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Abstract: Conventional protection schemes in the distribution system are liable to suffer from high
penetration of renewable energy source-based distributed generation (RES-DG). The characteristics of
RES-DG, such as wind turbine generators (WTGs), are stochastic due to the intermittent behavior of
wind dynamics (WD). It can fluctuate the fault current level, which in turn creates the overcurrent relay
coordination (ORC) problem. In this paper, the effects of WD such as wind speed and direction on
the short-circuit current contribution from a WTG is investigated, and a robust adaptive overcurrent
relay coordination scheme is proposed by forecasting the WD. The seasonal autoregression integrated
moving average (SARIMA) and artificial neuro-fuzzy inference system (ANFIS) are implemented for
forecasting periodic and nonperiodic WD, respectively, and the fault current level is calculated in
advance. Furthermore, the ORC problem is optimized using hybrid Harris hawks optimization and
linear programming (HHO–LP) to minimize the operating times of relays. The proposed algorithm
is tested on the modified IEEE-8 bus system with wind farms, and the overcurrent relay (OCR)
miscoordination caused by WD is eliminated. To further prove the effectiveness of the algorithm, it
is also tested in a typical wind-farm-integrated substation. Compared to conventional protection
schemes, the results of the proposed scheme were found to be promising in fault isolation with a
remarkable reduction in the total operation time of relays and zero miscoordination.

Keywords: protection coordination; wind dynamics; wind-speed forecasting; seasonal autoregression
integrated moving average (SARIMA); adaptive neural network-based fuzzy inference system
(ANFIS); smart energy systems; system stability

1. Introduction

The integration of renewable energy source-based distributed generation (RES-DG), such as wind
turbine generators (WTGs), in power systems is continuously increasing due to extensive technical
developments, as well as clean and low-cost energy production [1,2]. The wind power share of

Appl. Sci. 2020, 10, 6318; doi:10.3390/app10186318 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7846-1761
https://orcid.org/0000-0002-0923-1476
https://orcid.org/0000-0003-0712-9133
https://orcid.org/0000-0001-7337-7608
http://www.mdpi.com/2076-3417/10/18/6318?type=check_update&version=1
http://dx.doi.org/10.3390/app10186318
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 6318 2 of 25

worldwide electricity at the end of 2018 was 4.8%, which could increase to 19% after ten years, thereby
avoiding more than three billion tons of CO2 a year [3,4]. Aside from the benefits, RES-DGs change
the radial distribution network (DN) into a meshed network and cause bidirectional power flow,
which changes the fault current level (FCL) [5], resulting in conventional protection systems facing new
challenges, most notably the overcurrent relay coordination (ORC) problem [6–9]. Overcurrent relay
(OCR) measures the FCL and sends a trip signal after a typical operating time. The faulty portion is
isolated from the healthy system if proper coordination is sustained between the primary and backup
OCRs [10]. This relay coordination is maintained by delaying the upstream relays with a suitable time
called the coordination time interval (CTI). Optimal relay settings, such as the pickup current (Ip)
and time multiplier setting (TMS), play a vital role in achieving optimum ORC. These relay settings
are fixed at predefined FCL and connected load [11,12]. The integration of wind farms (WF) into
distribution systems is intermittent, depending on the operating conditions of the WTG, which mainly
depend on the stochastic behavior of wind speed and direction. This results in changes in the FCL
with WD, which affect the relay setting, thereby causing miscoordination problems [13,14]. Thus,
the relay settings should be adaptively updated in line with the operating conditions of the WTG.
To determine optimal relay settings, two approaches are used: conventional approaches (CA) [15–21]
and optimization approaches (OA) [22–40].

Conventional approaches involve the predetermination and analysis of fault currents during
abnormal conditions and system contingencies [15], which are dependent on the network configuration;
they include curve-fitting techniques [16] computer programming software [17], graphical selection [18],
minimum breakpoint set [19], and linear graph theory [20]. In a complex meshed network with
multiple RES-DG, conventional methods are not suitable, as the time to update the relay settings during
contingencies is prolonged and ORC becomes impracticable [21]. Thus, authors strived to propose
optimization approaches. The overall purpose of optimization approaches in the ORC problem is
to obtain the minimum possible operation time by optimally adjusting the OR settings subjected to
constraints. Firstly, the ORC problem is formulated as linear programming (LP), in which one variable
from Ip and TMS is predetermined and the second is optimized [22,23]. In complex networks, the results
of LP may be trapped in local minima. Hence, the ORC problem is formulated as nonlinear programming
(NLP), where both settings of the relay are optimized at the same time, which is often formulated
with metaheuristic techniques such as particle swarm optimization (PSO) [25], seeker optimization
algorithm (SOA) [26], genetic algorithm (GA) [27], evolutionary optimization algorithm (EOA) [28],
teaching learning-based algorithm (TLBO) [29], ant colony optimization (ACO), gravitational search
algorithm (GSA) [30], symbiotic organism search optimization technique (SOSO) [31], and extended
continuous domain ant colony optimization [32]. Some hybrid optimization approaches (HOAs)
were also proposed in the literature by combining the benefits of different OAs. It is seen that
HOAs produce good results in the form of less computational time, better accuracy, and reliability
toward global optimization [33,34]. Some examples are the hybrid electro-search algorithm and cuckoo
optimization (HES–CO) [35], hybrid PSO–LP [36], combined genetic algorithm and simulated annealing
(GA–SA) [37], hybrid biogeography-based optimization and differential evolution (BBO–DE) [38],
hybrid CS–GA [5], and hybrid CS–LP [39].

Contributions and Paper Organization

Subsequent to the variation in FCL from WTGs due to the stochastic nature of wind speed, wind
direction, and metrological conditions in wind farm-dominated distribution networks, the relay settings
can be disturbed. Therefore, the relay settings must be updated adaptively in line with the variation in
FCL. In this paper, a robust adaptive overcurrent relay coordination scheme for a WTG-integrated
distributed system based on forecasting WD is presented to deal with the variation in FCL. It forecasts the
wind speed and direction and calculates the FCL in advance. Furthermore, the seasonal autoregression
integrated moving average (SARIMA) and adaptive neural network-based fuzzy inference system
(ANFIS) are adopted for forecasting the periodic and nonperiodic WD, respectively. On the basis of
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the predicted FCL, the ORC problem is formulated as an NLP problem and is tackled by hybrid Harris
hawks optimization and linear programming (HHO–LP). The main purpose of employing HH—LP is
to achieve a remarkable reduction in the total operating time of relays by optimizing the relay settings
to reduce the level of equipment damage and nuisance-related WTG disconnection, and to improve
the reliability.

The key contributions of this paper are as follows:

• The delay in updating the relay settings and the coordination with other relays can cause the
malfunctioning of OCRs. A considerable delay time is evaded when updating the relay settings
by predicting the wind speed and FCL variation in advance.

• The hybrid ANFIS–SARIMA is devised for predicting periodic and nonperiodic wind series.
• An efficient optimization model HHO–LP is established for the existing constraints.
• A significant reduction in the overall tripping time of relays is achieved.
• The is no record of miscoordination or limit violation.

The rest of the paper is organized as follows: Section 2 describes the problem formulation
and objective functions for relay coordination. Section 3 addresses the proposed methodology.
The investigated test systems and the obtained results are reflected in Section 4. Finally, Section 5
concludes the manuscript.

2. Problem Formulation

2.1. Objective Function

The fault current in a WTG WF varies with the variation in wind speed. This variation can
adversely affect the ORC. Thus, the FCL needs to be determined in advance by forecasting the WD,
which is coupled with an optimization algorithm (OA) for the overcurrent relay coordination problem.
The OA reduces the total operation time of relays. The operation time of backup protection is of vital
importance in protection coordination; thus, the time of operation for primary and backup relays is
concurrently minimized.

OF = Min FOT =
F∑

f=1

 I∑
i=1

tp
if +

J∑
j=1

tb
ijf


, (1)

where FOT is the overall operation time of relays for fault isolation, tp
if and tb

ijf represent the operation
time of the i-th primary relay and j-th backup relay, respectively, for a fault at location f, and F, I, and J
denote the set of fault points, the total primary relays, and the backup relays, respectively.

Normally, the OCR follows inverse time characteristics as follows:

t = TMS

 A(
I

IP

)B
− 1

+ C

, (2)

where t is the operation time of the relay, I is the fault current, A denotes the constant for relay TCCs,
and B denotes the inverse time type. As standard definitions are considered in Equation (2), A, B,
and C are assumed constant. The terms tp

if and tb
ijf can be expressed from Equation (2) as follows:

tp
if = TMSp

i

 A(
Iif
IPi

)B
− 1

+ C

, (3)
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tb
ijf = TMSb

j

 A(
Iijf
IPj

)B
− 1

+ C

. (4)

TMSp
i and TMSb

j are the time multiplier settings of the i-th primary relay and j-th backup relay,
respectively. Similarly, IPi and IPj are the pickup currents of the primary and backup relays.

2.2. OCR Coordination Constraints

There should be enough time difference between the operating times of primary and backup
relays, termed the coordination time interval (CTI), for the security of protection coordination.

∆tp,b
ij = tp

i − tb
j −CTI ≥ 0 ; i ∈ I, j ∈ J. (5)

The optimization variables TMS and Ip are assessed within the lower and upper bounds given as

TMSmin
I ≤ TMSi ≤ TMSmax

i , (6)

Imin
p,i ≤ Ip,i ≤ Imax

p,i . (7)

The value of Ip should be more than the maximum load current and less than the minimum
short-circuit current value. During temporary faults, the relays should not operate and, therefore, there
is a minimum limit for the operation time of relays.

ti ≥ tmin
i . (8)

3. Proposed Methodology

3.1. EEMD

Empirical mode decomposition (EMD) is effective in extracting the characteristic information from
an original wind speed series, which can be decomposed into a set of intrinsic mode functions (IMFs).
The IMFs indicate the oscillatory mode of the original wind speed series. EMD is a self-adaptive time
series processing method, which can be perfectly used for complicated processing [40]. The main
drawback of EMD is its mode mixing problem. To resolve the mode mixing problem, the EEMD
method was proposed in [41]. The procedure of EEMD is described as follows:

(1) Initialize the number of ensembles (M) and the amplitude of the added white noise; set i = 1.
(2) Add a white noise series to the original wind speed series x(t).

xi(t) = x(t) + ni(t), (9)

where ni(t) denotes the i-th added white noise series, and xi(t) denotes the series with the added
white noise.

(3) Decompose the series xi(t) into J IMFs cij(t) (j = 1, 2, . . . , J) using the EMD method, where cij(t) is
the j-th IMF after the i-th trial, and J is the number of IMFs.

(4) If i < M, then go to Step (2) with i = i + 1. Repeat Steps (2) and (3) with different white noise series.
(5) Calculate the ensemble mean cj(t) of the M trials for each IMF of the decomposition as the

final results.

c j(t) =
1
M

M∑
i=1

ci j(t), i = 1, 2, . . . . . . , M, j = 1, 2, . . . . . . j., (10)

where cj(t), (j = 1, 2, . . . , J) is the j-th IMF component using the EEMD method.
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3.2. ANFIS

ANFIS is a multilayer feed forward network, which integrates the merits of neural networks
and fuzzy inference systems [31]. In this paper, ANFIS with type-3 reasoning mechanisms was
applied. The typical ANFIS with type-3 reasoning mechanisms consists of five layers, which are
shown in Figure 1, the detailed descriptions of which are given in [31]. The functions of each layer are
given below.
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Layer 1: The outputs of this layer are defined as

O1,i = µAi(x), i = 1, 2, (11)

O1,i = µBi−2(y), i = 3, 4, (12)

where x or y denotes the wind speed series, O1,i is the membership degree of fuzzy set {A1, A2} or
{B1, B2}, and µ(x) or µ(y) is the membership function.

The following membership function is utilized:

µAi(x) = exp[−0.5
{
(x− ci)/σi

}
] ∴ i = 1, 2, (13)

where µAi(x) is the Gaussian function, and ci and σi are the mean and standard deviation of the
membership function, respectively.

Layer 2: This layer is the operation layer.
Layer 3: All the input variables are normalized in this layer, and the output of this layer is

calculated as
O3,i = Wi =

Wi
W1 + W2

∴ i = 1, 2, (14)

where O3,i is the output of Layer 3, and Wi is the incentive strength of rule i.
Layer 4: The following node function is applied in this layer:

zi = Wi fi = Wi(pix + qiy + ri) ∴ i = 1, 2, (15)

where {pi,qi,ri} is the parameter set of the nodes.
Layer 5: The single node in this layer summarizes all incoming series as follows:

z = W1z1 + W2z2. (16)



Appl. Sci. 2020, 10, 6318 6 of 25

3.3. SARIMA

SARIMA is the most popular method for periodic time series prediction, which is described as follows:

F(B)U(Bs)(1− B)d(1− Bs)DZt = Q(B)V(Bs)et, (17)

where F(B) and U(Bs) denote nonperiodic and periodic autoregressive polynomials, respectively,
Q(B) and V(Bs) denote nonperiodic and periodic moving average polynomials, respectively, Zt denotes
the wind speed series, et represents the white noise series, d is the level of integration, D is the level of
periodic integration, s is the order of periodicity, and B is the back-shift operator. More details about
SARIMA can been found in [42].

3.4. Hybrid ANFIS–SARIMA Model

A composite algorithm comprising ensemble empirical mode decomposition (EEMD), ANFIS,
and SARIMA can be utilized for short-term wind speed forecasting [43,44]. Due to the stochastic nature of
WD, deep insight into the actual wind speed series (WSS) is paramount to get accurate results. The original
WSS contains periodic and nonperiodic series. Thus, a composite method with the capability of modeling
periodic and nonperiodic series is an efficient choice for wind-speed forecasting. The EEMD decomposes
the original WSS into a set of intrinsic mode functions (IMFs) of periodic and nonperiodic series. SARIMA
forecasts the periodic WSS and ANFIS forecasts the nonperiodic WSS. The artificial neural network-based
ANFIS–SARIMA constitutes better nonlinear ability, adaptivity, associative learning ability, and fault
tolerance. To predict the WSS data of the n-th interval, the data of the (n − 1)-th interval are also taken into
account for better results. The inputs taken into account are local time, temperature, pressure, and humidity,
whereas the outputs are wind direction, wind speed, and WT output power. The step-by-step procedure
from WD forecasting to FCL calculation is described below.

(i) The WSS is decomposed into IMFs, and one residual series is given as

S(t) =
n∑

i=1

Ii(t) + Rn(t), (18)

where S(t) is the wind speed series, Ii(t) represents the IMFs, and Rn(t) is the residual series.
(ii) The periodic and nonperiodic series of Ii(t) and Rn(t) are defined as Pj(t) and Ni(t), respectively.

Thus, the original wind speed series can be given as

S(t) =
m∑

i=1

Ni(t) +
n∑

j=m+1

Pj(t) + Rn(t), (19)

where Ni(t) is the nonperiodic WSS, and Pj(t) is the periodic WSS.
(iii) For Pj(t), the SARIMA model is implemented and the results are defined as P̂j(t), Whereas, for

Ni(t) and Rn(t), the ANFIS model is implemented and the results are defined as N̂i(t) and R̂n(t).
The sum of results of ANFIS–SARIMA is the forecasted wind speed given as

Ŝ(t) =
m∑

i=1

N̂i(t) +
n∑

j=m+1

P̂j(t) + R̂n(t). (20)

(iv) On the basis of the predicted wind speed in Equation (20), the wind power can be expressed in
the form of wind power flux or kinetic energy flux given as

P(WT) =
1
2
ρ(t)CpAS3(t), (21)
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ρ(t) =
P(t)

Rs × T(t)
, (22)

where ρ(t) is the density of air, P(t) is the atmospheric pressure, Rs is the specific gas density,
and T(t) is the atmospheric temperature. A is the rotor swept area, Cp is the coefficient of
maximum power, and S(t) is the forecasted wind speed. If the wind hits the turbine at an angle
ϕ(t), as shown in Figure 2, then the azimuthal angle variation in the airflow can be considered as
cosϕ(t), and Equation (21) can be written as

P(WT) =
1
2
ρ(t)CpA

[
S(t) cosϕ(t)

]3
. (23)
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Usually, the quantity of interest is the temporal average of the power. In order to derive an
expression for the temporal average of the power, we use Reynold’s decomposition [45].

S(t) = S(t) + s′(t) and ϕ(t) = ϕ(t) + ϕ′(t), (24)

where S(t) and ϕ(t) are the temporal means of the wind speed and wind direction, respectively, while s’(t)
and ϕ’(t) are perturbations or fluctuations about their respective means. Hereafter, for simplicity the
notation (t) is removed from all terms. Substituting Equation (24) into Equation (23) and performing
Taylor’s expansion and neglecting higher-order terms [46], we have

P(WT) =
1
2
ρCpAS

3
[
1 + 3

(
σu

U

)
2
]1− ϕ2

2
−

σ2
ϕ

2

3

, (25)

where σ2
u is the variance of wind speed and σ2

ϕ is the variance of direction.

(v) The squirrel-cage induction generator (SCIG) and doubly fed induction generator (DFIG) are
used almost exclusively in the energy conversion stage of the induction generator wind power
system. In this study, SCIG was used. The most commonly used system topology is an SCIG
directly connected to the power grid, as shown in Figure 3. This topology implies a constant
frequency and voltage of the SCIG that establishes a fixed-speed operation. In such a system,
the SCIG relies on the grid (or capacitor bank) to provide reactive power, which is necessary to
build electromagnetic excitation for the rotary field. The generating mode of the SCIG is triggered
by driven torque, which acts opposite to the generator speed within the super-synchronous speed
operation region. Due to the absence of a power electronics interface, such a system can only serve
the grid support applications, wherein just limited control (pitch-angle control) can be applied.
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Now that the mechanical power of the rotor is known, it must be determined how much of this
power is transferred to the electrical grid. A simplified overview of energy transfer from wind to the
electrical grid is shown in Figure 4.
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(vi) The electrical power transferred to the grid is given as

Pe = ηgbηgnηp(PWT). (26)

Here, the efficiency for the gearbox is 0.95, that for the generator is 0.97, and that for the power
electronics device is 0.98 [47]. the current from the WTG in the wind farm can be calculated as

IWTG =
Pe

√
3× cosφ×VL

, (27)

where cosφ is the power factor, and VL is the line voltage.
(vii) The fault current from a three-phase fault in a squirrel-cage induction machine is calculated using

the network shown in Figure 5 [48]. The short-circuit current value at t = 0 is given as

ISC =
E′

Rs + jX′
, (28)

E′ = Vs − (RL + jXL)IWTG − (Rs + jX′)IWTG, (29)

X′ = Xs +
XmXr

Xm + Xr
, (30)

where E′ is the voltage behind transient reactance X′, Rs is the stator resistance, Xs and Xr are the
leakage reactance of the stator and rotor, respectively, Xm is the magnetizing reactance, and RL
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and XL are the resistance and reactance of the line connecting the WTG and grid. Substituting
Equation (29) into Equation (28), the short-circuit current for a particular instance can be given as

ISC =
Vs − (RL + jXL)IWTG

Rs + jX′
. (31)

All the terms in Equation (31) are constant for an SCIG; thus, the fault current depends upon the
value of IWTG calculated in Equation (16), which depends upon the wind speed. The total fault
current from a wind farm is the sum of fault currents from all the WTGs.

ISCTotal =
n∑

i=1

ISC =
n∑

i=1

(
E′

Rs + jX′

)
. (32)
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3.5. Hybrid HHO–LP Optimization Algorithm

The simultaneous optimization of TMS and Ip makes the ORC a nonlinear problem (NLP).
A hybrid HHO–LP is proposed to solve this NLP by converting it into a linear programming (LP)
problem. The basic technique involves the decomposition of the ORC problem into two subproblems.
In the first subproblem, a random value is assigned to Ip within its limits. This is only for the first
iteration. Later on, its value is updated by the HHO. This converts the NLP into an LP. HHO calls
the second subproblem in each iteration, which optimizes the TMS variable by using the standard LP
method. This process continues until the convergence of the solution to an optimal value. Detailed
descriptions of HHO and LP are given below.

3.5.1. Harris Hawks Optimization

HHO is a population-based algorithm proposed in [49], which mimics the hunting behavior of
Harris hawks. It comprises exploration and exploitation. During the exploration phase, the position of
hawks is updated on the basis of switches (ε) in attacking tactics as follows:

P(t+1) = Pbest(t) − Pavg(t) − r1[LL + r2(UL− LL)]forε < 0.5, (33)

P(t+1) = Prand(t) − r3
∣∣∣Prand(t) − 2× r4 × P(t)

∣∣∣forε ≥ 0.5, (34)

where P(t) and P(t+1) are the position vectors of hawks at t and t + 1 iterations, respectively, Prand(t) is a
randomly selected hawk position from the current population, Pavg(t) is the average position of hawks,
Pbest(t) is the prey position, LL and UL are the lower and upper limits of the position variables, and r1,
r2, r3, and r4 re random values selected from the range [0, 1].

The next stage is the transition from exploration to exploitation, which is executed by the change
in different exploitative expressions, which depends on the escaping energy (E) of prey, as given in
Equation (35).

E = 2× E0 × (1−
t

tmax
), (35)
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where t is the current iteration, tmax is the total number of iterations, and E0 and E are the initial and
current escape energies of prey randomly selected taken from [−1, 1]. During the attack of hawks in
the exploitation phase, the prey has (r) probability of escaping. On the basis of the escape energy and
the escape probability of prey, the hawks can espouse one of the four strategies tabulated in Table 1.

Table 1. Hunting strategies of Harris hawks during exploitation phase.

No Strategies Escape Energy (E) Escape Probability (r)

1 Soft siege (SS) E ≥ 0.5 r ≥ 0.5
2 Soft siege with progressive rapid dives (SSPRD) E ≥ 0.5 r < 0.5
3 Hard siege (HS) E < 0.5 r ≥ 0.5
4 Hard siege with progressive rapid dives (HSPRD) E < 0.5 r < 0.5

The positions of hawks are updated during SS and SSPRD using Equations (36) and (37), respectively.

P(t+1) = ∆P(t) − E
∣∣∣J× Pbest(t) − P(t)

∣∣∣, (36)

∴ ∆P(t) = Pbest(t) − P(t), J = 2(1− r5)

P(t+1) =

{
C if Fit(c) < P(t)
R if Fit(R) < P(t)

, (37)

∴ C = Pbest(t) − E
∣∣∣J× Pbest(t) − P(t)

∣∣∣, R = C + S× LF(D),

where J is the random escape power of prey, ∆P(t) is the difference between the position vectors of the
prey and hawk, and r5 is a randomly selected number within the range [0, 1].

The positions of hawks are updated during HS and HSPRD using Equations (38) and (39), respectively.

P(t+1) = Pbest(t) − E
∣∣∣∆P(t)

∣∣∣, (38)

P(t+1) =

{
C if Fit(c) < P(t)
R if Fit(R) < P(t)

, (39)

∴ C = Pbest(t) − E
∣∣∣J× Pbest(t) − Pm(t)

∣∣∣, Pm(t) =
1
N

N∑
j=1

Xi(t),

where C and R are the values of current movements and rapid dives, LF is levy flight, and Pm(t) is the
average position of hawks.

3.5.2. Linear Programming

To convert the NLP into a linear one, the value of Ip is fixed as extracted from HHO. The linear
programming subproblem is called repeatedly by HHO to compute the value of TMS and the fitness of
each hawk corresponding to the Ip. A penalty relative to the severity of violation is added to the fitness
value of each hawk if it violates the inequality coordination constraint. The complete algorithm of
the proposed methodology for forecasting wind coupled with HHO–LP optimization algorithm is
shown in Figure 6. In this study, short-term wind forecasting is used. The predicted wind speed, wind
direction, and metrological variables are compared with the actual ones, and the predicted data are
modified if the error exceeds the limits. On the basis of the predicted wind dynamics, the fault current
is calculated in advance, and HHO–LP optimizes the ORC problem. The algorithm continuously
checks if there is any change in wind data during a specified time interval; then, the fault current
is calculated accordingly, and the relay settings are updated. The total time from forecasting to the
upgrading of relay settings is given as

∆T = ∆TF + ∆THHO−LP + ∆Tt, (40)
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where ∆TF is the time taken by ANFIS–SARIMA to calculate the predicted wind power and fault
current, ∆THHO–LP is the time consumed by HHO–LP to compute the optimum values of relay variables,
and ∆Tt is the time required to transfer the values of Ip and TMS to the relay.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 26 
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Figure 6. The hybrid ANFIS–seasonal autoregression integrated moving average (SARIMA) forecasting
algorithm coupled with the hybrid Harris hawks optimization and linear programming (HHO–LP)
optimization algorithm.

4. Case Studies

The impact of wind speed, wind direction, and metrological conditions on the variation in
FCL in a wind-farm-integrated power system was observed by using the wind-speed prediction
model, i.e., hybrid ANFIS–SARIMA. To increase the reliability of the power system, relay settings are
updated continuously according to the predicted variation in FCL caused by wind speed. HHO–LP is
incorporated to find the optimal values of TMS and Ip for a minimization of the total operation time of
primary and backup relays for the fastest fault isolation.

The short-term interval (5 min) wind-speed data for the year 2019 collected from the southern parts
of Pakistan, Jamshoro city, Sindh province, were used to train the ANFIS–SARIMA model. The latitude
and longitude of this geographical location are 25.4007 and 68.2662, respectively. The predicted and
actual wind speed, wind direction, and metrological conditions for one day in all four seasons are
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shown in Figures 7–9, respectively. It can be observed that the prediction of wind direction is harder
than that of wind speed, as it requires extensive computation time.
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It can be seen that the wind speed is highest during the spring season, resulting in a maximum
chance of disturbing the protection coordination. The efficiency of the hybrid ANFIS–SARIMA model
in terms of error compared with the state-of-the-art techniques reported in the literature such as fine
tuning support vector machines(FTSVM) [50], modified persistence model(MPM) [51], convolutional
neural network-radial basis function neural network(CNN-RBFNN) [52] and stacked extreme learning
machine(SELM) [53] is reflected in Table 2.
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Table 2. Error comparison with state-of-the-art methods for the spring season.

Errors FTSVM [50] MPM [51] CNN–RBFNN [52] SELM [53] Hybrid ANFIS–SARIMA

ME 0.0947 0.0850 0.0764 0.0658 0.0625
MAE 1.3412 1.3210 1.3072 1.1064 0.9643
MSE 16.512 15.5413 13.7651 11.5614 11.0312

RMSE 3.2314 3.1150 2.8574 2.4358 2.3519
ESD 4.6864 4.5754 4.1523 3.9525 3.8798

4.1. Test System Specification

The IEEE-8 bus system and a real wind-farm-integrated substation named the Jhimpir power
substation in Jamshoro, Pakistan, were considered testbeds for an evaluation of the performance of the
proposed approach.

The ANFIS–SARIMA model and HHO–LP optimization technique were implemented in a
registered version of Matlab-2020(R2002a). The fault analysis was carried out on the Electrical Analysis
Transient Program (ETAP) software. The operating system had a processor Intel(R) Core™ i5-4210
central processing unit (CPU) at 1.7 GHz–2.4 GHz with 4 GB of random-access memory (RAM).

4.1.1. IEEE-8 Bus System

The standard IEEE-8 bus system is a meshed distribution system with multiple sources [54].
It consists of eight buses and seven line segments. Three-phase faults were simulated at the midpoint
of each line segment. There were a total of 14 directional overcurrent relays (DOCR). These relays
comprised 20 primary–backup relay pairs, as given in Table 3. To study the effect of wind speed on FCL
variation, two wind farms were integrated at bus-3 and bus-6. The details of WTGs in the wind farms
are given in Appendix A Table A1. A one-line diagram of the IEEE-8 bus system is given in Figure 10.

Table 3. Primary (PR) and backup (BR) relay pairs for the IEEE-8 bus system.

Fault Pair PR BR Fault Pair PR BR Fault Pair PR BR

F1
1 1 6

F3
7 3 2

F6
14 6 5

2 8 7 8 10 11 15 6 14
3 8 9

F4
9 4 3 16 13 8

F2

4 2 1 10 11 12

F7

17 7 5
5 2 7

F5
11 5 4 18 7 13

6 9 10 12 12 13 19 14 1
13 12 14 20 14 9
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GE Multilin750/760 numerical relays were employed here. The CT ratio for all relays was 400:1.
The minimum and maximum limits of TMS were 0.05 and 1.1, respectively, whereas the limits for
Ip were 1.1 × ILoad and 1.5 × ILoad. The CTI can take a value between 0.2 and 0.5 (REFF). However,
for analysis of the IEEE-8 bus system, it was taken as 0.3. The minimum and maximum operation
times of the relay were kept as 0.1 and 2.5, respectively, to assure the reliability of the proposed
protection scheme.

Two case studies were carried out. In the first case, the wind speed and wind direction were taken
as 10 m/s and 5◦, respectively, whereas, in the second case, the wind speed was 20 m/s and the wind
direction was 10◦. Figure 11 depicts the variation in FCL due to wind speed for all 20 relay pairs for
both cases. It is reflected that the fault current increased as the wind speed increased, as described in
Equation (16). If the conventional relay settings are not updated according to wind-speed variation
after WTG integration, then the variation in FCL due to WS variation can cause miscoordination in
primary–backup relay pairs. Thus, using the predicted FCL by ANFIS–SARIMA, the relay settings
were optimally updated by hybrid HHO–LP. The relay settings for a wind speed of 10 m/s obtained
using conventional, PSO–LP [55], and HHO–LP methods are given in Table 4. Table 5 provides the time
of operation of primary–backup relays for the first case. It can be seen that, in some cases, relay pairs
violated the CTI limit. For example, in relay pair 6 in the first case, the backup relay R10 and primary
relay R9 could not maintain a CTI of 0.3, thereby disturbing the protection coordination. On the other
hand, in relay pair 10, both primary and backup relays operated at the same time. Figure 12a shows
the characteristic curve of relay pair 6 taken during the simulation in ETAP, with conventional relay
settings during the first case. The relay settings were updated optimally by HHO–LP on the basis of
the predicted fault current, and the relay characteristics for the same relay pair 6 with the updated
relay settings are shown in Figure 12b. It can be seen that the CTI of 0.3 was maintained between
primary and backup relays for this pair.
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Table 4. Relay settings obtained with particle swarm optimization (PSO)–LP and HHO–LP for IEEE-8
bus system at a wind speed of 10 m/s. TMS, time multiplier setting.

Relay
Conventional PSO–LP [55] HHO–LP

TMS Ip (kA) TMS Ip (kA) TMS Ip (kA)

1 0.7 0.114 0.6 0.124 0.471 0.156
2 0.8 0.249 0.806 0.249 0.685 0.249
3 0.724 0.187 0.729 0.187 0.597 0.187
4 0.7 0.213 0.648 0.21 0.464 0.27
5 0.7 0.142 0.6 0.142 0.399 0.193
6 0.743 0.171 0.677 0.171 0.592 0.171
7 0.7 0.155 0.6 0.155 0.448 0.211
8 0.8 0.164 0.827 0.164 0.815 0.163
9 0.7 0.13 0.6 0.131 0.522 0.177

10 0.8 0.12 0.767 0.12 0.742 0.121
11 0.8 0.203 0.731 0.203 0.712 0.202
12 0.8 0.183 0.913 0.183 0.894 0.183
13 0.7 0.138 0.647 0.187 0.635 0.187
14 0.7 0.183 0.605 0.249 0.594 0.249

Table 5. Operation time (TOP) of primary and backup relays for all pairs of IEEE-8 bus system with
conventional settings and those updated with PSO–LP and HHO–LP.

Pair PR BR
Conventional PSO–LP [55] HHO–LP

TOPPR TOPBR TOPPR TOPBR TOPPR TOPBR

1 1 6 1.362 1.643 1.197 1.497 1.010 1.309
2 8 7 1.322 2.199 1.367 1.885 1.345 1.645
3 8 9 1.322 2.051 1.367 1.764 1.345 1.768
4 2 1 1.502 2.036 1.513 1.812 1.286 1.586
5 2 7 1.502 2.203 1.513 1.888 1.286 1.648
6 9 10 1.424 1.588 1.223 1.522 1.174 1.476
7 3 2 1.427 1.725 1.437 1.738 1.177 1.477
8 10 11 1.360 1.738 1.304 1.588 1.264 1.544
9 4 3 1.463 1.636 1.348 1.647 1.049 1.349
10 11 12 1.541 1.495 1.408 1.706 1.369 1.671
11 5 4 1.484 1.707 1.272 1.572 0.939 1.240
12 12 13 1.362 1.774 1.555 1.855 1.523 1.820
13 12 14 1.362 1.881 1.555 1.856 1.523 1.822
14 6 5 1.314 2.043 1.197 1.751 1.047 1.344
15 6 14 1.314 2.512 1.197 2.595 1.047 2.548
16 13 8 1.310 1.577 1.326 1.628 1.302 1.602
17 7 5 1.281 1.860 1.098 1.594 0.897 1.207
18 7 13 1.281 2.174 1.098 2.338 0.897 2.295
19 14 1 1.310 1.997 1.242 1.776 1.220 1.551
20 14 9 1.310 1.796 1.242 1.544 1.220 1.520
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and (b) with settings updated using the proposed algorithm.

In the first case, with the conventional relay settings, the total operation time of primary and backup
relays was 28.716 s and 43.541 s, respectively. With the relay settings obtained using PSO–LP [55],
the overall operation time for the same primary and backup relays was 26.470 s and 35.568 s, respectively.
Lastly, the time achieved upon optimizing the relay settings with the proposed HHO–LP was 23.93 s
and 32.434 s, respectively, which is much lower than that obtained using the conventional and PSO–LP
methods. In the second case, with a 20 m/s wind speed, HHO–LP reduced the total operation time
of primary–backup relays by 19.86% compared to conventional settings and by 11.522% compared
to PSO–LP. No miscoordination was reported with HHO–LP in all 20 relay pairs. The optimal relay
settings and relay operating time for the second case are shown in Figures 13 and 14, respectively.
The CTI between primary and backup relay pairs with conventional settings and those obtained
using PSO–LP [55] and HHO–LP for both cases is reflected in Figure 15. It can be seen that, with the
proposed approach, the CTI of 0.3 was maintained in all relay pairs, and the results were satisfactory.
The proposed algorithm was also verified by changing the location and size of WTGs, and it is shown
in Table 6 that the proposed HHO–LP worked well in all conditions. The overall performance in terms
of an improvement in the reduction of time in all cases is given in Table 7.
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Table 6. Primary and backup relay operation times with variable wind turbine generator (WTG)
capacity and location.

WTG Size and Location
PSO–LP [55] HHO–LP

TOPPR TOPBR TOPPR TOPBR

20 WTGs of 1.5 MVA each at bus 3 17.17 s 23.85 s 15.88 s 21.36 s
15 WTGs of 2.5 MVA each at bus 4 15.25 s 22.44 s 13.44 s 19.57 s

20 WTGs at bus 3 and 10 WTGs at bus 4 each of 1.5 MVA 28.17 s 37.27 s 24.73 s 33.16 s
15 WTGs at bus 3 and 10 WTGs at bus 6 each of 1.5 MVA 26.47 s 35.57 s 23.93 s 32.43 s

Table 7. Performance improvement in terms of overall operation time of relay obtained using
proposed HHO–LP.

WTG Integration Conventional Settings PSO–LP [55] Proposed Approach HHO–LP

Bus No. Size (MW) Operation Time (s)∑
(tp+tb)

Operation Time (s)∑
(tp+tb)

Time Reduction
(%)

Operation Time (s)∑
(tp+tb)

Time Reduction (%)

3 30 52.14 41.02 21.327 37.24 28.577
4 37.5 48.76 37.69 22.703 33.01 32.301

3, 6 60, 30 72.28 62.038 14.169 56.36 22.026
3, 4 30, 15 76.06 65.44 13.963 57.89 23.889
3, 6 22.5, 15 75.44 62.04 17.623 56.36 25.292

4.1.2. Jhimpir Wind-Farm-Integrated Substation

The Jhimpir power substation is a typical wind-farm-integrated substation in the Jamshoro city of
Sindh province in Pakistan [56]. The geographical coordinates of this location are latitude = 24.4769 and
longitude = 67.9240, and the hub height is 80 m. This wind farm consists of 31 wind turbine generators,
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each of capacity 1.6 MW. A doubly fed induction type generator (GE 1.6 MW/103) is installed in the WF.
The cut-in, cut-out, and rated wind speed are 3.5 m/s, 25 m/s, and 12 m/s, respectively. The generated
voltage is 0.690 kV, which is stepped up to 22 kV. Then, the 22 kV lines are connected to 132 kV lines
with a step-up transformer of 22 kV/132 kV, 100 MVA. A one-line diagram of the wind-farm-integrated
substation is given in Figure 16. This system has 36 overcurrent relays and there are 35 primary–backup
relays pairs, as given in Table 8. The predicted and measured wind speeds for one day in all four
seasons are already reflected in Figure 7. It can be seen that wind speed is high during the spring
season; thus, it can have a high impact on the variation in fault current level. Therefore, to validate the
proposed algorithm in the Jhimpir wind-farm-integrated substation, one hour was selected from the
day of the spring season, i.e., 10:00 a.m. to 11:00 a.m. on 15 July of 2019.
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Table 8. Primary–backup relay pairs for the Jhimpir wind-farm-integrated substation.

Pair PR BR1 BR2 Pair PR BR1 BR2 Pair PR BR1 BR2 Pair PR BR1 BR2

1 R1 R32 R36 10 R10 R33 R36 19 R19 R34 R36 28 R28 R35 R36
2 R2 R32 R36 11 R11 R33 R36 20 R20 R34 R36 29 R29 R35 R36
3 R3 R32 R36 12 R12 R33 R36 21 R21 R34 R36 30 R30 R35 R36
4 R4 R32 R36 13 R13 R33 R36 22 R22 R34 R36 31 R31 R35 R36
5 R5 R32 R36 14 R14 R33 R36 23 R23 R34 R36 32 R32 R36 –
6 R6 R32 R36 15 R15 R33 R36 24 R24 R35 R36 33 R33 R36 –
7 R7 R32 R36 16 R16 R33 R36 25 R25 R35 R36 34 R34 R36 –
8 R8 R32 R36 17 R17 R34 R36 26 R26 R35 R36 35 R35 R36 –
9 R9 R33 R36 18 R18 R34 R36 27 R27 R35 R36

The minimum and maximum limits of TMS were 0.5 and 1.1, whereas, for Ip, these limits were
1.1 × ILoad and 1.5 × ILoad respectively. The CTI, in this case was set to 0.3. The proposed algorithm
was implemented, and the relay settings were updated after every 5 min. The TMS and Ip for all relays
using PSO–LP and HHO–LP updated at each interval are given in Table 9. The operation time of
primary–backup relay pairs and the CTI for the 12 intervals of one hour are reflected in Figure 17.
The results show that the proposed algorithm reduced the overall operation time of relays and also
maintained the CTI between primary–backup relay pairs, which ensured the reliability and security of
the power system. The overall performance in terms of an improvement in the reduction of time in all
cases is given in Table 10. The computation time was reduced in the proposed algorithm because the
relay settings were determined earlier on the basis of the predicted fault current level. If the difference
between the predicted and actual fault current due to wind-speed variation was greater than 2%,
the actual values were then updated, and the HHO–LP algorithm was implemented during the current
interval to optimize the relay settings on the basis of the actual FCL.



Appl. Sci. 2020, 10, 6318 19 of 25

Table 9. Relay settings for 12 intervals of one hour from 10:00 a.m.–11:00 a.m. on 15 July 2019 obtained using PSO–LP and the proposed HHO–LP.

10:00 a.m. 10:05 a.m. 10:10 a.m. 10:15 a.m. 10:20 a.m. 10:25 a.m.

PSO–LP HHO–LP PSO–LP HHO–LP PSO–LP HHO–LP PSO–LP HHO–LP PSO–LP HHO–LP PSO–LP HHO–LP

Pair TMS Ip TMS Ip TMS Ip TMS Ip TMS Ip TMS Ip TMS Ip TMS Ip TMS IP TMS IP TMS IP TMS Ip

1 0.17 0.38 0.11 0.47 0.11 0.23 0.14 0.15 0.13 0.49 0.14 0.54 0.15 0.11 0.14 0.36 0.13 0.40 0.11 0.39 0.16 0.41 0.12 0.34
2 0.16 0.21 0.13 0.39 0.17 0.17 0.12 0.39 0.16 0.36 0.12 0.39 0.11 0.23 0.11 0.14 0.11 0.23 0.14 0.42 0.18 0.18 0.12 0.24
3 0.13 0.50 0.11 0.36 0.11 0.33 0.12 0.13 0.17 0.13 0.12 0.14 0.18 0.18 0.11 0.20 0.16 0.38 0.14 0.12 0.11 0.38 0.10 0.22
4 0.13 0.30 0.13 0.13 0.14 0.40 0.11 0.35 0.16 0.55 0.14 0.60 0.11 0.46 0.11 0.26 0.12 0.44 0.11 0.20 0.14 0.19 0.11 0.12
5 0.13 0.36 0.11 0.12 0.13 0.52 0.13 0.23 0.16 0.51 0.12 0.57 0.11 0.48 0.11 0.29 0.17 0.52 0.14 0.36 0.13 0.41 0.12 0.29
6 0.14 0.42 0.13 0.48 0.16 0.18 0.11 0.32 0.12 0.24 0.13 0.26 0.13 0.44 0.12 0.19 0.11 0.49 0.14 0.18 0.17 0.52 0.13 0.22
7 0.14 0.40 0.10 0.20 0.11 0.22 0.13 0.12 0.11 0.18 0.11 0.20 0.16 0.29 0.12 0.21 0.12 0.24 0.13 0.16 0.12 0.37 0.12 0.31
8 0.17 0.36 0.11 0.18 0.17 0.42 0.14 0.26 0.17 0.50 0.12 0.55 0.18 0.13 0.14 0.33 0.13 0.52 0.10 0.13 0.14 0.18 0.12 0.26
9 0.15 0.32 0.11 0.55 0.14 0.51 0.11 0.36 0.17 0.16 0.13 0.17 0.15 0.28 0.14 0.37 0.12 0.27 0.10 0.38 0.14 0.34 0.11 0.34

10 0.12 0.45 0.11 0.32 0.19 0.29 0.11 0.24 0.17 0.16 0.13 0.18 0.16 0.53 0.11 0.14 0.18 0.12 0.11 0.40 0.15 0.19 0.14 0.18
11 0.13 0.54 0.12 0.39 0.16 0.32 0.14 0.36 0.12 0.27 0.14 0.30 0.18 0.42 0.12 0.37 0.18 0.42 0.11 0.17 0.16 0.54 0.13 0.19
12 0.12 0.45 0.13 0.31 0.16 0.49 0.11 0.11 0.11 0.24 0.14 0.27 0.10 0.50 0.11 0.40 0.18 0.50 0.13 0.13 0.17 0.12 0.13 0.35
13 0.18 0.21 0.11 0.29 0.11 0.13 0.13 0.23 0.15 0.51 0.13 0.56 0.16 0.47 0.12 0.20 0.11 0.35 0.10 0.12 0.17 0.35 0.12 0.25
14 0.16 0.34 0.13 0.44 0.17 0.15 0.12 0.19 0.15 0.32 0.13 0.36 0.16 0.33 0.13 0.30 0.15 0.50 0.10 0.28 0.10 0.18 0.12 0.42
15 0.16 0.16 0.13 0.53 0.12 0.29 0.12 0.33 0.13 0.17 0.12 0.19 0.18 0.27 0.11 0.13 0.12 0.54 0.12 0.13 0.13 0.55 0.12 0.38
16 0.19 0.20 0.11 0.31 0.15 0.55 0.14 0.16 0.11 0.53 0.10 0.58 0.16 0.26 0.11 0.16 0.13 0.32 0.10 0.14 0.15 0.55 0.12 0.12
17 0.12 0.30 0.11 0.55 0.10 0.27 0.13 0.18 0.16 0.27 0.10 0.30 0.19 0.38 0.12 0.39 0.12 0.21 0.12 0.11 0.14 0.14 0.13 0.41
18 0.17 0.49 0.13 0.24 0.10 0.28 0.12 0.14 0.10 0.48 0.13 0.53 0.15 0.25 0.10 0.39 0.10 0.53 0.14 0.23 0.13 0.38 0.11 0.14
19 0.14 0.55 0.12 0.26 0.10 0.33 0.11 0.19 0.12 0.29 0.14 0.32 0.12 0.19 0.11 0.30 0.19 0.31 0.10 0.17 0.14 0.53 0.14 0.33
20 0.14 0.22 0.12 0.37 0.15 0.50 0.12 0.39 0.11 0.30 0.13 0.33 0.17 0.41 0.12 0.38 0.16 0.53 0.12 0.15 0.15 0.27 0.13 0.30
21 0.12 0.54 0.11 0.16 0.12 0.32 0.11 0.25 0.19 0.42 0.12 0.47 0.11 0.21 0.11 0.25 0.17 0.13 0.11 0.33 0.15 0.47 0.12 0.41
22 0.16 0.46 0.13 0.35 0.18 0.30 0.10 0.29 0.11 0.40 0.12 0.44 0.18 0.22 0.10 0.38 0.12 0.30 0.11 0.19 0.18 0.54 0.10 0.38
23 0.17 0.54 0.12 0.50 0.16 0.19 0.14 0.42 0.13 0.23 0.13 0.26 0.10 0.27 0.10 0.37 0.15 0.38 0.11 0.23 0.14 0.20 0.14 0.39
24 0.10 0.17 0.13 0.12 0.16 0.12 0.10 0.29 0.18 0.19 0.14 0.21 0.12 0.46 0.11 0.42 0.13 0.49 0.10 0.24 0.12 0.20 0.14 0.12
25 0.14 0.28 0.13 0.53 0.17 0.18 0.11 0.13 0.12 0.37 0.13 0.41 0.17 0.44 0.12 0.27 0.15 0.50 0.14 0.22 0.15 0.17 0.12 0.25
26 0.17 0.18 0.13 0.26 0.15 0.32 0.10 0.17 0.18 0.12 0.13 0.13 0.19 0.23 0.11 0.30 0.14 0.45 0.12 0.33 0.12 0.11 0.12 0.30
27 0.14 0.44 0.14 0.26 0.14 0.45 0.14 0.40 0.14 0.24 0.13 0.27 0.12 0.48 0.11 0.29 0.17 0.33 0.13 0.42 0.10 0.49 0.11 0.27
28 0.18 0.39 0.14 0.46 0.13 0.12 0.13 0.27 0.11 0.21 0.11 0.23 0.14 0.37 0.11 0.35 0.10 0.48 0.11 0.18 0.16 0.28 0.10 0.39
29 0.12 0.40 0.11 0.38 0.15 0.48 0.11 0.33 0.11 0.50 0.12 0.55 0.13 0.29 0.11 0.17 0.15 0.37 0.13 0.11 0.14 0.33 0.11 0.33
30 0.11 0.28 0.13 0.19 0.15 0.35 0.12 0.40 0.17 0.45 0.11 0.49 0.15 0.39 0.11 0.12 0.11 0.39 0.12 0.19 0.13 0.25 0.14 0.31
31 0.18 0.46 0.12 0.22 0.18 0.28 0.13 0.12 0.17 0.36 0.13 0.40 0.14 0.16 0.12 0.18 0.14 0.22 0.13 0.24 0.17 0.46 0.12 0.20
32 0.23 0.43 0.19 0.41 0.28 0.26 0.24 0.20 0.32 0.19 0.17 0.50 0.24 0.25 0.23 0.27 0.21 0.64 0.25 0.25 0.29 0.25 0.18 0.36
33 0.23 0.37 0.23 0.16 0.19 0.72 0.18 0.51 0.18 0.69 0.22 0.31 0.27 0.31 0.25 0.21 0.25 0.42 0.20 0.33 0.22 0.45 0.17 0.50
34 0.33 0.18 0.22 0.48 0.22 0.45 0.19 0.55 0.24 0.49 0.17 0.56 0.30 0.23 0.20 0.35 0.19 0.67 0.18 0.46 0.34 0.21 0.23 0.29
35 0.30 0.26 0.25 0.43 0.21 0.52 0.21 0.38 0.26 0.34 0.18 0.55 0.22 0.50 0.18 0.40 0.21 0.52 0.19 0.44 0.27 0.30 0.24 0.22
36 0.23 0.43 0.17 0.15 0.19 0.53 0.24 0.28 0.27 0.29 0.21 0.36 0.29 0.19 0.13 0.55 0.21 0.47 0.33 0.12 0.21 0.27 0.15 0.35
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Table 9. Cont.

Pair
10:30 a.m. 10:35 a.m. 10:40 a.m. 10:454 a.m. 10:50 a.m. 10:55 a.m.

PSO–LP HHO–LP PSO–LP HHO–LP PSO–LP HHO–LP PSO–LP HHO–LP PSO–LP HHO–LP PSO–LP HHO–LP

TMS Ip TMS Ip TMS Ip TMS Ip TMS Ip TMS Ip TMS Ip TMS Ip TMS IP TMS IP TMS IP TMS Ip

1 0.11 0.28 0.11 0.35 0.14 0.54 0.10 0.32 0.18 0.30 0.13 0.42 0.16 0.43 0.11 0.18 0.11 0.32 0.13 0.29 0.15 0.47 0.10 0.31
2 0.14 0.49 0.11 0.24 0.18 0.37 0.10 0.22 0.18 0.22 0.14 0.23 0.13 0.45 0.13 0.34 0.14 0.17 0.14 0.43 0.15 0.39 0.12 0.40
3 0.11 0.22 0.13 0.42 0.15 0.20 0.13 0.26 0.17 0.47 0.13 0.18 0.16 0.33 0.14 0.39 0.12 0.13 0.11 0.14 0.14 0.36 0.10 0.25
4 0.12 0.50 0.11 0.24 0.18 0.27 0.13 0.39 0.18 0.35 0.11 0.33 0.13 0.19 0.13 0.38 0.10 0.17 0.13 0.18 0.12 0.13 0.12 0.34
5 0.14 0.29 0.11 0.31 0.19 0.54 0.11 0.39 0.10 0.54 0.13 0.37 0.18 0.38 0.12 0.39 0.11 0.46 0.11 0.39 0.19 0.12 0.11 0.24
6 0.13 0.44 0.14 0.14 0.11 0.31 0.11 0.40 0.14 0.47 0.13 0.13 0.11 0.49 0.14 0.22 0.18 0.33 0.12 0.12 0.14 0.48 0.13 0.18
7 0.19 0.42 0.14 0.15 0.15 0.53 0.12 0.19 0.14 0.37 0.13 0.29 0.14 0.16 0.11 0.37 0.13 0.31 0.10 0.24 0.18 0.20 0.13 0.12
8 0.17 0.44 0.13 0.23 0.18 0.11 0.11 0.28 0.19 0.11 0.12 0.20 0.14 0.23 0.11 0.19 0.16 0.35 0.13 0.21 0.16 0.18 0.13 0.18
9 0.14 0.32 0.10 0.34 0.12 0.49 0.12 0.25 0.12 0.35 0.13 0.29 0.19 0.36 0.13 0.27 0.13 0.26 0.14 0.35 0.16 0.55 0.12 0.26

10 0.18 0.53 0.10 0.41 0.18 0.31 0.11 0.22 0.11 0.45 0.10 0.24 0.16 0.39 0.14 0.12 0.15 0.40 0.13 0.18 0.18 0.32 0.12 0.23
11 0.18 0.55 0.11 0.31 0.14 0.37 0.12 0.25 0.13 0.51 0.13 0.27 0.15 0.25 0.10 0.18 0.16 0.47 0.11 0.19 0.18 0.39 0.12 0.34
12 0.17 0.15 0.12 0.25 0.11 0.47 0.13 0.29 0.11 0.29 0.11 0.26 0.11 0.33 0.12 0.14 0.16 0.49 0.10 0.41 0.16 0.31 0.12 0.20
13 0.19 0.18 0.10 0.27 0.17 0.53 0.12 0.22 0.16 0.20 0.10 0.41 0.17 0.12 0.10 0.16 0.17 0.40 0.11 0.19 0.14 0.29 0.12 0.37
14 0.19 0.14 0.13 0.40 0.15 0.41 0.12 0.34 0.19 0.36 0.12 0.25 0.17 0.17 0.10 0.22 0.16 0.37 0.11 0.17 0.15 0.44 0.14 0.16
15 0.13 0.28 0.13 0.18 0.17 0.49 0.10 0.16 0.12 0.17 0.10 0.31 0.13 0.20 0.12 0.16 0.16 0.49 0.14 0.13 0.18 0.53 0.13 0.35
16 0.13 0.34 0.11 0.42 0.12 0.38 0.12 0.16 0.14 0.44 0.11 0.15 0.11 0.52 0.13 0.29 0.15 0.43 0.11 0.28 0.11 0.31 0.12 0.29
17 0.11 0.49 0.11 0.15 0.11 0.47 0.13 0.19 0.13 0.19 0.10 0.20 0.13 0.50 0.14 0.41 0.11 0.41 0.12 0.43 0.18 0.55 0.14 0.21
18 0.12 0.28 0.14 0.12 0.11 0.39 0.13 0.33 0.11 0.53 0.10 0.43 0.11 0.21 0.12 0.29 0.12 0.43 0.13 0.26 0.15 0.24 0.13 0.16
19 0.11 0.46 0.10 0.33 0.11 0.12 0.14 0.18 0.15 0.53 0.13 0.34 0.12 0.50 0.14 0.12 0.11 0.48 0.14 0.24 0.10 0.26 0.13 0.29
20 0.11 0.47 0.13 0.24 0.17 0.33 0.12 0.40 0.11 0.37 0.11 0.21 0.13 0.50 0.13 0.40 0.14 0.49 0.14 0.36 0.18 0.37 0.12 0.16
21 0.16 0.53 0.11 0.27 0.12 0.48 0.11 0.29 0.17 0.29 0.13 0.34 0.18 0.44 0.11 0.36 0.12 0.22 0.11 0.35 0.19 0.16 0.13 0.41
22 0.14 0.20 0.12 0.24 0.13 0.31 0.13 0.42 0.11 0.32 0.13 0.36 0.18 0.42 0.11 0.40 0.17 0.31 0.12 0.36 0.17 0.35 0.10 0.42
23 0.15 0.49 0.10 0.43 0.14 0.19 0.10 0.28 0.18 0.19 0.12 0.17 0.13 0.25 0.10 0.12 0.11 0.38 0.14 0.32 0.12 0.50 0.11 0.33
24 0.17 0.37 0.14 0.33 0.11 0.18 0.10 0.16 0.12 0.43 0.11 0.32 0.17 0.20 0.10 0.23 0.13 0.32 0.12 0.24 0.16 0.12 0.11 0.30
25 0.17 0.20 0.11 0.12 0.17 0.19 0.11 0.24 0.19 0.21 0.10 0.33 0.11 0.45 0.13 0.30 0.16 0.49 0.12 0.37 0.16 0.53 0.13 0.16
26 0.11 0.48 0.10 0.29 0.18 0.28 0.11 0.12 0.11 0.31 0.12 0.38 0.11 0.18 0.14 0.41 0.14 0.50 0.12 0.28 0.16 0.26 0.14 0.18
27 0.15 0.15 0.11 0.42 0.16 0.33 0.13 0.42 0.15 0.41 0.13 0.25 0.15 0.48 0.13 0.23 0.13 0.12 0.10 0.39 0.11 0.26 0.13 0.20
28 0.12 0.27 0.12 0.40 0.14 0.23 0.12 0.28 0.13 0.18 0.14 0.23 0.13 0.19 0.12 0.40 0.13 0.39 0.12 0.26 0.11 0.46 0.13 0.26
29 0.16 0.37 0.10 0.35 0.10 0.24 0.12 0.12 0.12 0.24 0.12 0.19 0.18 0.27 0.13 0.42 0.13 0.21 0.12 0.29 0.19 0.38 0.11 0.23
30 0.11 0.40 0.11 0.19 0.18 0.33 0.12 0.41 0.19 0.11 0.12 0.37 0.13 0.55 0.10 0.29 0.18 0.41 0.12 0.36 0.19 0.19 0.13 0.16
31 0.11 0.12 0.12 0.39 0.12 0.12 0.11 0.30 0.14 0.33 0.13 0.35 0.16 0.29 0.11 0.29 0.14 0.40 0.13 0.37 0.11 0.22 0.10 0.40
32 0.39 0.16 0.18 0.43 0.35 0.26 0.23 0.35 0.23 0.52 0.23 0.36 0.32 0.28 0.33 0.16 0.39 0.17 0.22 0.41 0.26 0.41 0.24 0.34
33 0.30 0.40 0.24 0.22 0.27 0.43 0.29 0.18 0.26 0.41 0.29 0.17 0.31 0.31 0.28 0.24 0.36 0.23 0.18 0.58 0.41 0.16 0.24 0.36
34 0.37 0.18 0.21 0.27 0.19 0.74 0.25 0.32 0.25 0.47 0.24 0.32 0.33 0.30 0.26 0.39 0.37 0.27 0.25 0.29 0.25 0.65 0.30 0.22
35 0.33 0.22 0.18 0.47 0.30 0.28 0.25 0.30 0.31 0.24 0.29 0.18 0.31 0.26 0.31 0.21 0.18 0.53 0.21 0.37 0.25 0.58 0.24 0.32
36 0.18 0.54 0.15 0.40 0.17 0.37 0.21 0.25 0.21 0.28 0.17 0.34 0.32 0.33 0.37 0.17 0.34 0.32 0.30 0.24 0.43 0.15 0.22 0.42
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Figure 17. Operation time of primary–backup relays for all relay pairs on 15 July 2019 at (a) 10:00 a.m., 
(b) 10:05 a.m., (c) 10:10 a.m., (d) 10:15 a.m., (e) 10:20 a.m., (f) 10:25 a.m., (g) 10:30 a.m., (h) 10:35 am, (i) 
10:40 a.m., (j) 10:454 a.m., (k) 10:50 a.m., and (l) 10:55 a.m. 

Table 10. Performance improvement in terms of the overall operation time of relays obtained using 
the proposed HHO–LP. 
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Operation 
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Reduction (%) 

1 51.248 39.515 22.894 31.860 37.831 
2 48.066 37.643 21.684 32.078 33.262 
3 49.125 38.540 21.547 32.457 33.93 
4 50.864 38.632 24.048 31.638 37.799 
5 51.660 39.521 23.497 31.445 39.131 
6 53.981 42.180 21.861 33.891 37.217 
7 52.112 41.919 19.559 32.514 37.607 
8 55.561 43.171 22.299 34.741 37.472 
9 53.046 42.348 20.167 35.726 32.651 

10 49.220 38.790 21.933 33.189 32.57 
11 58.756 47.044 19.9332 35.210 40.074 
12 52.550 41.651 20.740 32.374 38.394 

5. Conclusions 

The disturbance in protection coordination caused by variations in the fault current level due to 
wind-speed variation in a wind-farm-integrated power system was investigated in this paper. The 
proposed algorithm consists of two steps. In the first step, the wind speed is predicted by forecasting 
it with hybrid ANFIS–SARIMA for a time interval of five minutes, and the fault current level is 
calculated in advance. Then, to reduce the overall operating times of relays in the second step, the
hybrid HHO–LP is proposed for optimal relay coordination by optimizing the relay settings on the
basis of the predicted fault current level. These optimal settings are transferred to relays at the start
of each interval. If the difference between the actual and predicted value is more than 2%, then the 
HHO–LP is again run during the interval, and the relay settings are updated, which is a very rare 
case. The proposed algorithm was tested on a modified IEEE-8 bus system with WTGs and a local 
wind-farm-integrated substation. The results show that the proposed algorithm provided the optimal 
relay settings following the variation in fault current level due to wind-speed variation. No
miscoordination was seen, and the proper CTI was maintained in all primary–backup relay pairs in 
all cases for both test benches with a considerable reduction in the overall operation time of relays, 
which shows the effectiveness of the proposed algorithm. 

Figure 17. Operation time of primary–backup relays for all relay pairs on 15 July 2019 at (a) 10:00 a.m.,
(b) 10:05 a.m., (c) 10:10 a.m., (d) 10:15 a.m., (e) 10:20 a.m., (f) 10:25 a.m., (g) 10:30 a.m., (h) 10:35 am,
(i) 10:40 a.m., (j) 10:454 a.m., (k) 10:50 a.m., and (l) 10:55 a.m.

Table 10. Performance improvement in terms of the overall operation time of relays obtained using the
proposed HHO–LP.

Interval
Conventional Settings PSO–LP [55] Proposed Approach HHO–LP

Operation Time (s)∑
(tp+tb)

Operation Time (s)∑
(tp+tb)

Time
Reduction (%)

Operation Time (s)∑
(tp+tb)

Time
Reduction (%)

1 51.248 39.515 22.894 31.860 37.831
2 48.066 37.643 21.684 32.078 33.262
3 49.125 38.540 21.547 32.457 33.93
4 50.864 38.632 24.048 31.638 37.799
5 51.660 39.521 23.497 31.445 39.131
6 53.981 42.180 21.861 33.891 37.217
7 52.112 41.919 19.559 32.514 37.607
8 55.561 43.171 22.299 34.741 37.472
9 53.046 42.348 20.167 35.726 32.651

10 49.220 38.790 21.933 33.189 32.57
11 58.756 47.044 19.9332 35.210 40.074
12 52.550 41.651 20.740 32.374 38.394

5. Conclusions

The disturbance in protection coordination caused by variations in the fault current level due
to wind-speed variation in a wind-farm-integrated power system was investigated in this paper.
The proposed algorithm consists of two steps. In the first step, the wind speed is predicted by
forecasting it with hybrid ANFIS–SARIMA for a time interval of five minutes, and the fault current
level is calculated in advance. Then, to reduce the overall operating times of relays in the second
step, the hybrid HHO–LP is proposed for optimal relay coordination by optimizing the relay settings
on the basis of the predicted fault current level. These optimal settings are transferred to relays at
the start of each interval. If the difference between the actual and predicted value is more than 2%,
then the HHO–LP is again run during the interval, and the relay settings are updated, which is a
very rare case. The proposed algorithm was tested on a modified IEEE-8 bus system with WTGs
and a local wind-farm-integrated substation. The results show that the proposed algorithm provided
the optimal relay settings following the variation in fault current level due to wind-speed variation.
No miscoordination was seen, and the proper CTI was maintained in all primary–backup relay pairs
in all cases for both test benches with a considerable reduction in the overall operation time of relays,
which shows the effectiveness of the proposed algorithm.

Author Contributions: Conceptualization, M.R. and L.H.; methodology, M.R. and L.H.; software, M.R. and L.H.;
validation, M.R., L.H., M.S. (Muhammad Shafiq), and M.W.; formal analysis, M.R. and L.H.; investigation, M.R.,
L.H., and M.W.; resources, M.R., L.H., and M.S. (Mohamed Sharaf); data curation, S.A., M.W., M.S. (Mohamed
Sharaf), and M.S. (Muhammad Shafiq); writing—original draft preparation, M.R.; writing—review and editing,
M.R., M.S. (Muhammad Shafiq), and S.A.; visualization, M.R., S.A., and M.S. (Muhammad Shafiq); supervision,
L.H.; project administration, L.H.; funding acquisition, L.H., M.S. (Muhammad Shafiq), and M.S. (Mohamed
Sharaf). All authors have read and agreed to the published version of the manuscript.



Appl. Sci. 2020, 10, 6318 23 of 25

Funding: This research is funded by the Deanship of Scientific Research at King Saud University through research
group No (RG- 1438-089) and in part by the National Natural Science Foundation of China (NNSFC) through
grant number 51707034. The authors also thank the Electrical Engineering Department, Southeast University and
Lucheng Hong for the support given in conducting the research.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. WTG parameters used in IEEE-8 bus system.

Parameters WF-1 WF-2 Parameters WF-1 WF-2

Number of machines 20 10 Rated wind speed 13 m/s
Nominal power of each machine 3 MW LS 0.0397 pu

Generating voltage 0.690 kV Lr 0.0397 pu
Frequency 50 Hz Lm 1.354 pu

H(s) 0.95
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