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Abstract: DC motor speed synchronization is a critical problem in industrial and robotic applications.
To tackle this problem, we propose to use a multi-agent consensus-based control scheme that
guarantees the convergence of the DC motor speeds to either fixed or time-varying reference.
A detailed robustness analysis considering parametric uncertainty and time delay in the multi-agent
system is performed to guarantee the consensus on the speed of DC motors in actual practice.
The results obtained concerning the robustness analysis allowed us to implement experimental tests
on a three-motor system using a wireless communication system to achieve satisfactory performance.

Keywords: multi-agent systems; consensus; synchronization; DC motors; time delay systems;
robust control

1. Introduction

Multi-agent coordination control has been a research field of interest during the last few decades.
A wide variety of multi-agent control methods can be found in the literature. These control approaches
are classified as (a) virtual structure [1], where each agent is considered a component of a bigger
structure; (b) behavioral control [2], which deals with conflicting tasks such as obstacle avoidance and
move to goal, for example; and (c) leader–follower [3,4], where one of the agents works as a group
leader and the others are designated as followers. The consensus is one of the most studied strategies
to control multi-agent systems [4–7], and its applications include power systems [8], robotics [3,9],
flight formation control [10], to mention a few.

Arguably, the most common actuator in robotics and industrial applications is the DC motor.
It is well known that motor synchronization plays an important role in the quality of manufactured
products. For example, in rolling mill machines, the conveyor belt’s tension must lie in an allowable
tension to guarantee the thickness of the rolled steel [11]. As discussed in [12], many manufacturing
processes require coordinated motion of two or more motion axes to achieve the desired performance,
e.g., CNC machines, paper machines. Poor motor synchronization in such industrial applications
would result in low-quality products that might be considered unusable in the worst case. The problem
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of designing control algorithms for motor synchronization has been considered in different research
works. In [13], the authors presented some results on the synchronization of two motors’ speed
using the leader–follower approach, where leader speed was used as a reference for the follower
system, and the error was controlled by an LQR controller. A control scheme based on an adaptive
sliding mode control technique was employed into the synchronization of the control system for
four motors in [14]. In [15], a synchronization control strategy of multiple induction motors was
proposed. The approach is based on an adjacent cross-coupling control structure, and then it can
use a total sliding mode control method. A stator flux regulation method is used in [16] to apply
an adaptive time-delay feedback control and the direct torque control to synchronize the chaotic
speed of induction motors in a master–slave scheme. Three common synchronization methods for
chaotic systems, namely an SMC control, a PI control, and an adaptive controller, were used in [17] to
synchronize two brushless DC motor models in a master–slave configuration and were compared by
using well-known performance indices.

Recently, the theory and applications of robust control in the presence of uncertainty and time
delays have been addressed in the literature using a variety of control approaches [18–21], for example.
The problem of the robustness of a multi-agent consensus control in the presence of uncertainty
and time delays has been studied using various approaches [22–25]. In [22], a robust controller
using algebraic Ricatti equations is presented. The agents are assumed to have linear dynamics,
while uncertainty is treated as additive perturbations, which are assumed to be stable andH∞ bounded.
Sliding mode control is proposed in [23] to deal with uncertainty as additive perturbations in a
leader–follower multi-agent system. In a similar way than [22], it is assumed that additive perturbation
is stable and H∞ bounded. In [24], a stochastic Lyapunov function to solve the consensus-seeking
problem in networks where the agents can only obtain noisy measurements of its neighbor’s state
is proposed. In these previously mentioned papers, dynamic uncertainty is considered, which is
introduced to the system as an additive disturbance, and, in other cases, it is additive noise in contrast
to this paper where uncertainty is considered in each of the parameters. A parametric uncertainty-based
approach is proposed in [25]; here, the multi-agent system is transformed into a controllable form
where the state matrix’s coefficients are assumed to be uncertain. Then, the maximal input’s time delay
for which the multi-agent system stability is guaranteed is determined using the value set method.
Here, an assumption is made in the multi-agent system to achieve the particular structure that allows
for using the value set tool in contrast with our paper where that assumption is not made.

In this paper, we present a multi-agent consensus-based control scheme to synchronize the speed
of DC motors. Unlike the methods discussed above, it can control multiple motors. In addition,
in the multi-agent scheme, the motors are synchronized first to reach the consensus and then follow
the reference, unlike the parallel or master–slave scheme. In this work, the leader’s control is based
on the center of the state’s mass and the motors’ speed; thus, the response depends on all speeds,
making the transient smoother. Previous to experimentation, an in-depth analysis was carried out in the
system’s robustness to guarantee the proper function of the multi-agent system; that is, the tolerance to
phenomena not considered in the mathematical model. First, uncertainty limits that may be withstood
by the closed-loop multi-agent system are calculated in the model parameters. Then, time delay is
added to the system, and the maximum value it can withstand is computed; both calculations are
performed without losing the stability property. The above provides the confidence to apply the
control strategy for synchronizing the speed of the three DC motors, which is perfectly validated with
the experimental results presented at the end of this work.

This paper’s organization is as follows: the modeling of the information flow among agents using
algebraic graph theory is presented in Section 2. The DC motor dynamic model and a control law based
on multi-agent consensus control developed for DC motor speed synchronization are presented in
Section 3. In Section 4, the robustness analysis of the multi-agent system in the presence of uncertainty
and time delays is presented. In Section 5, experimental results are discussed. Finally, conclusions and
future work are presented in Section 6.
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2. Multi-Agent Consensus System Preliminaries

As discussed in [6], information exchange among agents is a necessary condition for multi-agent
consensus. Such information exchange is often modelled using graph theory [6,26,27]. Then, in this
section, some preliminary results on graph theory and forced multi-agent consensus are presented.

2.1. Graph Theory

A graph G is a pair (N , E) which consists of a set of nodesN and a set of edges E onN . Every link
between a pair of nodes (ni, nj) is called an edge, e ∈ E . A graph is said to be bidirectional if nodes ni
and nj can get information from each other, i.e., (ni, nj) ∈ E ⇔ (nj, ni) ∈ E . A graph is called digraph if
the information between nodes only flows from node ni to nj. Thus, information exchange between
agents can be modeled as a digraph but also as an undirected graph. A graph is said to be balanced if
its in-degree (the number of communication links arriving at the node) is equal to its out-degree (the
number of communication links leaving the node). A graph is connected if, for every pair (ni, nj) of
distinct vertices, there is a path from ni to nj. A connected graph allows the communication between
all agents through the network. This leads us to the fact that a graph G has a spanning tree if and
only if G is connected [27]. We assume that every communication link (ni, nj) has a gain (weight) gij.
A matrix representation of the information flow G among agents can be obtained using Laplacian matrix.
The definition of the Laplacian matrix is L = [lij] where lii = ∑j∈Ni

gij and lij = −gij for i 6= j and Ni is
the set of neighbors of the ith agent.

2.2. Multi-Agent Forced Consensus Control

Let us consider the following multi-agent system:

ξ̇i = ūi (1)

where ξ is the state and ūi is a forced consensus control strategy given by

ūi = ∑
j∈N
− kp (ξi − ξ j) + biui (2)

where kp is a positive gain and bi is defined as follows:

bi =

{
0 if the ith agent is follower
1 if the ith agent is leader

Then, system (1) can be rewritten:

ξ̇ = −L ξ + B u (3)

y = Cξ (4)

where C = BT are the output and input vectors and L is the Laplacian matrix of G, the multi-agent
information graph. Notice that, without loss of generality, agent 1 can be designated as the leader
agent with access to the reference as shown in Figure 1. The leader control law considered here is
based on the center of mass (average) of the states [4]

ul ≡ N kcm

(
ξd

cm − ξcm

)
(5)

where kcm is a positive gain, N is the number of agents in the multi-agent system, and ξd
cm and ξcm are

the desired state center of mass and the calculated system state center of mass, respectively.
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2.3. Information Flow Topology

The information flow between agents is defined by the employed topology. In [4], it is stated
that cyclic and chain topology, shown in Figure 1, can be combined to model all kinds of complex
multi-agent information flow topologies. It is important to recall that the forced consensus of
multi-agent systems of arbitrary length communicating over networks with cyclic and chain topologies
are controllable and observable. Details on controllability and observability properties of leader-based
multi-agent systems can be found in [4].

1 32

a) b)

ref1 32ref

Figure 1. Information flow configuration: (a) cyclic topology; (b) chain topology. The gray circle
represents the leader agent and white circles are followers.

The state space representation of a multi-agent system with cyclic topology is the following:


ξ̇1

ξ̇2
...

ξ̇n

 =


−1 1 0 0

−1 1
. . . . . .
−1 1

1 −1




ξ1

ξ2
...

ξn

+


1
0
...
0

 u

y =
[

1 0 · · · 0
]


ξ1

ξ2
...

ξn



(6)

The state space representation of a multi-agent system with the chain topology is the following:


ξ̇1

ξ̇2
...

ξ̇n

 =


−1 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −1




ξ1

ξ2
...

ξn

+


1
0
...
0

 u

y =
[

1 0 · · · 0
]


ξ1

ξ2
...

ξn



(7)
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For simplicity, Equations (6) and (7) can be rewritten as
ξ̇1

ξ̇2
...

ξ̇n

 = −L


ξ1

ξ2
...

ξn

+ B u

y = C


ξ1

ξ2
...

ξn


(8)

3. DC Motor Speed Consensus Control

The DC motor model employed in this work was presented in [13](
d
dt

ωl (t)
)

Jeq + Beq,v ωl (t) = Am Vm(t) (9)

with

Beq,v =
ηgK2

gηmktkm + BeqRm

Rm
, Am =

ηgKgηmkt

Rm

where Jeq = ηgK2
g Jm + Jl and Beq = ηgK2

gBm + Bl . ωl is the motor angular velocity. Motor parameters
employed in (9) are: Rm is the motor armature resistance, km is the motor back-emf constant, kt is
the motor current-torque constant, Kg is the gear ratio, ηm is the motor efficiency, ηg is the gearbox
efficiency, Jm is the motor shaft moment of inertia, Jl is the load moment of inertia, Bm is the viscous
friction on the motor shaft, and Bl is the viscous friction on the load shaft. The final model is obtained

from (9)
ẋ (t) = α x (t) + β u (t) (10)

where x(t) = ωl(t), α = − Beq,v
Jeq

, β = Am
Jeq

, and u(t) = Vm(t), which is designed to compensate the
dynamics as follows:

u (t) = β−1(−α x (t) + ū(t)) (11)

where ū(t) is the control law obtained in the following sections.
Although multi-agent consensus control can be used to synchronize any number of DC motors,

for simplicity, we illustrate the application of the consensus control on a three DC-motor system
communicating over a network with cyclic topology.

3.1. Three Agents Cyclic Topology

The particular case of a three agents system with a cyclic topology, as in Figure 1a, is analyzed
below. Thus, for this case, Equation (1) simplifies to ξ̇1

ξ̇2

ξ̇3

 =

 ū1

ū2

ū3

 (12)

Now, according to the desired reference characteristics, we consider the situations of fixed
reference and time variant reference.
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3.2. Fixed Reference

Similarly to [28], based on Figure 1a, we use

ū1 = kp (ξ2 − ξ1) + u1 (13a)

ū2 = kp (ξ3 − ξ2) (13b)

ū3 = kp (ξ1 − ξ3) (13c)

so the resulting state space representation is ξ̇1

ξ̇2

ξ̇3

 = kp

 −1 1 0
0 −1 1
1 0 −1


 ξ1

ξ2

ξ3

+

 u1

0
0

 (14)

The resulting matrix Lr has an eigenvector ωT = [1 1 1]. Pre multiplying (14) by ωT ,

ξ̇1 + ξ̇2 + ξ̇3 = u1 (15)

The center of mass of the states is

ξcm =
ξ1 + ξ2 + ξ3

3
(16)

Then, we take the leader control law (5) with n = 3

u1 = 3kcm

(
ξd

cm − ξcm

)
(17)

where ξd
cm is the desired center of mass value and kcm is a constant. By substituting (17) in (15),

we obtain
ξ̇cm = −kcm ξcm + kcm ξd

cm (18)

If ξd
cm is a constant and kcm = 1, then

(
ξcm − ξd

cm

)
→ 0 as t → ∞. By substituting (17) in (14),

we obtain  ξ̇1

ξ̇2

ξ̇3

 =

 −2 0 −1
0 −1 1
1 0 −1


 ξ1

ξ2

ξ3

+

 3
0
0

 ξd
cm (19)

From (19), it is possible to see that ξ1, ξ2 and ξ3 converges to ξd
cm.

Remark 1. It is worth to recall that since the leader control is based on the center of mass of the agent’s states,
the general case for DC motor synchronization can be achieved by using control law (5).

3.3. Time Varying Reference

When a time varying reference is considered, it is necessary to include additional controls in all
the agents besides the leader

ξ̇1 = kp (ξ2 − ξ1) + u1 (20a)

ξ̇2 = kp (ξ3 − ξ2) + u2 (20b)

ξ̇3 = kp (ξ1 − ξ3) + u3 (20c)
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where

u1 = kl (ξ
d − ξ2) + ξ̇d (21a)

u2 = ξ̇3 (21b)

u3 = ξ̇1 (21c)

by substituting (21) in (20), we obtain

ξ̇1 = kp (ξ2 − ξ1) + kl (ξ
d − ξ2) + ξ̇d (22a)

ξ̇2 = kp (ξ3 − ξ2) + ξ̇3 (22b)

ξ̇3 = kp (ξ1 − ξ3) + ξ̇1 (22c)

again, by adding (22a), (22b), and (22c), we obtain

ξ̇2 − ξ̇d = kl (ξ
d − ξ2) (23)

Equation (23) shows that
(

ξ2 − ξd
)
→ 0 as t→ ∞. From Equation (22b),

ξ̇2 − ξ̇3 = kp (ξ3 − ξ2) (24)

then (ξ2 − ξ3)→ 0 as t→ ∞. Finally, from (22c),

ξ̇3 − ξ̇1 = kp (ξ1 − ξ3) (25)

so we can see that (ξ3 − ξ1)→ 0 as t→ ∞.
To generalize this procedure for N motors, modify (20) as follows:

ξ̇1 = kp (ξ2 − ξ1) + u1 (26a)

ξ̇2 = kp (ξ3 − ξ2) + u2 (26b)
...

ξ̇N = kp (ξ1 − ξN) + uN (26c)

where u1 is the same as in (21a), uk = ξ̇k+1 for k = 2, . . . , N − 1 and uN = ξ1, considering a cyclic case.

4. Robust Consensus Analysis

Equation (14) is the mathematical model of the consensus system for the particular case of three
DC motors considering a cyclic topology; however, it is worth noting that the method presented in
this section is valid for any topology that could be considered. In real life, it does not exist a perfect
mathematical model that represents the dynamic performance of a physical system, so different areas
of control theory, such as robust control, seek to compensate for modeling errors. Robust control
considers the uncertainty in the mathematical model, taking it into account in the analysis stage so
that the results are closer to reality than in the case when uncertainty is not considered. The state
of the multi-agent system (14) represents the information exchange of the variables that must be
synchronized, which, in our case, are the speeds of the DC motors. For the above, it is essential
to use sensor devices frequently affected by the measurement noise. This phenomenon is modeled
considering parametric uncertainty in the coefficients of the Laplacian matrix, as shown below, see [29]

ξ̇ = L(q)ξ + Bu1 (27)
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where

L(q) =

 q11 q12 0
0 q22 q23

q31 0 q33

 B =

 1
0
0

 q =


q11

q12
...

q33

 ∈ Q

and Q is defined as

Q ≡
{

q =
[

q11 · · · q33

]T
: q−ij ≤ qij ≤ q+ij

}
(28)

the sets defined as in (28) are generally called boxes because of the geometric shape they have. On the
other hand, manipulating Equation (27), the following equation can be obtained:

L(q) = L(q0) + L(r) (29)

the vectors q0 and r are the nominal and uncertain parameters of the multi-agent system, respectively.
Their structure is as follows:

q0 =


q0

11
q0

12
...

q0
nn

 r =


r11

r12
...

rnn

 and rij ∈ [q−ij − q0
ij, q+ij − q0

ij]

the new way of representing the parametric uncertainty in (29), allows for describing the system (27)
as follows:

ξ̇ = L(q0)ξ + Bu1 + L(r)ξ (30)

As we can see in the above equation, the uncertainty was only considered in the multi-agent system
because our main objective was to establish the consensus in this system and achieve synchronization
in the DC motors’ speed. The uncertainty in the DC motors’ mathematical model was treated
independently through the control law applied to each motor (11).

4.1. Robust Consensus for the Multi-Agent System

In this section, the Lyapunov method is going to use to find the robustness margins of the
multi-agent system. We will start by defining the following Lyapunov function taking into account the
representation of the multi-agent system shown in (30):

V(ξ) = ξT Pξ (31)

where, as stated in the Lyapunov method, the matrix P is a real symmetric positive definite matrix.
Taking V(ξ) as in (31), the derivative of V along the trajectories of the multi-agent system is given by

V̇(ξ) = ξT Pξ̇ + ξ̇T Pξ

= ξT P
[
L(q0)ξ + Bu1 + L(r)ξ

]
+
[
L(q0)ξ + Bu1 + L(r)ξ

]T Pξ
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Now, considering the control law as defined in (17), it is possible to obtain the following equation:

V̇(ξ) = ξT P
[
L(q0)ξ + Bu1 + L(r)ξ

]
+
[
L(q0)ξ + Bu1 + L(r)ξ

]T Pξ

= ξT
[

P
(
L(q0)− Bk

)
+
(
L(q0)− Bk

)T P
]

ξ

+2ξT PL(r)ξ. (32)

The term in Equation (32) represents an inner product so the Cauchy–Schwarz inequality can be
applied to obtain the following expression, see [30]

2ξT PL(r)ξ = 2λ(P)ξTL(r)ξ
≤ 2λmax(P)ξTL(r)ξ
≤ 2λmax(P)γ‖ξ‖2

Here, γ is the upper bound of uncertainty ‖L(r)‖ ≤ γ and λ(P) are the eigenvalues of the matrix P.
When we replace the previous terms in (32), the following condition is obtained:

V̇(ξ) ≤ ξT
[

P
(
L(q0)− Bk

)
+
(
L(q0)− Bk

)T P
]

ξ

+2λmax(P)γ‖ξ‖2

≤ −ξTQξ + 2λmax(P)γ‖ξ‖2

where Q is a real symmetric positive definite matrix and satisfies the following equation:

P
(
L(q0)− Bk

)
+
(
L(q0)− Bk

)T P = −Q (33)

Finally,

V̇(ξ) ≤ −ξTQξ + 2λmax(P)γ‖ξ‖2

≤ (−λmin(Q) + 2λmax(P)γ) ‖ξ‖2

Therefore, the condition to ensure the stability property of the uncertain multi-agent system (30) is
the following:

γ ≤ λmin(Q)

2λmax(P)
(34)

In the previous equation, it can be seen that the robustness margin is a function of the Q and P
matrices that solve the Equation (33). Now, considering the closed-loop multi-agent system from (19)

L(q0)− Bk =

 −2 0 −1
0 −1 1
1 0 −1

 (35)

and defining Q = I, the solution of Equation (33) is as follows:

P =

 0.3095 0.0714 0.1190
0.0714 0.5000 0.2143
0.1190 0.2143 0.5952

 (36)
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Therefore, it can be noted that the uncertainty tolerated by the closed-loop multi-agent system must be
‖L(r)‖ < 0.6208. This implies that the equivalent uncertainty supported by the system is equal to 70%
in each parameter of the Laplacian matrix, that is,

L(q) =

 q11 q12 0
0 q22 q23

q31 0 q33

 (37)

where q11 = q22 = q33 ∈ [−1.35,−0.65] and q12 = q23 = q31 ∈ [0.65, 1.35]. It is possible to appreciate
this robustness margin in the experimental tests that will be presented later.

4.2. A Practical Example of Computing the Time Delay Margin in Communication between Agents

A fundamental aspect to achieve the consensus of multi-agent systems is communication between
agents, which is why it is important to consider all the possible phenomena that occur in this process.
An important point is the time delay that exists when one agent sends messages to another; see [5,6];
this can be represented by

ξ̇(t) = A0ξ(t) + Arξ(t− τ) + Bu1(t) (38)

where

A0 =

 −1 0 0
0 −1 0
0 0 −1

 Ar =

 0 1 0
0 0 1

1.25 0 0

 B =

 3
0
0


The structure of the multi-agent system previously presented is due to the topology selected in

Section 3.1, and it is important to note that the element of the matrix Ar(3, 1) is equal to 1.25 because
uncertainty was considered in that parameter. However, it could have been considered in all the matrix
terms (37) without affecting the methodology. The calculations would be similar to those made for
this particular case of the DC motor synchronization. Now, considering the control law from (17),
the following closed-loop multi-agent system is obtained:

ξ̇(t) = A0ξ(t) + A1ξ(t− τ) + Bξd
cm (39)

where

A1 = Ar − Bk =

 −1 0 −1
0 0 1

1.25 0 0


Once the structure of the system is well defined, the fundamental problem will be to calculate

the maximum time delay that the multi-agent system supports without the stability property being
lost. It is well known that the property of stability of (39) is determined by the roots of the following
characteristic equation; see [31]

det(sI − A0 − A1e−τs) (40)

Once this equation is developed, it represents functions called quasipolynomials that have the
following form:

det(sI − A0 − A1e−τs) = p(s, e−τs) (41)

p(s, e−τs) =
3

∑
k=0

pk(s)e−kτs (42)

p(s, e−τs) = p0(s) + p1(s)e−τs + p2(s)e−2τs + p3(s)e−3τs (43)
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where

p0(s) = (s + 1)3

p1(s) = (s + 1)2

p2(s) = 1.25(s + 1)

p3(s) = 0

The multi-agent system (39) is stable if and only if the following condition is satisfied:

det(sI − A0 − A1e−τs) 6= 0 ∀ s ∈ C+ (44)

where C+ denotes the set of complex numbers with real part greater or equal to zero. Like an extension
of the stability concept, the quasipolynomials that satisfy the previous condition are called stable
quasipolynomials. Due to difficulty in determining the roots of quasipolinomial functions, we will
define the following associated polynomials:

p(s, T) =
n

∑
k=0

pk(s)(1− Ts)2k(1 + Ts)2n−2k (45)

p(s, e−τs) =
n

∑
k=0

pk(s)e−kτs (46)

These associate polynomials have an important relation between their roots: suppose that s0 = jω
for some value of ω0 ≥ 0; then, s0 = jω0 is a root of the characteristic equation p(s, e−τs) for some
value of τ ≥ 0 if and only if s0 = jω0 is a root of p(s, T) for some value of T ≥ 0. This relation
that exists between p(s, e−τs) and p(s, T) is obtained from a transformation that is carried out in the
exponential function that represents the time delay; see [32], while the relation between T and τ is
determined as follows (see [33]):

T =
tan( τωi

4 )

ωi
(47)

where ωi ∈W; the set of W is defined as follows:

W ≡ {0 < ω < ω∗ : p(jω∗, T) = 0 for some value of T > 0} (48)

in the case of the multi-agent system (39), the associated polynomial is the following:

p(s, T) =
7

∑
k=0

ak(T)sk (49)

where

a0(T) = 3.25

a1(T) = 6.25− T

a2(T) = 11.5T2 + 7T + 4

a3(T) = −T3 + 21.5T2 + 12T + 1

a4(T) = 3.25T4 + 7T3 + 16T2 + 4T

a5(T) = 6.25T4 + 12T3 + 6T2

a6(T) = 4T4 + 4T3

a7(T) = T4
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Now, define the polynomial associated Hurwitz matrix as follows:

p(s, T) = a7(T)s7 + a6(T)s6 + ... + a1(T)s + a0(T) (50)

H [p(s, T)] =



a6(T) a4(T) a2(T) a0(T) 0 0 0
a7(T) a5(T) a3(T) a1(T) 0 0 0

0 a6(T) a4(T) a2(T) a0(T) 0 0
0 a7(T) a5(T) a3(T) a1(T) 0 0
0 0 a6(T) a4(T) a2(T) a0(T) 0
0 0 a7(T) a5(T) a3(T) a1(T) 0
0 0 0 a6(T) a4(T) a2(T) a0(T)


(51)

and let p(s, T) the polynomial associated with p(s, e−τs) and consider H[p(s, T)] as the Hurwitz
matrix in the functioning of T of the associate polynomial p(s, T); if p(s, e−τs) is stable for τ = 0,
then p(s, e−τs) is stable for all τ ∈ [0, ∞) if and only if

det{H[p(s, T)] 6= 0} ∀ T > 0 (52)

This result shows stability conditions for any time delay; when this happens, it is said that the
system is stable independent of the delay. However, our goal is to determine the maximum delay that
the multi-agent system can support without losing the stability property. To do this, it is necessary
to compute the values of T where the determinant of the Hurwitz matrix H[p(s, T)] becomes zero
and using (47) and (48) compute the time delays for which the system loses the stability property.
Carrying out the corresponding computation, we get the values of T that make the determinant of
the Hurwitz matrix (51) zero; these are T1 = 0.828427 and T2 = 2.774851 and their corresponding
ω1 = ω2 = 0.5. These, in turn, are used to compute τ1 = 3.1416 and τ2 = 7.5702; thus, the maximum
delay supported by the multi-agent system is τmax = 3.1416 s. The robustness analysis performed in
this section guarantees that adequate performance is obtained in experimental testing of the DC motor
synchronization.

5. Experimental Results

The agent speed consensus control addressed in Section 2 was implemented by using a Bluetooth
wireless communication system and an embedded microcontroller-based control platform, as shown in
Figure 2. This platform consists of three identical modules whose elements are: a DC motor managed
by a dual-core ARM Cortex-A9 embedded microcontroller system, with the ability to be programmed
via WiFi, a Bluetooth transmitter, and a receiver (115,200 baud), as well as an encoder to measure
motor speed, with a sampling frequency of 25 samples per second. Each motor has a load consisting
of a wheel. The control algorithm was programmed using LabVIEW R©. Before the tests, the WiFi
communication was used to configure the controllers parameters, but, during the tests, it was only
used to send the reference value from the computer to the leader controller. The gains kp = 0.07 and
kcm = 1 were chosen to have an underdamped response. Note that while controllers 2 and 3 need
one speed state information via Bluetooth, the controller 1, the leader, needs to have all speeds to
calculate the center of mass. Approximate motor parameter values are shown in Table 1. It is important
to note that, in this system, there may be several sources of uncertainty, namely motor parameters,
measurement noise, and transmission delays. A schematic diagram of the multi-agent system is shown
in Figure 2, and the experimental implementation is presented in Figure 3.
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Figure 2. Experimental agent interconnection diagram.

Figure 3. Three-motor synchronization experimental platform.

Table 1. Motor parameters and values.

Rm 3.3 Ω Bl 4.41× 10−6 Nm/(rad/s)

km 7.68× 10−3 V/(rad/s) kt 6.9× 10−3 Nm/A

kg 53 ηm 0.69

ηg 0.90 Jm 3.90× 10−7 kgm2

Jl 1.03× 10−4 kgm2 Bm 1.07× 10−9 Nm/(rad/s)

The tests consisted of a step reference change and a sinusoidal reference change, r(t) = 70 +

30sin(0.2πt). The response of the DC motor speeds (ω1(0) = 60.13 rpm, ω2(0) = 59.75 rpm and
ω3(0) = 59.67 rpm) and controls to a reference step change are shown in Figures 4 and 5, respectively.
It is possible to note that the leader control u1 has a bigger transitory because it is responsible for carrying
the system to the reference; the other two controls carry the states to the center of mass. The behavior of
the center of mass is plotted in Figure 6, where the center of mass is very close to the reference during
stationary state and smoother than the speeds, acting as a low pass filter. This variation, of approximately
0.5 rpm, is mainly due to the encoder used to measure speed. Figures 7–9 show the response, control
outputs of the motor system, and the center of mass with a time-varying reference (ω1(0) = 0.40 rpm,
ω2(0) = 1.10 rpm and ω3(0) = 1.14 rpm). The synchronization of angular speeds is appreciated
under reference step change and sinusoidal reference. Observe that small errors appear when using
time-varying references, due to the propagation delay of the reference over the wireless communication
system and the states, working as uncertainty, but is not enough to avoid synchronization.
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Figure 4. Experimental speed consensus with a reference step change.

Figure 5. Experimental control outputs with a reference step change.

Figure 6. Experimental state center of mass with a reference step change.
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Figure 7. Experimental speed tracking using a sinusoidal reference.

Figure 8. Experimental control outputs for each agent following a sinusoidal reference.

Figure 9. Experimental center of mass of agents following a sinusoidal reference.
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6. Conclusions and Future Work

In this article, an application of a control methodology that uses a multi-agent consensus theory
was presented. The convergence of the states to both a fixed and a time-varying reference was
demonstrated on a three-agents system with cyclic information flow topology. This methodology
was applied in order to synchronize the speed of three DC motors. Through a robustness analysis of
the uncertainty of the parameters of DC motors and the delays in communication between agents,
the consensus was ensured. In addition, experimental results on a three DC motor system with a
wireless communication system were presented. Most of the reviewed works presented just two
motors. It was implemented by using a Bluetooth wireless agent communication system and an
embedded micro-controller based control platform. It was noticed that the proposed control approach
allows us to synchronize the multiple DC motor system. The small agent consensus error concerning
the desired reference is due, besides the motor dynamics, to wireless communication systems, and the
information flow topology.

From the information above, we identify three different research lines that may be addressed as
future work; the first is to perform an independent robustness analysis in each of the parameters of the
Laplacian matrix prioritizing the parameters that may present most variation. The second research line
is to consider in the analysis of the time delay system a higher number of parameters with uncertainty
since this paper only considers one of them. Regarding the latter, it is clear that the maximum time
delay that the close loop system may withstand without losing the stability property will be smaller
than the one obtained when considering only one parameter. Finally, another future work is to perform
experimental testing considering different topologies of information exchange such as chain topology
or balances graph topology, adapting the experimental platform for this purpose.
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