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Abstract: This paper presents a likelihood-based algorithm for identifying different phase shift keying
(PSK) modulations, i.e., BPSK, QPSK, and 8PSK. This algorithm selects the modulation type that
maximizes a loglikelihood function that is based on the known original constellation associated
with the constellation of the received signals for the candidate modulation types. However, there
are two problems in non-cooperative underwater acoustic Multiple Phase Shift Keying (MPSK)
modulation identification based on the likelihood method. One is the original constellation, which as
prior information is unknown. The other is the underwater acoustic multipath channel makes the
constellation distort seriously. In this paper, we solved these problems by combining sparse bayesian
learning (SBL) with expectation maximization (EM). The specific steps are as follows. Firstly, blind
channel equalization can be achieved by channel impulse response (CIR), which is estimated by sparse
bayesian learning in single input multi output (SIMO) underwater acoustic channel. Subsequently,
we used expectation maximization to compensate amplitude attenuation and phase offset, as the
original constellation of MPSK is unknown. Finally, modulation can be successfully identified by
the Quasi Hybrid Likelihood Ratio Test (QHLRT). The simulation results show that the channel
estimation method based on SBL can eliminate the influence of channel effectively, and the EM
algorithm can make the received constellation converge to the preset constellation in the case of
unknown original transmit constellation, which effectively solves these two problems. We use the
proposed SBL-EM-QHLRT method to achieve an identification rate of more than 95% in underwater
acoustic multipath channels with Signal to Noise Ratio (SNR) higher than 15 dB, which provides a
new idea for modulation identification of non-cooperative underwater acoustic MPSK.

Keywords: multiple phase shift keying; single input multi output; sparse bayesian learning;
expectation maximization; likelihood

1. Introduction

This paper deals with the blind modulation identification of signals transmitting through
underwater acoustic multipath channel. We assume that the received signal is Multiple Phase
Shift Keying (MPSK), i.e., BPSK, QPSK, and 8PSK, but do not assume any prior knowledge of the
modulation order.

Underwater acoustic MPSK is widely used in information transmission; it is mainly used in
high-speed communication scenarios [1,2]. MPSK can also be used as a part of Direct Sequence
Spread Spectrum (DSSS) to achieve long range data transmission [3,4], and has been abundantly used
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for underwater Orthogonal Frequency Division Multiplexing (OFDM) subcarrier modulation [5–7].
With the development of underwater acoustic communication technology and the increasing demand
in the field of underwater acoustic signal detection, modulation identification of non-cooperative MPSK
has become a research hotspot. MPSK modulation identification is an important basis for parameter
estimation, scrambling, and blind demodulation [8–10], particularly in military applications. Various
authors have discussed the MPSK modulation identification in the literature and have proposed many
schemes; however, most of the application scenarios are focused on the radio. These methods can be
divided into two different groups: likelihood function-based and cyclic cumulant-based methods.

Regarding the MPSK modulation identification, various methods have been proposed based on
higher-order cumulants and cyclic cumulants [11–16]. These methods assumed that the signals were
in baseband.But in practical application, it is necessary to estimate the parameters of communication
system in order to achieve baseband processing. Because the estimated parameters are susceptible
to the channel, the higher-order cumulants and cyclic cumulants based method is not effective in
practical application.

A different class of approaches to PSK modulation identification that employed the
likelihood-based method. In [17,18], the method indicated that the system needed high SNR in order
to obtain accurate identification results and this method is only suitable for noise channel. A similar
likelihood-based method for identifying MPSK signals was described in [19]. However, this method
needs to know the parameters of MPSK modulation. In [20], the authors introduced a likelihoodbased
method for BPSK, QPSK, and 8PSK in multipath channels. This method does not take into account that
the original constellation is unknown and the frequency-selective channel was slow-varying. In [21],
a new MPSK modulation identification method based on likelihood function is proposed. This method
identify modulation without knowledge of the symbol rate, carrier frequency and noise power in
the received signals. However, this method is suitable for noise channel, its performance is poor in
multipath channels. In non-cooperative environment, it is difficult to estimate the channel impulse
response (CIR) of multipath channel. Therefore, the likelihood-based modulation identification
method is not suitable for multipath channels generally. In [19], the authors concluded that the
likelihood-based method performs well in modulation identification when the CIR and noise power
are known. Therefore, the likelihood based method draws researchers’ attention when the CIR and
noise power are unknown in the multipath fading channel. Recently, lots of scholars used the method
of expectation maximization (EM) to estimate the CIR and noise power in flat fading channel in view
of MPSK and MQAM signals and then they used QHLRT to identify modulation [22–24].Through
these analysis and studies, we found EM-QHLRT can increase the identification rate effectively and
make us come up with some new ideas about modulation identification in fading channel. However,
EM-QHLRT is only suitable for flat fading channels, but not for underwater acoustic multipath
channels. Consequently, the likelihood based methods need concern how to reduce the impact of
multipath fading channels.

In [25,26], researchers used the cross-relations in the multiple reception in order to complete
channel estimation in single input multi output (SIMO) channel. In [25], a least square blind
channel estimation method is proposed and the necessary condition for channel estimation based on
cross-relations is analyzed in SIMO channel. In [26], an adaptive blind channel estimation algorithm is
proposed. However, these blind channel estimation methods have huge amount of computation to do
and do not consider the sparsity of underwater acoustic channel. In recent years, scholars have done
lots of research on channel estimation methods based on sparse bayesian learning (SBL) and have
achieved good result [27–29]. However, it is difficult to apply the SBL-based channel estimation method
in the non-cooperative condition due to the lack of prior information. Moreover, the identification will
fail because the original constellation cannot be achieved when the channel estimation result is applied
to the likelihood method directly.

In this paper, we consider likelihood-based identification of modulation types including BPSK,
QPSK, and 8PSK. Firstly, we use the cross-relations and SBL to estimate the CIR. Then, EM algorithm
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is used to further process the received signal after channel equalization. Finally, modulation can be
identified successfully by likelihood-based method. The proposed method can effectively improve
the identification rate in the underwater acoustic multipath channel. The proposed SBL-EM-QHLRT
method provide the following contributions in this regard:

• Aiming at the problem that the traditional likelihood-based modulation identification method
cannot achieve the identification in underwater acoustic multipath channel, we propose a blind
channel estimation method based on SBL, which can eliminate the impact of multipath on the
identification effectively.

• Because of the error of SBL blind channel estimation and the unknown original constellation
mapping of MPSK, we model the signal processed by SBL as Gaussian mixture model (GMM),
and use EM in orr to correct the constellation and compensate the error of channel estimation.

The rest of the paper is organized, as follows. Section 2 shows a SIMO underwater acoustic system
model, and the cross-relation in SIMO channel is derived. A Novel method named SBL-EM-QHLRT
is developed in Section 3. Section 4 discusses the performance of SBL-EM-QHLRT method through
numerical simulation. Conclusions are drawn in Section 5.

2. System Model

The SIMO channel model which is showed in Figure 1 can be described as follows:
x1(n) = s(n) ∗ h1(n) + w1(n)
...
xK(n) = s(n) ∗ hK(n) + wK(n)

(1)

where ∗ represents convolution, K is the number of outputs, w(n) = [w1(n), w2(n), . . . , wK(n)]
T

represents the noise which obey the Gaussian distribution with mean value of zero and variance of σ .
s(n) is the transmission signal of length N , x(n) = [x1(n), x2(n), . . . , xK(n)]

T represents the received
signal, h(n) = [h1(n), h2(n), . . . , hK(n)]

T represents the CIR, We assume that the length of CIR is L.
Without considering the influence of noise, the received signals of every output have the following
cross-relationship:

xi(n) ∗ hj(n) = xj(n) ∗ hi(n), 1 ≤ i 6= j ≤ K (2)

Equation (2) can be expressed as a matrix form, as shown as:

Xi(n)hj(n) = Xj(n)hi(n) (3)

where Xi(n) =
[
x1

i (n), x2
i (n), . . . , xl

i(n), . . . , xL
i (n)

]
, xl

i(n) = xi(n− l) is the cyclic convolution matrix
of size N × L.

According to Equation (3):

Xk(n) =


0 · · · 0 Xk+1(n) −Xk(n) · · · 0
...

. . .
...

... 0
. . .

...
0 · · · 0︸ ︷︷ ︸

k−1 blocks

XK(n) 0 · · · −Xk(n)︸ ︷︷ ︸
K−k+1 blocks

 (4)

Every block of Equation (4) is a matrix of size N × L. We can obtain the following, as shown as:

X(n)h(n) = 0, X(n) =
[
X1(n), . . . , XK−1(n)

]T
(5)

Adding constraints by setting h1 (bL/3c) = 1, where b·c represents the operation of rounding
down. The purpose of the constraints is to avoid zero solution, which will introduce the delay and
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gain to the final channel estimation results inevitably. However, in practice, the delay and gain will not
affect the performance of the system. Equation (5) can be expressed as:

− b = Ψh̃ (6)

where b is the column bL/3c of the matrix X(n) , Ψ is the matrix of all the columns in X(n) except
bL/3c , h̃ is all elements except h1 (bL/3c) = 1 in h . The CIR obtained by Equation (6) needs to meet
two identifiable condition, which is described in detail in [25]. One condition is that the transmission
function of each subchannel in h(n) = [h1(n), h2(n), . . . , hK(n)]

T has no common zero, and the other
condition is that the autocorrelation matrix of the transmission signal s(n) is full rank.

1
h ( )n

2h ( )n

h ( )
K
n

s( )n

1
x ( )n

2
x ( )n

x ( )
K
n

1
w ( )n

w ( )
K
n

2
w ( )n

Figure 1. Single Input Multi Output channel model.

3. Method of SBL-EM-QHLRT Modulation Identification

3.1. Blind Channel Estimation Based on SBL

We can achieve the process of calculating CIR by using the method of SBL [30], which is based on
Equation (6), due to the sparsity of underwater acoustic channel. The specific process is as follows.
We replace −b with t and assume that the channel has noise that obeys the Gaussian distribution with
mean value of 0 and variance of σ , Equation (6) can be expressed as:

t = Ψh̃ + ε (7)

The likelihood function of t can be expressed as:

p(t|h̃, σ) = (πσ)−N∗K(K−1)/2 exp(−
∥∥t−Ψh̃

∥∥2/σ) (8)

The maximum a posteriori (MAP) of h̃ can be expressed as:

h̃MAP = arg max
h̃

[
−
∥∥t−Ψh̃

∥∥2/σ + ln p(h̃)
]

(9)
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The first term on the right of Equation (9) comes from the likelihood function and the second term
comes from the prior distribution. SBL assumes the prior distribution of parameters firstly and then
calculates the maximum posterior estimate. Assuming the prior distribution of CIR, as:

p(h̃|α) =
K∗L−1

∑
i=0

CN(0, α−1
i ) (10)

where α = [α1, α2, . . . , αi, . . . , αKL−1] is called hyper-parameter and corresponds to the elements in h̃
one by one. The value of element in h̃ corresponding to α is zero When the value of element in α tends
to infinity. In order to calculate MAP, we need to calculate p(h̃, α, σ|t) :

p(h̃, α, σ|t) = p(h̃|α, σ, t)p(α, σ|t) (11)

The first term on the right of Equation (11) is posterior distribution of h̃ . According to the
Bayesian rule:

p(h̃|α, σ, t) = p(t|h̃, σ)p(h̃|α)/p(t|α, σ)= (2π)−ML−1|∑|−1/2 exp
{
− 1

2
(
h̃− µ

)T
∑−1 (h̃− µ

)}
(12)

where ∑ =
(

A + σ−1ΨTΨ
) −1 , A = diag(α1, α2, . . . , αi, . . . , αKL−1) is post-covariance matrix,

µ = σ−1 ∑ ΨTt is posterior mean. If we get the value of α and σ , we can bring them into µ = σ−1 ∑ ΨTt
to get the MAP of h̃ [31]. The second term on the right of Equation (15) can be expressed as:

p(α, σ|2t) = p(t|α, σ)p(α)p(σ)/p(t) (13)

Assuming α and σ obey the uniform distribution and we can achieve the estimation of α and σ by
maximizing p(t|α, σ):

p(t|α, σ) =
∫

p(t|h̃, σ)p(h̃|σ)dh̃

=(2π)−NK(K−1)/2
∣∣∣σI + ΨA−1ΨT

∣∣∣−1/2

×
{
−1

2
t−T
(

σI + ΨA−1ΨT
)−1

t
} (14)

The derivatives of p(t|α, σ) with respect to α and σ, while setting the derivatives to zero, we can
get the new estimates for α and σ as:

αnew
i =

(
1− αi∑

ii

)
/µ2

i (15)

σnew = ‖t−Ψµ‖2/

(
NK(K− 1)/2−∑

i
(1− αi∑

ii
)

)
(16)

where ∑ii is the ith diagonal element of ∑ , µi is the ith element of µ . According to the above analysis,
SBL sets the initial value of α and σ, threshold and iteration times. The iterative process can be showed
as follow. Firstly, we calculate ∑ and µ , and achieve new α and σ. Secondly, we set the corresponding
value in h̃ to zero when the value in α is greater than the threshold. Then we repeat the iterative
process for set times. Finally, h̃ is only a small number of non-zero values and the channel equalization
is realized.

3.2. Modulation Identification Method of EM-QHLRT

The performance of likelihood based identification method will be greatly affected because of
the error of channel estimation and the unknown original constellation. Therefore, EM is used to
compensate the error in channel estimation and the phase. Signal after channel equalization is modelled
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as GMM. We assume the number of Gaussian models is M and the probability density function of
GMM can be expressed as [32]:

f (r) =
M

∑
m=1

1
M

CN(r|sm, h, σ) (17)

where h = aejϕ is channel coefficients, α is amplitude attenuation, ϕ is frequency offset, CN(r|sm, h, σ)

is the probability density function of the mth Gaussian model, sm is the symbol of the original
constellation. Step Expectation aims to estimate the likelihood value of symbols regarding to every
Gaussian model. Setting the hidden variable zn,m to represent that symbol rn comes from the mth
Gaussian model.

zn,m′ =

 1 ifm′ = argmin
m
|rn − hsm|2

0 other
(18)

Equation (17) can be expressed as:

f (r, z |s, h, σ ) =
N

∏
n=1

M

∑
m=1

1
M

N(rn |sm, h, σ )zn,m

=
1

MN

N

∏
n=1

M

∏
m=1

N(rn |sm, h, σ )

zn,m (19)

Taking logarithm for Equation (19):

ln f (r, z |s, h, σ ) = −N ln M +
N

∑
n=1

M

∑
m=1

zn,m ln N(rn |sm, h, σ ) (20)

We define Q function as:

Q(h, σ, hi, σi) = Ez

[
ln f (r, z |s, h, σ )

∣∣∣r, hi, σi
]

= −N ln M+
N

∑
n=1

M

∑
m=1

E(zn,m

∣∣∣r, hi, σi )

×
[
ln(πσ) + |rn − hsm|2/σ

] (21)

where
E(zn,m

∣∣rn, hi, σi ) = f (zn,m = 1
∣∣rn, hi, σi )

= exp(−|rn−hism|2
σi )/

M
∑

k=1
exp(−|rn−hisk|2

σi )
(22)

where hi and σi represents the channel coefficients and noise power of the previous iteration, assuming
the value of Equation (20) is γn,m. We replace h with Re{h} + jIm{h} and Q function can be
expressed as:

Q(h, σ, hi, σi) = −N ln M+
N

∑
n=1

M

∑
m=1

γn,m

×
[

ln(πσ) +
|rn − (Re{h}+ jIm{h})sm|2

σ

] (23)

Step Maximization aims to maximize the Q function. The derivatives of Q(h, σ, hi, σi) with respect
to the Re{h} , Im{h} and σ, while setting the derivatives to zero, we get the new estimates, as shown as:
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Re{ĥ} =

N
∑

n=1

M
∑

m=1
γn,m [Re{rn,m}Re{sm}+ Im{rn,m}Im{sm}]

N
∑

n=1

M
∑

m=1
γn,m|sm|2

(24)

Im{ĥ} =

N
∑

n=1

M
∑

m=1
γn,m [Im{rn,m}Re{sm}+ Re{rn,m}Im{sm}]

N
∑

n=1

M
∑

m=1
γn,m|sm|2

(25)

σ̂ =

(
N

∑
n=1

M

∑
m=1

γn,m|rn − hsm|2
)

/

(
N

∑
n=1

M

∑
m=1

γn,m

)
(26)

Repeat Equations (22)–(26) until the end of the iteration. After the channel coefficient and noise
power are estimated by EM, the modulation identification based on QHLRT can be expressed as:

f (i)QHLRT =
N

∏
n=1

Mi

∑
m=1

1
Mi

1
πσ̂

exp
{
−
∣∣∣rn − ĥs(i)m

∣∣∣2/σ̂

}
(27)

The result can be achieved by comparing the values of (27) under BPSK, QPSK, and 8PSK:

î = arg max
i

ln
{

f (i)QHLRT

}
(28)

where n {·} is the natural logarithm.

4. Numerical Results

4.1. Parameter Setting

The simulation uses the channel model of single input and three outputs, and then we get three
different CIR of underwater acoustic channel [33]. The generation process of channel is as follows.
We assume the number of paths in three channels is 6, the average multipath delay is 14 ms, and the
time delay of adjacent paths obeys the exponential distribution. We can achieve six random variables
which are negative exponential distributed, then we calculate the sampling point positions delay_p
corresponding to six paths. We also assume the amplitudes of paths are Rayleigh distributed with the
average power decreasing exponentially with delay, where the difference between T_guard = 20 ms is
p = 20 dB. Therefore, we can conclude that:

delta_k = αe(−delay_p/( f s∗t−{rms})) (29)

where α = 1, t− {rms} = T_guard/ log(10p/10). Now, we can achieve random variables that are
Rayleigh distributed in each path, and then we assume that the value of random variable is (a + bj).
The amplitude of each path can be expressed as:

delta =
∣∣∣√0.5 ∗ delta_k ∗ (a + bj)

∣∣∣ (30)

where || is the modulus of complex number. Finally, the sparse multipath channel is generated by
normalizing the amplitudes of all paths [34,35]. The noise included in simulation is the gaussian white
noise in band, and a fixed frequency offset of 300 Hz is added in simulation in order to verify the phase
compensation capability of the algorithm, while the constellation may rotate by down sampling, which
make the receiving signal become the constellation. The sampling frequency of the communication
system is 48 kHz, the carrier frequency is 8 kHz, and the bandwidth is 6 kHz. We select 100 groups of
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signals from BPSK, QPSK, and 8PSK, respectively, to calculate the identification rate. The simulation
parameter settings are shown in Table 1.

Table 1. Parameters of Underwater Acoustic Multiple Phase Shift Keying (MPSK).

sampling frequency fs/kHz 48
Bandwidth/kHz 6
Carrier frequency fc/Hz 8
frequency offset fd/Hz 300

4.2. Performance of SBL Blind Channel Estimation

The performance of blind channel estimation of SBL is verified by simulation, the multipath
length of three outputs is assumed to be 900 sampling points. We use normalized mean square error
(NMSE) to evaluate the performance of SBL channel estimation.

Figure 2 shows the estimated CIR of the three channels. Figure 3 shows the difference between
the original CIR and the CIR estimated by SBL. The first 900 sampling points correspond to channel 1,
the 901–1800 sampling points correspond to channel 2, and the 1801–2700 sampling points correspond
to channel 3. Figure 4 shows the NMSE of three channels. Refer to Figures 2–4, by using SBL, we can
achieve the estimation of underwater acoustic sparse channel accurately with the increase of SNR.
In addition, we also simulate the performance of channel estimation under time-varying channel. We
set the simulation SNR to 20 dB. After each time interval, we can achieve 100 groups of random sparse
channels [21], and then we use the proposed method to estimate these channels. Finally, we take the
average to be the result as it is shown in Figure 5. From Figure 5, we can find that channel estimation
accuracy is low as the channels’ NMSE is higher than −10 dB when the time interval is 0.05 s or lower
than 0.05 s. By contrast, the channels’ NMSE is lower than −20 dB when the time interval is higher
than 0.2 s, which shows that the method proposed in this paper is still effective when the time interval
is about 0.2 s. Refer to Figures 4 and 5, due to the constraints that we set h1 (bL/3c) = 1, the gain of
channel 1 achieved by channel estimation cannot be further eliminated. Therefore, we can know the
estimation of channel 2 and channel 3 are more accurate than channel 1.

Figure 2. Three dimensional figure of estimated channel impulse response (CIR).



Appl. Sci. 2020, 10, 5919 9 of 16

In this section, we verify the performance of the SBL-based blind channel estimation method.
Refer to Figures 2–5, we found that the SBL-based channel estimation method can show good
performance. After we obtained the estimated CIR, the channel equalization can be used to eliminate
channel interference. However, even the channel interference is eliminated, the likelihood-based
method cannot effectively identify MPSK signals in the non-cooperative condition.
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4.3. Performance of SBL-EM-QHLRT

Two problems need to be considered in the likelihood method. The one is that the original
constellation is unknown, and the other one is that the constellation will rotate when obvious frequency
offset exist in the underwater acoustic and down sampling will also make the constellation rotate
even the original constellation can be known. Obviously, the likelihood method cannot be used to
identify modulation directly. Therefore, we use EM to solve these problems. EM sets the original
constellation firstly, and then it estimates the amplitude attenuation and phase offset of the channel
under all possible modulation modes.

The simulation process is as follows. QPSK modulation is adopted in simulation and the
constellation is [0.707 + 0.707j, 0.707 − 0.707j, −0.707 − 0.707j, −0.707 + 0.707j], as it is shown in
Figure 6a–c show the constellation of the received signal and the constellation after SBL channel
estimation and equalization, respectively. By comparison original constellation and the constellation
shown in Figure 6c, we can find that constellation will rotate after SBL channel estimation and
equalization. In EM, the constellation of MPSK is arbitrarily determined, we set [1, 1j, −1, −1j] as
original constellation in QPSK. We also need to set original constellation in BPSK and 8PSK. Figure 6d–f
show the result of constellation compensated by EM under BPSK, QPSK and 8PSK. It can be found that
constellation in Figure 6c has converged to constellation in Figure 6e that the influence of phase shift
has been eliminated. Furthermore, the influence of the channel is further eliminated, which makes the
constellation morepolymerized. Now, these two problems have been solved and the likelihood-based
method can be used to identify MPSK modulation successfully. Next, we illustrate the influence of
parameters of EM algorithm on its performance.

The influence of different iteration times on the performance of EM method is analysed by this
simulation. We set the number of symbols of EM to 300 and the iteration times of EM to 4, 6, 8, and
10 respectively. Figure 7 is the identification rate curve of iteration times under different SNR, and
we can find the identification rate is relatively better When iteration times is 8 and 10. Besides, taking
the amount of computation into consideration. Therefore, we set iteration times to 8. Based on the
above analysis, we can simulate the influence of different number of symbols on EM when the iteration
times is 8. We set the number of symbols to 150, 300, and 450, respectively. The Figure 8 showed that
the more the symbol number is, the better the identification rate is. When considering the amount of
computation, we set the number of symbols to 300 finally.
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Figure 6. Simulation results based on sparse Bayesian learning-expectation maximization (SBL-EM):
(a) Original constellation in QPSK modulation, (b) Constellation of received signal, (c) Constellation
after SBL, (d) Constellation after SBL-EM under BPSK, (e) Constellation after SBL-EM under QPSK,
(f) Constellation after SBL-EM under 8 PSK.



Appl. Sci. 2020, 10, 5919 12 of 16

0 5 10 15 20 25 30

SNR (dB)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

id
e
n
ti

fi
c
a
ti

o
n
 r

a
te

4 iterations

6 iterations

8 iterations

10 iterations

14 16 18

SNR (dB)

0.7

0.8

0.9

1

id
e
n
ti

fi
c
a
ti

o
n
 r

a
te

4 iterations

6 iterations

8 iterations

10 iterations

Figure 7. The influence of iteration times on EM.
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Figure 8. The influence of the number of symbols on EM.

In the end, we compared the identification rate by using SBL-QHLRT with frequency offset and
without frequency offset, also by using EM-QHLRT without SBL and SBL-EM-QHLRT. As shown in the
Figure 9 (here we have set EM iteration times to 8 and the number of symbols to 300). SBL-QHLRT with
frequency offset cannot identify MPSK modulation successfully because the constellation rotation will
make the QHLRT failed. EM-QHLRT also failed to identify MPSK modulation because EM is only suit
for flat fading channel. SBL-QHLRT method with known original constellation and have no frequency
offset can be useful, but it will be affected by channel estimation error. We can apparently find that
SBL-EM-QHLRT can overcome the problem of constellation rotation and reduce the influence of



Appl. Sci. 2020, 10, 5919 13 of 16

underwater acoustic fading channel. Figure 10 shows the identification rate of BPSK, QPSK, and 8PSK
under SBL-EM-QHLRT, of which BPSK has the highest identification rate and 8PSK has the lowest.

The simulation results show that EM can effectively improve the identification rate of underwater
acoustic MPSK. When the number of iterations and the number of symbols of EM meet the
requirements, EM can further eliminate the influence of channel and solve the problem of unknown
original constellation. Therefore, the likelihood-based identification method can successfully identify
MPSK modulation without any prior information.
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Figure 9. Comparison of identification method.
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Figure 10. Comparison of BPSK, QPSK, and 8PSK.

5. Conclusions

This paper developed a novel likelihood-based modulation identification algorithm for MPSK
signals in underwater acoustic multipath channels. The simulation results showed that the proposed
method can identify the modulation mode of MPSK well in underwater acoustic multipath channel.
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In the aspect of blind channel estimation, the NMSE of SBL based blind channel estimation algorithm
is below −20 dB when the SNR is higher than 15 dB. In addition, EM algorithm makes the received
constellation more convergent and solves the problem of unknown original constellation. In view of
the simulation results, some discussions for the SBL-EM-QHLRT method are given, as follows:

In the SBL channel estimation method, the channel 2 and 3 are more accurately estimated than
channel 1 due to the setting constraint conditions on channel 1. Adding constraints will lead to gain
and delay in the estimated CIR. Channel 2 and channel 3 can be normalized to eliminate the gain,
but channel 1 cannot eliminate the gain due to constraints, which results in poor performance of
channel 1 as compared with channel 2 and 3. The estimated result of channel 1 does not affect the
identification rate, because we only need to take the received signal of one of the paths for processing.

The SBL blind channel estimation method proposed in this paper can also be applied to other
MPSK modulation identification methods. After eliminating the channel interference, the features that
are used for identification in these methods become more apparent.

From the simulation results, when the iteration times and symbol length of EM increases,
the identification rate will be better, but the computational efficiency should be considered in
practical use.

Further improvements of the blind likelihood-based modulation identification method for signals
in different channel environment, such as Doppler shift and MIMO, is needed in the future.
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