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Abstract: Location is one of the most important parameters of a self-driving car. To filter the sensor
noise, we proposed the extended particle-aided unscented Kalman filter (PAUKF). Although the
performance of the PAUKF improved, it still needed parameter tuning as other Kalman filter
applications do. The characteristic of noise is important to the filter’s performance; the most important
parameters therefore are the variances of the measurement. In most Kalman filter research, the variance
of the filter is tuned manually, costing researchers plenty of time and yielding non-optimized results
in most applications. In this paper, we propose a method that improves the performance of the
extended PAUKF based on the coordinate descent algorithm by learning the most appropriate
measurement variances. The results show that the performance of the extended PAUKF improved
compared to the manually tuned extended PAUKF. By using the proposed training algorithm,
practicability, training time efficiency and the estimation precision of the PAUKF improved compared
to previous research.

Keywords: particle-aided unscented Kalman filter; discriminative; coordinate descent algorithm
localization; self-driving car

1. Introduction

The Kalman filter is one of the algorithms most commonly used for the localization of a vehicle.
Localization of a self-driving car is a sensor fusion process based on a global positioning system
(GPS), on-board sensor, inertial measurement unit (IMU) and range sensors like those used for light
detection and ranging (LiDAR) and those for radio detection and ranging (RADAR). Different sensors
have different noise characteristics. To process the different sensors with different noise perception
characteristics, the Kalman filter processes the uncertainty based on the variance numerically.

There are different kinds of applications of the Kalman filter family under investigation [1–9].
Most researchers involved defined the variance of prediction and measurement empirically, meaning
not only that a lot of time is needed to tune the variance parameters, but also that it is unknown
if the result generated is optimal for a given situation or not. Pomárico-Franquiz provided an
accurate self-localization method based on an extended Kalman filter (EKF) by using radio frequency
identification (RFID) [10]. Like most Kalman filter literature, they presented a novel prediction model,
a measurement model and supposed the variance of the model with experience. Therefore, the final
result could be improved with a parameter training algorithm and the training process of variance
could be automated. Some of the literature has presented a training method based on fuzzy logic in
the localization field [11,12]. Researchers constructed the fuzzy logic with rules geared to learning the
pattern of the variance. However, the rules are made by researchers manually and according to their
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experience. The final estimation result is directly affected by the experiences of the researchers. In fuzzy
logic, there is no ground truth data and evaluation parameters are used, so it is hard to verify the
performance of the filter when it is training. Since the neural network is an online algorithm, it needs
additional computation resources. The deep Kalman filter is a recent parameter learning method [13].
The recurrent neural network is used to enhance the Kalman filter with arbitrarily complex transition
dynamics and emission distributions. However, like all deep neural networks, the operation flow of
the algorithm is a black box which means it is not reliable. Some researchers have implemented the
neural network to the Kalman filter to fuse the IMU error [14]. The recurrent neural network is used to
generate the error term and variance of the prediction model and measurement model. However, this
method adds to the vehicle computing unit’s online computational burden. In previous research, we
proposed the extended particle-aided unscented Kalman filter (PAUKF) for localizing a self-driving car
based on a pre-defined map [15,16]. The basic PAUKF and extended PAUKF improved the performance
by combining the advantages of the particle filter (PF) with those of the unscented Kalman filter (UKF).
To achieve a better result, we took plenty of time to tune the parameters of the extended PAUKF
manually. In the extended PAUKF filter framework, the particle filter is used for matching the position
of the features to the ground truth (GT) position on the map. The estimated x, y position and yaw angle
of the PF become the more precise measurement input to the UKF. The uncertainty of the estimated
result from the PF is decided by using the variances. However, it is hard to measure the measurement
variances of the PAUKF.

In this paper, to determine the measurement variances of the filter, a discriminative PAUKF
training algorithm is proposed based on previous research [17,18]. The purpose of the discriminative
training method is to find the optimal measurement variances of the PAUKF. The coordinate descent
algorithm is used as a training algorithm to find the optimal value of the measurement variances.
The coordinate descent algorithm training process is an offline process which is to say that it does
not run when the vehicle is running on the road. Coordinate descent does not therefore add to the
computational burden of the vehicle’s computing unit. The main contribution of this paper is to
provide a methodology for training the extended PAUKF. By computing the residual prediction error
of a low-accuracy IMU sensor and high-accuracy IMU sensors, the performance of the PAUKF can
be evaluated correctly. Furthermore, the training process is easy to implement and the converged
training result is globally optimal. The whole training process is run off-line. The off-line training
means the training algorithm will not use the computation resources when the localization algorithm
is running. It is a preprocessing of the localization algorithm. This kind of off-line training process is
different from mathematical dynamic covariances learning which will cost the online computation
resources. The off-line training approach allows the line of code and the computation time of the PAUKF
localization algorithm to not change but perform better. As a result, the trained measurement variances
improve the performance by about 15.7% without adding a computational burden. The number of
particles is not a training parameter in this paper because the computational ability varies based on the
hardware. In this work, we focus on the variances of the measurement. In the following manuscript,
the extended PAUKF is represented simply as the PAUKF for better readability.

The following Section 2 illustrates the framework of the PAUKF and discriminative training
based on the coordinate descent algorithm. Section 3 illustrates the simulation configuration, Section 4
discusses the results of the simulation and Section 5 concludes this paper.

2. The Discriminative Training of the Extended Particle-Aided Unscented Kalman Filter

2.1. PAUKF

The PAUKF algorithm merges the advantages of two different filters, PF and UKF, to handle the
non-Gaussian noise of sensors. By matching the features and a well-defined high-definition map, the
PF provides a precise global location measurement to the UKF. The UKF then takes the PF estimation
result as a measurement and updates the prediction value of the UKF. With this method, the localization
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performance becomes more accurate and smooth. For details of the extended PAUKF operation, refer to
Appendix A and the references mentioned above. Since we use the bicycle model as our prediction
model, it does not consider the force of each tire, the torque changes and the mass of the vehicle.
We assumed the data from different vehicles transformed into one point already for evaluating the
training performance. The vehicle is considered as a point in the global coordinate. If the algorithm is
going to be implemented in real-world vehicles, the algorithm should upgrade the prediction model
with the dynamic equation. Nevertheless, the whole training process will not change except for adding
some parameters.

2.2. Discriminative Training of the PAUKF

This section illustrates the implementation of the discriminative training of the PAUKF based on
previous research. Although the parameters in both prediction variances and measurement variances
could be trained with the same method, in this work we focus on training the measurement variances.

As with most training algorithms, the PAUKF needs to define criteria for evaluating the process.
The residual prediction error (RPE) is selected as the evaluation criteria (EC). Not only is it simple to
implement but also the performance based on the residual prediction error shows the lowest root mean
square (RMS) error according to the work by Abbeel et al. [17]. To calculate the residual prediction
error, ground truth data are needed. Since there is no perfect sensor without any noise, a sensor with
high accuracy is needed. The high-accuracy measurement can be regarded as the ground truth value
with an added random variable γ with zero mean and variance matrix P, like Equations (1) and (2)
show. The h function is the projection of the estimated value onto the highly accurate measurement
value. In this paper, we assume the highly accurate sensor could measure the x, y, θ position directly.
Since the algorithm is evaluated in the simulation environment, we could actually use the ground truth
value directly. However, the ground truth data are not available in the real world. Therefore, we are
trying to evaluate the algorithm in a reasonable environment that is similar to the real world. This is
the reason why we do not use the ground truth data as the high-accuracy sensor.

zh = h
(
xpauk f

)
+ γ, (1)

γ ∼ N(0, P), (2)

The residual prediction error is calculated based on the whole data of the high-accuracy
measurement zh,1:T and the estimated value of the PAUKF xpaukf,1:T. Since the residual prediction
error is based on the estimation result of the PAUKF, it can learn how each variance affects the
whole estimation process. Since the purpose of this paper is figuring out the optimal measurement
variances Rop of the PAUKF, the residual prediction error should be minimized as Equation (3) shows.
In Equation (3), yt is the measurement value from a highly accurate sensor and µt is the final estimated
result of the PAUKF. The numerical value of µt is equal to xpauk f in Equation (1). As mentioned in
Equation (1), h is the projection of the PAUKF with a highly accurate measurement value.

Rop = argmin
R

∑T

t=0
(yt − h(µt))

TP−1(yt − h(µt)), (3)

Since it is assumed that the highly accurate sensor could measure the state x, y, θ directly,
the measurement variance matrix becomes an identity matrix. Then, Equation (3) can be simplified as
Equation (4). Therefore, the training algorithm should decide the appropriate measurement variance
matrix R to make the residual prediction error as small as possible. Since the xpauk f ,t is the final
estimated result of the PAUKF, the evaluation criteria are optimized considering the performance in
the whole track.

Rop = argmin
R

∑T

t=0

(
yt − h

(
xpauk f , t

))2
, (4)
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As the evaluation criteria of the performance of the PAUKF are well-defined as Equation (4),
a training method should be defined. The coordinate descent algorithm is used to minimize the
evaluation criteria as in previous research. The training process is simple to implement and intuitively
straightforward as shown in Figure 1. σx,y,θ is the standard deviation of the measurement, and the
alphabetical characters a, b and c are the hyper-parameters of the coordinate descent algorithm. a and
b decide the training rate of the coordinate descent and c is a parameter which can increase or decrease
the value of the σx,y,θ based on the performance of the PAUKF and the value of a and b. If the
evaluation criteria (EC) become smaller compared to the previous evaluation criteria (EC_previous),
then it means the covariance in the current value makes the PAUKF perform better. So, the training
algorithm accepts the new covariance values and continues the training process.

The prediction covariance also can be trained. However, in our research, the simulation
environment and algorithm are tested in the simulation. The physical meaning of the precision
covariance is the unmodeled vehicle model and unexpected noises. However, since the evaluation
environment is a simulation, there are no unmodeled elements of the vehicle and the noises.
The prediction covariance can be trained in the same way as training the measurement covariances.
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Figure 1. Flowchart of the training process of the extended particle-aided unscented Kalman filter
(PAUKF) based on the coordinate descent algorithm.

The details of the implementation of the PAUKF training process based on the coordinate descent
algorithm are shown in Table 1. First, the basic parameters of the training algorithm need to be defined.
Then, the PAUKF runs with the computed sigma value in the current iteration. When the algorithm
is training one of the standard deviations, the other’s value is fixed. When the vehicle reaches the
final position of the track, all the estimated states from the PAUKF and highly accurate measurement
values are saved for calculating the residual prediction error. Then, the training algorithm compares
the current residual prediction error with the residual prediction error in the previous iteration. If the
residual prediction error decreases, the current corresponding measurement standard deviation is
accepted. Otherwise, the standard deviation of the measurement should hold the value of the previous
iteration. The training process finishes if the iteration meets the training time.
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Table 1. The training process of the PAUKF based on the coordinate descent algorithm.

Order Process

1 Initialization of hyper-parameters’, a, b, c, σx,y,θ, EC, training time
2 Start training σx,y,θ one by one
3 Calculate the sigma in this iteration
4 Run the PAUKF in the whole track with the calculated sigma
5 Save the data from 1:T of the PAUKF and high-performance sensor
6 Calculate the evaluation criteria based on data collected
7 Compare the performance change
8 Change the training parameters a and b based on the performance
9 Start new training iteration based on the changed training parameters a and b

10 End the iteration if the training process meets training times
11 Save the σx,y,θ as the final result

3. Discriminative Training Environment Settings

The training algorithm is based on the MATLAB autonomous driving toolbox. To verify the
improvement of the PAUKF with the trained measurement variances, the parameters of vehicle
noise and environment noise settings are the same as used in our previous research. The additional
parameters are shown in Table 2. The parameters shown in Table 2 are all empirical and can be
changed by the researchers who use this algorithm. The random seed of MATLAB is fixed to 50 for the
repeatable result. The high accuracy sensor noise is set as zero-mean Gaussian which is a smaller error
than other sensors. The initial standard deviation of measurement σx,y,θ is set as 10 and the standard
deviation decreases based on the coordinate descent algorithm. The initial residual prediction error
value is set as 9999 m. The training time is set as 15 based on previous research. The hyper-parameters
a, b and c of the coordinate descent algorithm are set as 0.1, 0.3 and 0.2, respectively, based on previous
research. The hyper-parameters a and b are constant values and c changes during the training iteration.
a and b are empirical parameters that can affect the training rate of the coordinate descent algorithm.
The velocities of the training process are varied as 60, 70, 80, 90, 100, 110 and 120 km/h, and the
associated evaluations of the performance process are determined.

Table 2. The parameters of the training process.

Parameter Name Value

Random seed 50
The noise of the high-accuracy sensor ∼N(0, 0.01)

Initial value of σx,y,θ 10
Initial RPE (m) 9999
Training times 15

a 0.1
b 0.3

Initial c 0.2
Velocity of vehicle (km/h) 60, 70, 80, 90, 100, 110, 120

4. The Results of Discriminative Parameter Training of the PAUKF

The simulation experiment results and discussion are given in this section. To evaluate the
performance of the manually tuned PAUKF and variance-trained PAUKF, the root mean square error
(RMSE) is used as the assessment value. The smaller the value of RMSE, the better the algorithm is.
The calculation of the RMSE is shown as Equation (5). The RMSEest means the RMSE is calculated
based on the filter’s estimation and the RMSEnoise is calculated based on the noisy position without
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filtering. The N represents the number of accumulated position data after the vehicle runs on the
whole track.

[
RMSEest

RMSEnoise

]
=


√
[
∑N

i=1

(
Positionesti − Positionmeanesti

)2
]/N√

[
∑N

i=1

(
Positionnoisei − Positionmeannoisei

)2
]/N

, (5)

Figure 2 is the filtering result of the manually tuned PAUKF and the trained PAUKF at 120 km/h.
Figure 2a is the trajectory of the noisy vehicle position, estimated by the PF, and the manually tuned
PAUKF. Figure 2b is the trajectory of the noisy vehicle position estimated by the PF, and the PAUKF
with the trained measurement variance. The blue line with the blue circles is the ground truth position
of the vehicle, the red dashed line with the red triangles is the noisy GPS sensor measured position,
the yellow dash line with the yellow squares is the estimation result of the PF and the black dash
line with the black asterisks is the final estimation result of the PAUKF. The estimation results of the
manually tuned PAUKF and the variance-trained PAUKF have many differences. From the figure,
the algorithm with trained variance has better performance in the whole track. The most significant
differences are marked with red circle A and red circle B for comparison. Red circle A shows the
estimation results of the vehicle at the start. The vehicle localizes itself quickly in both of the figures.
However, the error of estimation in (a) becomes larger than the error in (b). Since the parameters
and random seed are fixed, the performance of the PF and UKF does not change, meaning that the
only reason for the divergent performances is the weight of the measurement which is decided on
the measurement variances in the PAUKF. Compared to the manually tuned PAUKF, the estimation
error of the variance-trained PAUKF is smaller and smoother. The performance of the PAUKF becomes
more distinct at circle B. The manually tuned PAUKF tends to put more weight on the prediction
model. However, not only does the prediction model not describe the physical movement, but the
values used in the prediction contain a lot of noise. Due to the non-optimized measurement variances,
the algorithm cannot balance the information well. As a result, the PAUKF cannot fully use the
information from the PF which provides an accurate measurement based on map matching. Due to the
non-optimized variance value, the position error of the manually tuned PAUKF is larger than the error
of the variance-trained PAUKF at circle B.
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The results of the RMSE of the filter at different velocities are shown in Table 3. The title “position
of vehicle” means the RMSE of the noisy position of the vehicle. The title “manual” means the data
are generated by the manually tuned PAUKF. The title “trained” means the data are generated with
variance-trained PAUKF. The “Mean” means the average of the RMSE of different velocity conditions
and the “RMSE change” means the difference in the RMSE of the manually tuned PAUKF and the
variance-trained PAUKF. As illustrated in Section 3, the parameters used in the trained variance
PAUKF are the same as manually tuned PAUKF, meaning the only variable making the result change
is the value of the measurement variance. The RMSE which is calculated based on the second row
of Equation (5) shows that both the manually tuned PAUKF and variance-trained PAUKF are tested
under the same noisy environment, and the RMSE of the manually tuned PF and trained PF shows the
same value. This means the training process does not affect the performance of the PF. As a result, the
parameter “RMSE change” in the title “position of vehicle” is equal to 0%. The change in the RMSE
happens at the PAUKF column. The RMSE of the PF and PAUKF is calculated based on the first row of
Equation (5). Compared to the manually tuned PAUKF, the RMSE of the variance-trained PAUKF
decreases about 15.7% on average only because of the well-trained measurement covariance values.
The RMSE results show that the trained variance PAUKF improves the performance without adding
any computational burden.

Table 3. RMSE of the basic extended PAUKF and trained PAUKF (unit: m).

Position of Vehicle PF PAUKF

Parameter Manual Trained Manual Trained Manual Trained

60 km/h 29.465 29.465 6.317 6.317 2.478 2.651
70 km/h 29.351 29.351 6.238 6.238 1.767 1.510
80 km/h 28.319 28.319 6.265 6.265 2.303 2.645
90 km/h 29.919 29.919 5.861 5.861 2.169 2.270

100 km/h 29.981 29.981 6.324 6.324 2.833 2.166
110 km/h 29.144 29.144 6.303 6.303 3.441 2.574
120 km/h 30.072 30.072 6.098 6.098 3.881 2.093

Mean 29.465 29.465 6.201 6.201 2.696 2.273
RMSE Change 0% 0% −15.70%

The numerical value of measurement variances affects the estimation performance, as seen from
the results. The variance is trained by the coordinate descent algorithm in 15 iterations of each
parameter. In the training algorithm, the variance of x, y, and θ is calculated by the standard deviation.
Therefore, Figures 3–5 show the record of the standard deviation of x, y, and θ. Since the initial
measurement variance is equal to 10, the PAUKF tends to give greater weight to the prediction model
than to the measurement. From Figure 3, the standard deviation of x converged at iteration 15–16.
The final standard deviation converges to different values at different velocities. The reason for this
phenomenon is the noise in the prediction model decreasing the precision of the estimation. Therefore,
the error of the prediction model of the PAUKF becomes larger. Conversely, the estimation of the PF is
not affected by the velocity of the vehicle, meaning the PAUKF should give more weight to the PF
estimation. The smaller the standard deviation of the measurement, the more credence the PAUKF
gives to the measurement value. So, the weight of the PF is represented as the standard deviation
and the standard deviation decreases as the velocity increases, as shown in Figure 3. The standard
deviation of y shows the same property of the standard deviation of x, as shown in Figure 4.
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Figure 5 shows the standard deviation change of the yaw angle in the training iteration.
The standard deviation change of the yaw angle differs from that of x and y in that it is almost
the same in all velocity conditions. In the training process, therefore, the performance of the PAUKF
improves as the weight of the yaw angle measurement increases. The yaw angle, which is estimated
from the PF, has higher precision than the on-board sensor in all velocity conditions. This also means
that the manually tuned variance is not optimal enough. The convergence of the yaw angle happens at
iteration 12–14.
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5. Conclusions

In this paper, we present a discriminative parameter training methodology of the PAUKF.
The coordinate descent algorithm is used for learning the optimal measurement variances and
the residual prediction error is used for evaluating the performance of the extended PAUKF.
The performance of the trained variance-based PAUKF is verified by using the simulation environment.
By comparing the RMSE of the variance-trained PAUKF and the manually tuned PAUKF, the trained
variance-based PAUKF demonstrates improvement in the precision of about 15.7%. Since the training
process is done offline, the PAUKF improves the precision without any extra online computational
burden. By using our training method, researchers not only reduce the time cost but also could achieve
a more precise location of the self-driving car by the aid of trained parameters. In the future, we will
implement the extended PAUKF into the four-wheel ground vehicle in the real world.
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Nomenclature

X State of the vehicle in PF
x Position of the vehicle in the map x-direction
y Position of the vehicle in the map y-direction
z Position of the vehicle in the map z-direction
θ Yaw angle of the vehicle in map coordinate
σvz The standard deviation of vehicle noise in the vertical direction
Xk+1 State at sample time k+1
k Timestamp
vk Vehicle position in the x dimension at time k

.
θk(∆t),

.
θ Yaw rate of the vehicle at time k

θk Yaw angle of the vehicle at time k
∆t, dt Sample time
zv,k+1 Vertical noise of the vehicle
di Distance between feature and vehicle
∆α[i] The relative bearing angle between feature i and vehicle
xv, yv, zv x, y, z position of the vehicle in map coordinate
xf_i,k+1, yf_i,k+1, zf_i,k+1 The relative distance at x, y, z direction between feature and vehicle
εd Compound noise of distance measurement
ε∆α Compound noise of angle measurement
w1,2,3,...i Weights of particle 1, particle 2, . . . particle i
xp,i, yp,i, zp,i x, y, z value of the ith particle
P
(
xp,i, yp,i, zp,i

)
Probability when the particle is xp,i, yp,i, zp,i

σx,σy,σz Compound standard deviation in x, y, z-direction

xf_i,k+1, yf_i,k+1, zf_i,k+1
The transformed relative distance of feature i and vehicle at x, y, z direction in
map coordinate

µf,x, µf,y,µf,z The feature position x, y, z in the pre-saved HD map
N Number of particles
λ Sigma point design parameter
nx Quantity of the state vector
xpaukf, k State of PAUKF
.
θ Yaw rate of vehicle
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Xpaukf, k The state of sigma points
µk Mean value of sigma points
xpaukf, k,aug Augmented state of PAUKF
wvelacc The noise of vehicle acceleration
wyawacc The noise of vehicle yaw acceleration
σvelacc The standard deviation of the noise of vehicle acceleration
σvelacc Standard deviation of noise in vehicle yaw acceleration
Pk,aug The covariance matrix of PAUKF
Xpaukf, k+1,aug Augmented state with sigma points of PAUKF at time k + 1
µpaukf,k,aug Mean value of the augmented state of PAUKF at time k
nx,aug Number of augmented states
wpaukf,i Weight of i th sigma point
xpaukf,k+1|k Predicted state based on the weight of sigma points and states
Pk+1|k Predicted variance based on sigma points and predicted state mean
ωpaukf,k+1 Measurement noise of PAUKF
Zpaukf,k+1|k,i Measurement prediction based on sigma points
Xpaukf,k+1|k,i Sigma points of the state
A Measurement transition model
zpaukf,k+1|k Predicted measurement based on sigma points and weights
Sk+1|k Predicted measurement covariance matrix
R The covariance matrix of the measurement noise
σxpf The standard deviation of PF estimation in the x dimension
σypf The standard deviation of PF estimation in the y-dimension
Tk+1|k Cross-correlation matrix of PAUKF
Kk+1|k The Kalman gain of PAUKF
x̂PAUFK Final state estimation of PAUKF
P̂PAUFK Final state variance matrix of PAUKF

Appendix A

The equations of the extended PAUKF

Order Process of Extended PAUKF

1 X = [x, y, z, θ]
2 zv ∼ N

(
0, σ2

vz

)

3 if yaw rate , 0, Xk+1 =


x
y
z
θ


k+1

=



vk.
θk(∆t)

[
sin

(
θk +

.
θk(∆t)

)
− sin(θk)

]
vk.

θk(∆t)

[
cos(θk) − cos

(
θk +

.
θk(∆t)

)]
zv,k+1.
θk(∆t)


+


x
y
0
θ


k

4 if yaw rate = 0, Xk+1 =


x
y
z
θ


k+1

=


vk cos(θk)∆t
vk sin(θk)∆t

zv,k+1
0

+


x
y
0
θ


k

5

If di < 50, Zk+1 =

 d[i]
∆α[i]


k+1

=
√(

xf_i,k+1 − xv
)2
+

(
yf_i,k+1 − yv

)2
+

(
zf_i,k+1 − zv

)2

arctan
(

xf_i,k+1−xv
yf_i,k+1−yv

) 
k+1

+

[
εd

− θv + ε∆α

]
k+1

6

wi = P
(
xp,i, yp,i, zp,i

)
= 1

(2π)
3
2 σxσyσz

e
−(

(xf_i,k+1−µf,x)
2

2σ2
x

+
(yf_i,k+1−µf,y)

2

2σ2
y

+
(zf_i,k+1−µf,z)

2

2σ2
z

)
, i = 1, 2, 3 . . . N
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Order Process of Extended PAUKF

7 λ = 3 − nx

8 xpaukf, k =
[

x y v θ
.
θ

]T

9 Xpaukf, k =
(
µk, µk +

√
(λ + nx)Pk, µk −

√
(λ + nx)Pk

)
10 xpaukf, k,aug =

[
x y v θ

.
θ wvelacc wyawacc

]T

11 wvelacc ∼ N
(
0, σvelacc

2
)

12 wyawacc ∼ N
(
0, σyawacc

2
)

13 Pk,aug =


Pk 0 0
0 σvelacc

2 0
0 0 σyawacc

2


14 xpaukf,k+1 = xpaukf,k +

∫ k+1
k

.
xpaukf,kdt

15 xpaukf, k+1,aug = f
(
xpaukf,k,aug, σvelacc,σyawacc

)

= xpaukf,k,aug +



v
.
θ

[
sin

(
θk +

.
θk∆t

)
− sin(θk)

]
v
.
θ

[
cos(θk) − cos

(
θk +

.
θk∆t

)]
0

θ .k∆t
0
0
0


+



v
.
θ

[
sin

(
θk +

.
θk∆t

)
− sin(θk)

]
v
.
θ

[
cos(θk) − cos

(
θk +

.
θk∆t

)]
0

.
θk∆t

0
0
0


+



1
2 ∆t2 cos(θk)·σvelacc
1
2 ∆t2 sin(θk)·σvelacc

∆tσvelacc
1
2 ∆t2
·σyawacc

∆t·σyawacc

σvelacc
σyawacc


16 λ = 3 − nx,aug

17 Xpaukf,k,aug =

(
µpaukf,k,aug, µpaukf,k,aug +

√(
λ+ nx,aug

)
Ppaukf, k,aug,

µpaukf,k,aug −

√(
λ+ nx,aug

)
Ppaukf,k,aug

)
18 wpaukf,i = λ

λ+nx,aug
, when i = 0

19 wpaukf,i = 1
2(λ+nx,aug)

, when i = 1 . . . nx,aug,

20 xpaukf,k+1|k =
na∑

i=0
wpaukf,iXpaukf,k+1|k,i,

21 Pk+1|k =
2na∑
i=0

wpaukf,i(Xpaukf,k+1|k,i − xpaukf,k+1|k)(Xpaukf,k+1|k,i − xpaukf,k+1|k)
T

22 z =


x
y
θ


23 Zpaukf,k+1|k,i = AXpaukf,k+1|k,i + ωpaukf,k+1,

24 A =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0


25 zpaukf,k+1|k =

nx∑
i=1

wpaukf,iZpaukf,k+1|k,i.

26 Sk+1|k =
2nx∑
i=0

wpaukf,i
(
Zpaukf,k+1|k,i − zpaukf,k+1|k

)(
Zpaukf,k+1|k,i − zpaukf,k+1|k

)T
+ R

27 R =


σxPF

2 0 0
0 σyPF

2 0
0 0 σθPF

2

.
28 Tk+1|k =

2nx∑
i=0

wpaukf,i
(
Xpaukf,k+1|k,i − xpaukf,k+1|k

)(
Zpaukf,k+1|k,i − zpaukf,k+1|k

)T

29 Kk+1|k = Tk+1|kS−1
k+1|k.

30 x̂paukf = xk+1|k+1 = xk+1|k + Kk+1|k
(
x̂PF − zk+1|k

)
.

31 P̂paukf = Pk+1|k+1 = Pk+1|k − Kk+1|kSk+1|kKT
k+1|k.
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