: 20%
CCNN,
BPNN NA

Feedforward [161] Karoon River
(Iran)

DO, COD,
BOD; EC, pH,

Tur, NO3, NO2,
P

NA Ca, Mg, Na Category 2 200 samples
(17 years) monthly Train:80%,

test: 20%

ANN(MLP),
RBFNN,
ANFIS

NA

Feedforward [121] Manawatu River
(New Zealand) NO3; NA

EMS
(Energy,
Mean,

Skewness)

Category 1 144 samples weekly Train: 70%,
test: 30% RBFNN NA

Feedforward [119] WWTP (China) BOD; DO, pH,
SS NA F, TNs Category 2 360 samples daily Train: 83%,

test: 17%

HELM,
Bayesian
approach,

ELM

NA

Feedforward [35] Nalón river
(Spain)

Tur; NH3-N,
EC, DO, pH,

WT
NA NA Category 2 No details

(1 year) 15 minutes Train: 90%,
test: 10% ANN(MLP) NA

Feedforward [128] Groundwater
(Turkey) pH, TDS, TH NA SAR, SO4;

CL Category 2 124 samples
(1 year) monthly Train: 84.1%,

test: 15.9% ANN NA
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Table A1. Cont.

Categories Authors
(Year) Locations Water Quality

Variables
Meteorological

Factors
Other

Factors
Output
Strategy Dataset Time Step Data Dividing Methods Prediction

Lengths

Feedforward [89] Johor River
(Malaysia)

DO; WT, pH,
NO3, NH3-N NA NA Category 2 No details

(10 year) monthly
Train:60%,

validate: 25%,
test: 15%

ANN(MLP),
ANFIS NA

Feedforward [129]
The Taipei Water
Source Domain

(China)
Tur; RF NA Category 2 No details

(1 year) No details No details BPNN NA

Feedforward [130] Mashhad plain
(Iran) EC; NA CL; Lon,

Lat

Category 2
and

Category 3
122 samples No details

Train:65%,
validate: 20%,

test: 15%

ANN(MLP),
ANFIS,

geostatistical
models

NA

Feedforward [122] Tai Po River
(China)

DO; pH, EC,
WT, NH3-N,

TP, NO2, NO3

NA CL Category 2 252 samples
(21 years) No details Train:85%,

test: 15%

ANN,
ANFIS,
MLR

NA

Feedforward [137] Ireland Rivers
(Ireland)

DO, BOD, Alk,
TH;; WT, pH,

EC
NA

DOP
(dissolved

oxygen
percentage),

CL;;

Category 2 3001 samples
(No details) No details No details ANN NA

Feedforward [42]

Twostatistical
databases
(European
countries)

BOD; DO NA other 20
variables Category 2 159 samples

(9 years) No details Train:88%,
test: 12%

GRNN,
MLR NA

Feedforward [81] Maroon River
(Iran)

WT, Tur, pH,
EC, TDS, TH; NA

HCO3, SO4,
CL, Na, K,

Mg, Ca
Category 2 No details

(20 years) monthly
Train:60%,

validate: 15%,
test: 35%

ANN(MLP),
RBFNN NA

Feedforward [36]
River

Zayanderud
(Iran)

TSS; pH, TH NA

Na, Mg,
CO3

2−,
HCO3, CL,

Ca

Category 2 1320 samples
(10 years) monthly No details RBFNN,

TDNN NA

Feedforward [9] Ardabil plain
(Iran) EC, TDS; RF RO, WL Category 2 No details

(17 years) 6 months Train:71%,
test: 29% ANN, MLR 1

Feedforward [25] Danube River
(Serbia)

BOD; WT, DO,
pH, NH3-N,

COD, EC, NO3,
TH, TP

NA other 8
variables Category 2

more than
32,000

samples
(years)

No details
Train:72%,

validate: 18%,
test: 10%

GRNN NA
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Table A1. Cont.

Categories Authors
(Year) Locations Water Quality

Variables
Meteorological

Factors
Other

Factors
Output
Strategy Dataset Time Step Data Dividing Methods Prediction

Lengths

Feedforward [82] Hydrometric
stations (USA) SS;; NA Q

Category 0
and

Category 3

No details
(8 years) daily

Train and
test:80%,

validate:20%

ANN(MLP),
SVR, MLR 1

Feedforward [138] Surma River
(Angladesh) BOD, COD;; NA NA

Category 0
and

Category 3

No details
(3 years) No details

Train:70%,
validate: 15%,

test: 15%

RBFNN,
MLP NA

Feedforward [85] Groundwater
(Palestine)

S; EC, TDS,
NO3

NA Mg, Ca, Na Category 2 No details
(11 years) No details

Train: more than
50%, test: less

than 50%

ANN(MLP),
SVM NA

Feedforward [24] River Danube
(Hungary)

DO; pH, WT,
EC NA RO Category 2

More than
151 samples

(6 years)
monthly No details

GRNN,
ANN(MLP),

RBFNN,
MLR

NA

Feedforward [60]
Langat River

and Klang River
(Malaysia)

DO, BOD,
COD, SS, pH,

NH3-N;
NA NA Category 2 No details

(10 years) monthly Train:80%,
validate: 20% RBFNN NA

Feedforward [47]

Eight United
States Geological
Survey stations

(USA)

DO; WT, EC,
Tur, pH NA YMDH Category 2

35,064
samples
(4 years)

hourly Train:70%,
test: 30%

ELM,
ANN(MLP)

1, 12, 24, 48,
72, 168

Feedforward [162] Rivers (China)
DO; WT, pH,
BOD, NH3-N,

TN, TP
NA other

variables Category 2 969 samples No details
Train and

validate: 80%,
test: 20%

BPNN,
SVM, MLR NA

Feedforward [86] Syrenie Stawy
Ponds (Poland)

DO, BOD,
COD, TN, TP,

TA
NA CL; other

ions Category 2 No details
(19 months) monthly

Train:60%,
validate: 20%,

test: 20%
ANN(MLP) NA

Feedforward [83] Delaware River
(USA)

DO; pH, EC,
WT NA Q

Category 1
and

Category 2

2063 samples
(6 years) daily Train:75%,

test: 25%

ANN(MLP),
RBFNN,

SVM
NA

Feedforward [84] Zayandeh-rood
River (Iran)

NO3; EC, pH,
TH NA

Na, K, Ca,
Mg, SO4,

CL,
bicarbonate

Category 2 No details No details
Train:50%,

validate: 30%,
test: 20%

ANN(MLP) NA
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Variables
Meteorological

Factors
Other

Factors
Output
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Feedforward [59] Saint John River
(Canada)

TSS, COD,
BOD, DO, Tur; NA NA Category 2 39 samples

(3 days) No details
Train:60%,

validate: 20%,
test: 20%

BPNN,
SVM NA

Feedforward [164] Karkheh River
(Iran) BOD; TDS, EC NA

CL, Na,
SO4, Mg,
SAR, Ca

Category 2
13,800

samples
(5 years)

No details No details ANN NA

Feedforward [159] Xuxi River
(China)

COD; WT, DO,
TN, TP,

NH3-N, SD, SS
NA NA Category 2 110 samples

(8 hours) No details No details MLP NA

Feedforward [102] Danube River
(Serbia)

DO; pH, WT,
EC, BOD,

COD, SS, P,
NO3, TA, TH

NA five metal
ions Category 2

No details
(6 years;
7 years)

monthly or
fortnightly

Train:72%,
validate: 18%,

test: 10%
BPNN NA

Feedforward [131] Sufi Chai river
(Iran) TDS; NA Q, Other 4

variables Category 2 144 samples
(12 years) monthly

Train:66%,
validate: 17%,

test: 17%
ANN(MLP) NA

Feedforward [127] River Tisza
(Hungary)

DO; WT, EC,
pH NA RO Category 2

More than
1300 samples

(6 years)
No details Train:67%,

test: 33%

RBFNN,
GRNN,
MLR

12

Feedforward [171] Karoon River
(Iran)

TH; EC, TDS,
pH NA

SAR;
HCO3, CL,

SO4, Ca,
Mg, Na, K,

TAC

Category 2 No details
(49 years) No details No details ANN(MLP),

RBFNN NA

Feedforward [32] Yamuna River
(India)

DO;; BOD,
COD, pH, WT,

NH3-N
NA Q Category 3 No details

(4 years) monthly Train:75%,
test: 25%

BPNN,
SVM,

ANFIS,
ARIMA

NA

Feedforward [88] Lakes (USA) Chl-a; TP, TN,
Tur NA SD Category 2 1087 samples

(6 years) No details Train:75%,
test: 25%

MLP,
ANFIS NA

Feedforward [139] Karoun River
(Iran)

BOD, COD;
EC, Tur, pH NA six mental

ions Category 2 200 samples
(16 years) No details No details

ANN,
ANFIS,
Least

Squares
SVM(LSSVM)

NA
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Feedforward [133] Lakes (USA) TN, TP; pH,
EC, Tur NA NA Category 2 1217 samples No details

Train:55%,
validate: 22%,

test: 23%
ANN, LR NA

Feedforward [48] Three rivers
(USA) WT; AT Q, DOY Category 2 No details

(8 years) No details No details
ELM,

ANN(MLP),
MLR

NA

Feedforward [63] St. Johns River
(USA)

DO; NH3-N,
TDS, pH, WT NA CL Category 2 232 samples

(12 years)
half a
month

Train:75%,
test: 25%

CCNN,
DWT,

VMD-MLP,
MLP

NA

Recurrent [111] Talkheh Rud
River (Iran) TDS; NA Q Category 1 No details

(13 years) No details
Train:69%,
validate &
test: 31%

Elman,
ANN(MLP) 1

Recurrent [3]
Hyriopsis

Cumingii ponds
(China)

DO;; pH, WT SR, WS, AT NA Category 3 816 samples
(34 days) No details

Train and
validate:80%,

test: 20%
Elman NA

Recurrent [41] Danube River
(Serbia)

DO; WT, pH,
EC NA Q Category 2 61 samples monthly or

semi-monthly
Train: 85%,
test: 15%

Elman,
GRNN,
BPNN,
MLR

NA

Recurrent [167] Chou-Shui River
(China) pH, Alk NA As;; Ca Category 3 No details

(8 years) No details No details

Systematical
dynamic-neural
modeling

(SDM),
BPNN,
NARX

NA

Recurrent [55] Yenicaga Lake
(Turkey)

DO; WT, EC,
pH NA WL, DOY,

hour Category 2
13,744

samples
(573 days)

15 minutes
Train:60%,

validate: 15%,
test: 25%

TLRN,
RNN,

TDNN
NA

Recurrent [12] Dahan River
(China)

TP;; EC, SS,
pH, DO, BOD,

COD, WT,
NH3-N

NA Coli Category 3 280 samples
(11 years) monthly Train:75%,

test: 25%

NARX,
BPNN,
MLR

1
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Recurrent [6] Taihu Lake
(China) DO, TP;; NA NA Category 0 657 samples

(7 years) monthly Train:90%,
test: 10%

LSTM,
BPNN,

OS-ELM
NA

Recurrent [38] WWTP(China)
BOD, TP;;

COD, TSS, pH,
DO, WT

NA ORP
Category 2

and
Category 3

5000 samples No details
Train:45%,

validate: 15%,
test: 40%

RESN NA

Recurrent [66] Mariculturebase
(China)

WT, pH; EC, S,
Chl-a, Tur, DO NA NA Category 2 710 samples

(21 days) 5 minutes Train:86%,
test: 14%

LSTM,
RNN >32

Recurrent [67]
Marine

aquaculture base
(China)

pH, WT;; NA NA Category 0 710 samples No details Train:86%,
test: 14% SRU NA

Recurrent [53] Geum River
basin (Korea) BOD, COD, SS; AT, WS WL, Q Category 2 No details

(10 years) daily Train:70%,
test: 30%

RNN,
LSTM 1

Recurrent [165] Lakes (USA) WT;; NA NA Category 0 1520 samples No details Train:65%,
test: 35% LSTM NA

Recurrent [153] Reservoir
(China)

Chl-a;; WT, pH,
EC, DO, Tur NA ORP

Category 0
and

Category 2

1440 samples
(5 days) 5 minutes No details

TL-FNN,
RNN,
LSTM

NA

Recurrent [134] Two gauged
stations (USA) SS;; NA Q Category 1

10,060
samples

(30 years)
daily Train: 70–90%,

test: 30–10% WANN NA

Recurrent [135]
Agricultural
catchment
(France)

NO3, SS; RF Q
Category 1

and
Category 2

26,355
samples
(1 year)

daily Train: 66.67%,
test: 33.33%

SOM-MLP,
MLP NA

Recurrent [140] Four streams
(USA) WT; SR, AT NA Category 2 No details

(4 years) 10 minutes
Train:50%,

validate: 25%,
test: 25%

u
GA-ANN,

BPNN,
RBFNN

NA

Hybrid [141] Chaohu Lake
(China) TP, TN, Chl-a; NA Bands Category 2

18,368
(TN),1050(TP)

samples
(more than

3 years)

No details Train:86%,
test: 14%

GA-BP,
BPNN,
RBFNN

NA

Hybrid [142] Two stations
(USA) SS;; NA Q

Category 1
and

Category 3

730 samples
(2 years) daily Train:50%,

test: 50%
ANN-differential
evolution NA
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Hybrid [71]
B¨uy ¨ uk

Menderes river
(Turkey)

WT, DO, B;; NA NA Category 0 108 samples
(9 years) monthly Train:67%,

test: 33%

ARIMA-ANN,
ANN,

ARIMA
NA

Hybrid [143] Karkheh
reservoir (Iran)

water quality
variables NA NA Category 2 No details

(6 months) No details No details PSO-ANN NA

Hybrid [1] WWTP(China) DO; COD,
BOD, SS NA other two

variables Category 3 No details daily No details SOM-RBFNN,
ANN(MLP) NA

Hybrid [144] Bangkok canals
(Thailand)

DO;; WT, pH,
BOD, COD, SS,

NH3-N, TP,
NO2, NO3,

NA

total
coliform,
hydrogen

sulfide

Category 3
13,846

samples
(5 years)

monthly Train: 70%,
test: 30%

FCM-MLP,
MLP 1

Hybrid [56]
Lake

Baiyangdian
(China)

Chl-a; WT, pH,
DO, SD, TP,
TN, NH3–N,
BOD, COD

Precip, Evap WL, LV, Sth Category 2 No details
(10 years) monthly No details

WANN,
ANN,

ARIMA
NA

Hybrid [64] Songhua River
(China) DO, NH3-N;; NA NA Category 0 No details

(7 years) monthly Train:71%,
test: 29%

BWNN,
ANN,

WANN,
ARIMA

1

Hybrid [136]
Gazacoastal

aquifer
(Palestine)

NO3; EC, TDS,
NO3,

CL, SO4,
Ca, Mg, Na Category 2 No details

(10 year) No details No details K-means-ANN NA

Hybrid [43] WWTP (Turkey) COD; SS, pH,
WT NA Q Category 2 265 samples

(3 years) daily
Train:50%,

validate:25%,
test: 25%

k-means-MLP,
Arima-RBF,
ANN(MLP),

MLR,
RBFNN,
GRNN,
ANFIS

NA

Hybrid [70] Yangtze River
(China) DO, NH3-N;; NA NA Category 0 480 samples

(9 years) weekly
Train:67%,
validate &
test: 33%

ARIMA-RBFNN 1

Hybrid [120] Taihu Lake
(China)

DO, EC, pH,
NH3-N, TN,

COD, TP, BOD,
COD;

NA

VP,
petroleum,

other 11
variables

Category 2 2680 samples No details Train:75%,
test: 25% PCA-GA-BPNN NA
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Hybrid [62] Gauging station
(Iran)

DO, WT, S;;
Tur, Chl-a NA NA

Category 0
and

Category 2
and

Category 3

650, 540
samples

daily,
hourly

Train:70%,
validate: 15%,

test: 15%

WANN,
ANN 1, 2, 3

Hybrid [172] Two gauging
stations (USA) SS;; NA Q

Category 0
and

Category 3

1974 samples
(8 years) daily Train:75%,

test: 25% WANN NA

Hybrid [173] River Yamuna
(India) COD;; NA NA Category 0 120 samples

(10 years) monthly Train:92.5%,
test: 7.5%

ANN,
ANFIS,

WANFIS
9

Hybrid [100] Two catchments
(Poland) WT; AT

Q,
declination
of the Sun

Category 2 No details
(10 years) daily No details

MLP,
ANFIS,
WNN,

Product-Unit
ANNs

(PUNN),
ensemble

aggregation
approach

1, 3, 5

Hybrid [7]
South San

Francisco bay
(USA)

Chl-a;; NA NA Category 0 No details
(20 years) monthly

Train:60%,
validate: 20%,

test: 20%

WANN,
MLR,

GA-SVR
1

Hybrid [72] Asi River
(Turkey) EC;; NA Q

Category 0
and

Category 3

274 samples
(23 years) No details Train:75%,

test: 25%
WANN,
ANN NA

Hybrid [146] Klamath River
(USA)

DO;; pH, WT,
EC, SD NA NA

Category 0
and

Category 2
No details monthly

Train:80%,
validate: 10%,

test: 10%

WANN,
ANN, MLR NA

Hybrid [147] Prawn culture
ponds (China) WT; NA NA Category 0 1152 samples

(8 days) 10 minutes Train:87.5%,
test: 12.5%

EMD-BPNN,
BPNN 1

Hybrid [44] WWTP(China) BOD; COD, SS,
DO, pH NA NA Category 2 598 samples

(19 months) daily No details Chaos
Theory-PCA-ANNNA
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Hybrid [174] Charlotte harbor
marine waters TN; NA NA Category 0 No details

(13 years) monthly
Train:70%,

validate: 15%,
test: 15%

WANN,
wavelet-gene
expression
programing

(WGEP),
TDNN,

GEP, MLR

1

Hybrid [73] Groundwater
(Iran)

EC, Tur, pH,
NO2, NO3

NA Cu Category 2 No details
(8 years) No details Train:80%,

test: 20% PCA-ANN NA

Hybrid [17] Downstream
(China)

WT, DO, pH,
EC, TN, TP,
Tur, Chl-a;

NA NA Category 0 No details
(13 months) daily

Train:80%,
validate: 10%,

test: 10%
Ensemble-ANN 1

Hybrid [104] Karaj River
(Iran) NO3; NA CL; Q

Category 0
and

Category 1
and

Category 3

No details monthly
Train:80%,

validate: 10%,
test: 10%

WANN,
ANN, MLR NA

Hybrid [148] Crab ponds
(China) DO;; WT SR, WS, AT,

AH NA Category 3 700 samples
(22 days) 20 minutes Train:71%,

test: 29%
RBFNN-IPSO-LSSVM,

BPNN 3

Hybrid [149]
Guanting
reservoirs

(China)

DO, COD,
NH3-N;; NA NA Category 0 No details

(18 weeks) weekly No details Kalman-BPNN 2

Hybrid [101] Toutle River
(USA) SS;; NA Q

Category 0
and

Category 3

2000 samples
(8 years) daily No details

A
least-square
ensemble

models-WANN

NA

Hybrid [69] WWTP (China) DO; pH NA NA Category 2 50 samples No details Train:70%,
test: 30% FNN-WNN NA

Hybrid [52] Clackamas River
(USA) DO;; WT NA Q Category 3 1623 samples

(6 years) daily Train:78%,
test: 22%

WANN,
WMLR,

ANN(MLP),
MLR

1, 31
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Hybrid [123] Representative
lakes (China)

Chl-a; WT, pH;;
NH3-N, TN,

TP, DO, BOD
NA other 17

variables Category 3 No details
(3 years) No details Train:80%,

test: 20% GA-BP NA

Hybrid [16] Miyun reservoir
(China)

DO, COD,
NH3-N; NA NA Category 0 5000 samples

(2 years) weekly Train:98%,
test: 2%

PSO-WNN,
WNN,
BPNN,
SVM

NA

Hybrid [126] Aji-Chay River
(Iran) EC;; NA NA Category 0 315 samples

(26 years) monthly Train:90%,
test: 10%

WA-ELM,
ANFIS 1, 2, 3

Hybrid [4] Yangtze River
(China)

DO, CODMn,
BOD;; NA NA Category 3 65 samples

(2 months) daily
Train:50%,

validate: 16%,
test: 34%

IABC-BPNN,
BPNN NA

Hybrid [33] WWTP(China) COD; COD, SS,
pH, NH3-N NA NA Category 2 250 samples No details No details WANN,

ANN(MLP) NA

Hybrid [175]
The Stream

Veszprémi-Séd
(Hungary)

pH, EC, DO,
Tur;; NA NA Category 2 No details

(7 years) yearly No details DE-ANN NA

Hybrid [54] Shrimp pond
(China)

DO; WT,
NH3-N, pH

AT, AH, AP,
WS NA Category 2 2880 samples

(20 days) 10 minutes Train:75%,
test: 25%

SAE-LSTM,
SAE-BPNN,

LSTM,
BPNN

18, 36, 72

Hybrid [124] Four basins
(Iran) TDS; EC NA Na, CL Category 2 No details

(20 years) No details Train:80%,
test: 20%

WANN,
GEP,

WANFIS
NA

Hybrid [125] Blue River (USA) pH, DO, Tur;
WT NA Q

Category 0
and

Category 3

No details
(4 years) daily Train:80%,

test: 20%
WANN,
WGEP 1

Hybrid [157] Chattahoochee
River (USA) pH;; NA Q Category 3 730 samples

(2 years) daily Train:75%,
test: 20%

WANN,
ANN,

WMLR,
MLR

1, 2, 3

Hybrid [176] Morava River
Basin (Serbia)

WT, EC; SS,
DO NA other ions Category 2 No details

(10 years) 15 days No details PCA-ANN NA

Hybrid [151] Tai Lake, Victoria
Bay (China)

DO;; WT, pH,
NO2, TP Precip NA Category 3 No details

(7 years) No details Train:80%,
test: 20%

IGRA-LSTM,
BPNN,

ARIMA
NA
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Hybrid [46] WWTP (Saudi
Arabia) C, DO, SS, pH NA CL;; Category 3 774 samples No details No details PCA-ELM NA

Hybrid [5] Prespa Lake
(Greece) DO, Chl-a;; NA NA Category 0 363 samples

(11 months) daily
Train:70%,

validate: 15%,
test: 15%

CEEMDAN-VMD
-ELM) NA

Hybrid [87] The Warta River
(Poland) WT;; AT NA Category 3

No details
(22 to 27
years)

daily
Train:4/9,

validate: 2/9,
test: 1/3

WANN(MLP),
MLP 1

Hybrid [152] Ashi River
(China)

DO, NH3-N,
Tur;; NA NA Category 0 846 samples

(4 hours)
more than
4 months

Train:70%,
test: 30% IGA-BPNN 1

Hybrid [15] Qiantang River
(China) pH, TP, DO;; NA NA Category 0 1448 samples No details Train:70%,

test: 30%

DS-RNN,
RNN,

BPNN,
SVR

NA

Hybrid [132] The Johor river
(Malaysia)

NH3-N, SS,
pH; Tur, WT, NA COD Mn,

Mg, Na Category 2 No details
(1 year) No details No details

WANFIS,
MLP,

RBFNN,
ANFIS

NA

Hybrid [103] Hilo Bay (the
Pacific Ocean) Chl-a, S;; NA NA Category 0 No details

(5 years) daily No details

Bates–Granger
(BG)-least

square
based

ensemble
(LSE)-WANN

1, 3, 5

Hybrid [154] WWTP (China)

COD, TP, pH,
TN; DO,

NH3-N, BOD,
TH

NA

CL,
oil-related

quality
indicators

Category 2
23,268

samples
(4 years)

hourly Train:80%,
test: 20% PSO-LSTM 1

Hybrid [68] Beihai Lake
(China)

pH, Chl-a, DO,
BOD, EC; NA HA;; Category 3 No details

(5 days) 30 minutes Train:70%,
test: 30% PSO-GA-BPNN 12

Hybrid [26] River (China) COD;; NA NA Category 0 460 samples
(14 months) 12 hours Train:95%,

test: 5% LSTM-RNN 1
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Hybrid [45]

Zhejiang
Institute of
Freshwater

Fisheries (China)

DO; WT AT, AH, WS,
WD, SR, AP SM, ST Category 4 5006 samples

(1 year) 10 minutes Train:80%,
test: 20% attention-RNN 6, 12, 48,

144, 288

Hybrid [39] Taihu Lake
(China)

pH; DO, COD,
NH3-N NA NA Category 2 28 samples

(6 months) Weekly Train:75%,
test: 25%

grey
theory-GRNN,

BPNN,
RBFNN

1

Emerging [58] Wastewater
factory (China)

TP; WT, TSS,
pH, NH3-N,

NO3, DO
NA other 3

variables Category 2 1000 samples
(4 months) No details Train:80%,

test: 20% SODBN NA

Emerging [57]
Recirculating
Aquaculture

Systems (China)

DO;; EC, pH,
WT NA NA Category 3 4500 samples

(13 months) 10 minutes
Train:67%,

validate: 11%,
test: 22%

CNN,
BPNN 18

The contents before the “;” symbol were the output variables; The contents before the “;;” symbol were output and predictors; NA represents blank content.
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