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Abstract: Software defined networking (SDN) is an emerging networking architecture that separates
the control plane from the data plane and moves network management to a central point, called the
controller. The controller is responsible for preparing the flow tables of each switch in the data plane.
Although dynamic routing can perform rerouting in case of congestion by periodically monitoring
the status of each data flow, problems concerning a suitable monitoring period duration and lack of
learning ability from past experiences to avoid similar but ineffective route decisions remain unsolved.
This paper presents an artificial intelligence enabled routing (AIER) mechanism with congestion
avoidance in SDN, which can not only alleviate the impact of monitoring periods with dynamic
routing, but also provide learning ability and superior route decisions by introducing artificial
intelligence (AI) technology. We evaluate the performance of the proposed AIER mechanism on the
Mininet simulator by installing three additional modules, namely, topology discovery, monitoring
period, and an artificial neural network, in the control plane. The effectiveness and superiority of our
proposed AIER mechanism are demonstrated by performance metrics, including average throughput,
packet loss ratio, and packet delay versus data rate for different monitoring periods in the system.

Keywords: software defined networking; artificial neural network; routing; monitoring period

1. Introduction

1.1. Software-Defined Networking

The revolutionary technology of radio access network (RAN) in each generation is obvious from
the first generation of mobile communications (1G) to the fifth generation of mobile communications
(5G) and beyond, but the revolution is not in core network (CN) technology. Only the 3G era has
experienced a major change from circuit switching to packet switching. Considering that global
operators have invested huge funds in the previous CN technology, the CN technology revolution
at the 3G stage allows the two switching modes to coexist and make the operators freely choose to
adopt circuit or packet switching mode until the 4G era comes, which is officially integrated into
the all-IP (Internet Protocol) packet switching core network system. With the growing demands for
wireless mobile communications in the Internet of things (IoT) society after 2020, 5G is regarded
as a revolutionary technology with great hopes and an innovation in the RAN technology. As to
the CN technology in 5G, it is expected to meet the needs of the rapid development of various
services that include a wide range of data and connections in the future, and to ultimately meet the

Appl. Sci. 2020, 10, 6564; doi:10.3390/app10186564 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-4050-7127
http://dx.doi.org/10.3390/app10186564
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/18/6564?type=check_update&version=2


Appl. Sci. 2020, 10, 6564 2 of 16

user-centric wireless communications. One of the most important key to networking requirements
is the development of two technologies, software-defined networking (SDN) and network-function
virtualization (NFV) [1]. SDN is a kind of control signaling and user data separation, centralized control
of network functions, and open application interface (API). After the introduction of SDN, the new
challenges are how to reconstruct network functions, how to design new interface protocols, and then
optimize the architecture and end-to-end signaling process based on SDN. Similar to some concepts of
SDN, NFV uses cloud virtualization-based information technologies to transform 4G/5G core network,
using general purpose platform (GPP) to build the basic telecommunications environment. Focusing
on applying artificial intelligence (AI) technology to CN routing, this paper presents an AI-enabled
routing scheme specifically for SDN because the core concepts of both SDN and NFV technologies
are quite similar and the two have high conditions for complementary integration. Based on SDN
architecture, several works have been proposed to successfully overcome the limitations regarding
the de-facto standard simulator, Mininet [2], or the implementation of multi-domain connectivity
services [3–7].

SDN is an emerging networking architecture that consists of three layers [8,9], namely, the application,
control, and data planes (see Figure 1). SDN is programmable through logically centralized management
to simplify complex network tasks, such as route optimization, traffic engineering and so on for
increasingly diversified network deployment. The SDN control plane is required to discover a network
topology of the entire SDN infrastructure mainly for configuring data transmission paths between any
source-to-destination pairs in the data plane. However, discovering a network topology is challenging
due to frequent migration of the virtual machines in the data plane, lack of authentication standards,
and so on. For the purpose, the authors of [10] have presented a comprehensive survey of the topology
discovery and the associated security implications in SDNs. The application programming interface
that resides between the control and application planes is called the northbound interface, where a set of
network services such as quality of service (QoS), intrusion detection, and monitoring functions can be
implemented. Communication interface between the control and data planes is called the southbound
interface, where the OpenFlow protocol [11] is commonly used to exchange control messages with
forwarding devices, referred to as OpenFlow switches. An OpenFlow switch comprises one or more
flow tables, a group table, and an OpenFlow channel for the external controller. OpenFlow switches
handle arriving packets by checking if any flow entries in their flow tables match the new arriving
packets and whether or not to perform forwarding. A flow table consists of a set of flow entries.
Using the OpenFlow protocol, the controller in the control plane can add, update, and delete flow
entries in the flow table(s) of an OpenFlow switch via the OpenFlow channel. Figure 2 shows the
six main components of flow entry, namely, match fields, priority, counters, instructions, timeouts,
and cookies [12]. “Match fields” are used to match the ingress port number and part of the information
contained in the packet header. Flow entries match packets in “priority” order, to the first matching
entry being used in each table. If a matching entry is found, then “instructions” associated with the
specific flow entry are executed. “Counters” are updated simultaneously when packets are matched.
If no match is found, then the forwarding decision will depend on the configuration of the table-miss
flow entry. “Timeouts” indicate the maximum amount of time or idle time before the expiration of the
flow entry. The “cookie” falls under opaque data, which may be used by the controller to filter, modify,
or delete flow statistics, but not to process packets.
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1.2. Artificial Intelligence Enabled Routing

Notably, in the recent decade, performance has improved in numerous fields with the application
of artificial intelligence (AI) technology [13]. The networking field is no exception. The well-known
Turing test [14] considers machines intelligent if humans cannot distinguish them from a man when
talking to them. In 1980, John Searle classified AI into strong and weak types [15]. A strong AI
has a complex algorithm that can help it act in different situations, whereas the actions of a weak
AI are preprogrammed by a person. In other words, strong AI-enabled machines have the ability
to apply intelligence to any problem rather than only specific problems, whereas weak AI-enabled
machines can only simulate human behavior. As illustrated in Figure 3, machine learning (ML),
which describes a methodology implementing AI, is a growing subfield of AI [16]. Support vector
machines (SVMs) [17], decision trees [18], random forests [19], artificial neural networks (ANNs) [20],
and so on have been presented sequentially as ML technologies. As to deep learning (DL), it is a
family of machine learning methods based on ANNs with representation learning. Learning can be
supervised, semi-supervised, or unsupervised. The “deep“ in DL comes from that two or more hidden
layers are used in the network. In other words, an unbounded number of layers of bounded size
constitute an ANN model, which allows practical application and optimized implementation while
retaining theoretical universality under mild conditions [21].
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An ANN mainly simulates human brain nerves using mathematical models. In contrast to human
brain nerves (see Figure 4a), inputs x1, x2, and x3 of an ANN (see Figure 4b) simulate human brain
nerve dendrites; weights w1, w2, and w3 of an ANN simulate axons; and the deviation value of an
ANN (denoted by b) simulates a synapse, which is a critical action value of a neuron. Equation (1)
represents the operation mode of one neuron, where y denotes the output. To handle complex nonlinear
problems, Equation (1) is further substituted with an activation function to form a differentiable
nonlinear function, as expressed by Equation (2). Through the backpropagation algorithm (BPA) [22],
the optimization gradient descent method can be used to continuously iteratively compute and update
the weights in the ANN model such that the model output can approach the expected value, that is,
the corresponding label data (designated as yi’), until the error function (see Equation (3)) converges.

y = x1w1 + x2w2 + x3w3 (1)

y = Activation f unction(x1w1 + x2w2 + x3w3) (2)

Loss f unction =
∑

i=0
(yi − yi

′)2 (3)

where i indicates the i-th record of training data.
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Since the layers of an ANN in DL are allowed to be heterogeneous and to deviate widely from
biologically informed connectionist models for the sake of efficiency, trainability, and understandability,
this paper presents an AI-enabled routing (AIER) mechanism with congestion avoidance by introducing
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an ANN model in the control plane of SDN for intelligent path selection. The successful application of
ANNs for the AIER not only can alleviate the impact of monitoring periods with dynamic routing
but also can provide the learning ability to make superior routing decisions from past experiences.
It is also demonstrated that the proposed AIER outperforms the SDN routing schemes with no AI
application via simulations. The significant improvement in the average throughput, packet loss ratio,
and packet delay versus data rate for different monitoring periods in the system can be observed.

The remainder of this paper is organized as follows. Section 2 discusses works related to
our proposed AIER mechanism in SDN, and the proposed AIER scheme is elaborated in Section 3.
Simulation results and performance evaluation discussions are presented in Section 4. Finally,
concluding remarks are given in Section 5.

2. Related Works

Packets passing through a route from source to destination nodes encounter various delay
types [23], such as processing, queuing, transmission, and propagation delays. Packet delay causes
packet loss and throughput degradation during transmission. SDN routing schemes are generally
classified into two types, namely, static and dynamic. With static routing, the well-known Dijkstra
algorithm [24] considered only edge weights in the associated network topology to find the shortest
path for data transmission. The authors of [25] extended the Dijkstra algorithm by taking into account
node weights to select a route that is better than the shortest path in terms of distance. Besides,
the authors of [26] used depth-first search to find multiple paths from source-to-destination nodes in a
hierarchical network topology then determined the best path using worst-fit searching. However, a
selected route will not change with static routing unless a link breakup is detected.

To avoid excessive single-link burden and packet loss caused by static routing due to diversified
network conditions, such as burst traffic, link breakups, and device crashes, dynamic routing schemes
have been proposed. Lan et al. [27] proposed a dynamic routing scheme with load-balanced path
configuration. Song et al. [28] calculated each path utilization at the controller with link utilizations
being received periodically from the data plane, and then changed the forwarding path, if necessary.
The authors of [29] presented an effective dynamic routing mechanism with which the controller is
aware of each link status and connected port number between any two switches in the data plane
through the link layer discovery protocol [30]. The connected port number was then used to configure
the corresponding flow entry on each switch according to a route selection algorithm. To reduce packet
loss during path reconfiguration, rerouting was triggered when the link utilization of the current path
exceeds 80%.

Although dynamic routing can perform rerouting under certain pre-defined conditions by
periodically monitoring the status of each data flow, problems concerning a suitable monitoring period
duration and the lack of learning ability from past experiences to avoid similar but ineffective path
decisions remain unsolved. The authors of [31] emphasized that the monitoring period duration
has a significant impact on network performance. A monitoring period that is too short may cause
excessive communication burden on the southbound interface. By contrast, a monitoring period
that is too long may cause the control plane to obtain outdated information from the data plane.
Therefore, the monitoring period duration is crucial for dynamic routing. Besides, the configuration
of an alternative path in the data plane is time consuming. That is, data transmission through the
original path may result in packet loss due to link congestion before the completion of the alternative
path configuration. Furthermore, the system traffic load usually varies with time. Given Figure 5 as
an example, the selected path can afford data transmission from 10 to 50 s in the case of light load.
However, the selected path may cause congestion in the case of heavy load at about 60 s. Although the
control plane can find an alternative path to alleviate congestion, the alternative path will be rerouted
to the previously-selected path due to the shortest path selection from 70 to 110 s. At approximately
120 s, link congestion may occur again in the case of heavy load. Meanwhile, an alternative path same
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as the one decided at 60 s is selected again. In other words, dynamic routing schemes are blind to past
experiences and thus lack learning abilities.
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In recent years, several routing mechanisms [32–38] combined with AI technology have been
proposed to enhance learning ability from past experiences and smart route-decision capability,
thereby improving overall network performance. First of all, the works in [33–35] introduced
AI technology to routing protocols for wireless sensor networks in order to improve the energy
consumption of each node. On the other hand, the authors of [36] implemented an intelligent routing
protocol in a particular, simple SDN topology. Their proposed intelligent routing protocol was based
on the reinforcement learning process to choose the best data transmission paths according to the
best criteria in terms of weights periodically rewarded by each node on the current path. However, a
formula associated with the cost function was not specifically defined and the impact of rewarding
periods was not considered. Pasca et al. [37] proposed an application-aware multipath flow routing
framework (AMPS) by enabling the controller of SDN to prioritize each flow using machine learning
techniques and to assign one or more paths based on its classified priority even if the flow are between
the same pair of nodes. The main contribution of AMPS controller in comparison to SDN with
traditional routing is its ensuring high availability of an unloaded path for high priority flows even in
a heavily loaded network. Fu et al. [38] presented a routing strategy based on deep Q-learning (DQL)
to generate optimal routing paths autonomously for SDN-based data center networks. However, they
aimed to provide different quality of service guarantees for mice-flows and elephant-flows, designated
in a data center network.

The aforementioned works have obtained considerable improvement on network performance
by introducing AI technology. To avoid network congestion that may cause serious packet delay,
packet loss and throughput degradation, this paper proposes an AIER mechanism by introducing an
ANN model to the controller of SDN that uses flow load and link load as the feature data, and queuing
size of an OpenFlow switch as label data. The proposed AIER mechanism consists of three stages:
(1) collection of a set of adequate data for model training, (2) establishment of an ANN model in the
control plane using the training data, and (3) application of the ANN model for path selection.

3. Proposed AIER Mechanism

3.1. System Architecture

The SDN architecture we consider is illustrated in Figure 6. The routing module in the application
plane is used to find the route between any source-to-destination pairs at the beginning. In the control
plane, the well-established Ryu controller [39] is adopted. There are three modules in the controller,
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topology discovery, period monitor, and an ANN model, which are used to explore the link states of the
OpenFlow switches, periodically receive the exchange information from the data plane, and implement
the proposed AIER mechanism to select an intelligent path with congestion avoidance, respectively.
The data plane consists of n source nodes (denoted as S1, S2, . . . , Sn), m destination nodes (denoted as
D1, D2, . . . , Dm), and a number of OpenFlow switches. Therefore, we assume that a maximum of m·n
(denoted as d) data flows are generated and a total of R paths between any source-to-destination pairs
are available.
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3.2. AIER Mechanism

Assuming that there are no link fabrication attacks and no migration of OpenFlow switches [40],
the proposed AIER mechanism adds an ANN model in the SDN controller. First, the AIER mechanism
collects a set of training data in which each record consists of feature data and label data. Next,
the training data are used to train the ANN model, iteratively. The routing algorithm obtains learning
abilities after model training has been completed. Thus, the AIER mechanism not only can predict the
corresponding output based on the new data but also can select a suitable path to avoid congestion.
Figure 7 shows the pseudo code of the proposed AIER mechanism, which includes the following
three stages.

3.2.1. Collection of Training Data

Prior to training the ANN model, an adequately large set of training data is collected in which each
record contains a congestion flag, the generation rates of all data flows, and every allocated path from
a source to a destination. As illustrated in Figure 8, let n = 3, m = 1, and R = 3 as an example. Table 1
shows the training data set, including every field of each record and several data samples. Field “C”
can be 1 or 0 depending on whether there exists one or more OpenFlow switch whose queuing length is
larger than 80% along the allocated path. If yes, then C is 1; otherwise, C is 0. The d fields immediately
following from Field “C” represent the data generation rates of d data flows. The last d fields indicate
the allocated path number (belonging to {0, 1, 2}) for each data flow.
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Table 1. Fields in the training data set.

C Congestion
Flag

S1-D1 Data
Flow

S2-D1 Data
Flow

S3-D1 Data
Flow

S1-D1 Allocated
Path Number

S2-D1 Allocated
Path Number

S3-D1 Allocated
Path Number

0 57M 55M 70M 0 1 2
1 65M 63M 30M 0 0 1
0 65M 50M 65M 0 2 1

3.2.2. ANN Model Training

After the first stage is complete, we use the BPA algorithm [22] to train the ANN model. The training
data require preprocessing before the model is trained. Separating the label data and feature data in
the training data set, we consider Field “C” as the label data (in red) and the other fields as the feature
data (in blue), as shown in Table 2. The feature data of each record are the inputs of a neuron model,
whereas the label data of each record are used for error computation with respect to the output of a
neuron model. Furthermore, we need to normalize the feature data such that their values range from 0
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to 1. Next, the training data set is randomly divided into a training data subset and a test data subset
on the principle that the former subset is much larger than the latter subset. The training data subset is
used to train the ANN model, whereas the test data subset is used to verify the accuracy of the trained
ANN model. Generally, accuracy should be at least 0.8.

Table 2. Label and feature data after normalization.

C Congestion
Flag

S1-D1
Data Flow

S2-D1
Data Flow

S3-D1
Data Flow

S1-D1
Allocated Path

Number

S2-D1
Allocated Path

Number

S3-D1
Allocated Path

Number

0 0.412 0.397 0.731 0.875 0.375 0.325
1 0.687 0.759 0.376 0.875 0.875 0.375
0 0.816 0.302 0.302 0.875 0.325 0.375

3.2.3. Application of the ANN Model

Because there are 3 source-to-destination pairs and 3 available paths, there exist 33 possible
path configuration outcomes. The ANN model trained in the preceding stage is employed for path
configuration in the controller, and the congestion probability, which is denoted by Ck for each
path configuration k, is calculated, as summarized in Table 3. Assuming that the current path
configuration is {0, 0, 0}, if any congestion probabilities lower than the current path configuration
by a predefined threshold (denoted as Th), for example, 20%, exist, the controller will replace the
current path configuration with one with the smallest congestion possibility. For instance, the new
path configuration will be {2, 2, 1} in Table 3. The controller is responsible for forwarding the new
path configuration through the southbound interface to the OpenFlow switches in the data plane.
The predefined threshold Th can avoid the so called ping-pong effect. Moreover, the AIER mechanism
can periodically monitor the queuing length of each OpenFlow switch for the current path configuration
to avoid potentially inaccurate output in the trained ANN model. If any queuing length of an OpenFlow
switch is greater than 80%, then path reconfiguration is triggered.

Table 3. Congestion probabilities resulted from the trained model.

Configuration k
Data Rate (Mbps) Path Configuration Congestion

Probability

S1-D1 S2-D1 S3-D1 S1-D1 S2-D1 S3-D1 Ck

1 70 75 90 0 0 0 0.90
2 70 75 90 0 0 1 0.70
3 70 75 90 0 0 2 0.65
. . . . . . . . . . . . . . . . . . . . . . . .
26 70 75 90 2 2 1 0.55
27 70 75 90 2 2 2 0.80

4. Performance Evaluation

4.1. Simulation Settings

The parameters and their values used in the simulation are summarized in Table 4. The routing
module in the application plane uses the Dijkstra algorithm. The communication interface between
the data and control planes uses OpenFlow Protocol V1.3. The network topology of the data plane,
as illustrated in Figure 9, consists of three source nodes, one destination node, and 9 available
transmission paths. Therefore, a total of 729 path configuration outcomes are obtained. We use the
Iperf [41] tool to generate UDP flows at data rates varying from 70 Mbps to 150 Mbps. The bandwidth
of each link is 250 Mbps. The buffer size of each OpenFlow switch is 200 packets. The monitoring
period is fixed at 3, 5, or 10 s.
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Table 4. Parameters and values used in the simulation.

Parameters Values

Simulator Mininet 2.3.0
SDN protocol OpenFlow V1.3

Packet generator Iperf
Traffic type UDP

Link bandwidth 250 Mbps
Data rate 70 Mbps ~ 150 Mbps

Buffer size 200 packets
Routing module Dijkstra algorithm

Monitoring period 3, 5, or 10 s
No. of source nodes 3

No. of destination nodes 1
No. of available paths 9Appl. Sci. 2020, 10, x 10 of 16 
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A multilayer perceptron (MLP), which consists of an input layer, an output layer, and at least one
hidden layer, is used as an ANN model in the control plane. Figure 10 depicts multiple nodes for the
input layer and only one node for the output layer. The number of neutrons at the two hidden layers
varies from 100 to 200, which are used to evaluate the accuracy of the ANN model. First, we collect
65,000 data records to train the ANN model. The training data are 80% of the 65,000 data records,
and the remaining 13,000 data records are the validation data. The accuracy of the trained model with
120 and 140 neutrons at the first and second hidden layers, respectively, can be approximated at 82%.
Considering both performance advantages and computational complexity [42], 120 and 140 neutrons
at the first and second hidden layers, respectively, are adopted for the ANN model.

Appl. Sci. 2020, 10, x 10 of 16 

 

Figure 9. The SDN data plane used in the simulation. 

Table 4. Parameters and values used in the simulation. 

Parameters Values 

Simulator Mininet 2.3.0 

SDN protocol OpenFlow V1.3 

Packet generator Iperf 

Traffic type UDP 

Link bandwidth 250 Mbps 

Data rate 70 Mbps ~ 150 Mbps 

Buffer size 200 packets 

Routing module Dijkstra algorithm 

Monitoring period 3, 5, or 10 s 

No. of source nodes 3 

No. of destination nodes 1 

No. of available paths 9 

A multilayer perceptron (MLP), which consists of an input layer, an output layer, and at least 

one hidden layer, is used as an ANN model in the control plane. Figure 10 depicts multiple nodes for 

the input layer and only one node for the output layer. The number of neutrons at the two hidden 

layers varies from 100 to 200, which are used to evaluate the accuracy of the ANN model. First, we 

collect 65,000 data records to train the ANN model. The training data are 80% of the 65,000 data 

records, and the remaining 13,000 data records are the validation data. The accuracy of the trained 

model with 120 and 140 neutrons at the first and second hidden layers, respectively, can be 

approximated at 82%. Considering both performance advantages and computational complexity [42], 

120 and 140 neutrons at the first and second hidden layers, respectively, are adopted for the ANN 

model. 

 

Figure 10. ANN model (a four-layer multilayer perceptron (MLP)). 

  

Figure 10. ANN model (a four-layer multilayer perceptron (MLP)).



Appl. Sci. 2020, 10, 6564 11 of 16

4.2. Results and Discussions

The performance of the proposed AIER mechanism is compared with that of static and dynamic
routing schemes by varying the data rate of each source-to-destination pair. Performance measures
include the average throughput, packet loss ratio, and packet delay for different monitoring periods
(3, 5, or 10 s). The effectiveness and superiority of the AIER mechanism are demonstrated by the
simulation results.

Figure 11 shows the average throughput of each flow versus data rate for different monitoring
periods. The average throughput with static routing is the smallest among the three schemes and
descends to the increasing data rate regardless of the monitoring period. This phenomenon is because all
data flows send their data through the same path due to the shortest path selection. Unlike static routing,
dynamic routing can change transmission paths periodically if a predefined congestion condition occurs.
In contrast to the AIER mechanism, no increasing amount is observed in the average throughput
with dynamic routing when data rate is increased, as packet loss occurs before path reconfiguration
is complete. In other words, the AIER mechanism is not influenced much by the monitoring period
duration. Besides, the AIER mechanism has a smaller path reconfiguration frequency than dynamic
routing, as the former scheme can perform more suitable path configuration as soon as possible. Thus,
the AIER mechanism performs better in terms of average throughput than either static or dynamic
routing. Figure 12 shows packet delay versus data rate for different monitoring periods. Similar to
the aforementioned elaboration, the AIER mechanism exhibits better performance in packet delay
compared with the other two routing schemes, particularly when the network load is heavy. This is
because the AIER mechanism is capable of predicting better paths for each flow from past experiences.
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Regarding packet loss performance, Figure 13 presents packet loss ratio versus data rate for
different monitoring periods. Packet loss ratio increases as the data rate grows. Each link bandwidth is
250 Mbps; thus, the data rate of each flow reaching approximately 70 Mbps begins to cause excessive
single-link burden and packet loss owing to the shortest path selection. However, dynamic routing
can adjust path allocation periodically to alleviate congestion in the shortest path. Hence, it has a
smaller packet loss ratio compared with static routing. It is noteworthy Figure 13 illustrates that nearly
no packet loss is observed with the AIER mechanism until the data rate of each flow increases to
120 Mbps. Thus, the AIER mechanism demonstrates a significant improvement in packet loss owing to
its intelligent path selection design with congestion avoidance.
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5. Conclusions

This paper successfully introduces an ANN in the SDN control plane for intelligent path selection
with congestion avoidance. The proposed AIER mechanism not only can alleviate the impact of
monitoring periods with dynamic routing but also can provide learning ability from past experiences
by integrating AI technology. The AIER mechanism consists of three stages: (1) collection of a set
of adequate data for training, (2) establishment of an ANN model in the control plane with the
training data, and (3) application of the ANN model for path selection. After the ANN model is
trained, the controller can perform more suitable path configuration according to the current data
flow traffic and link load. The effectiveness and superiority of our proposed AIER mechanism are
demonstrated by performing simulations on the Mininet simulator. The simulation results show
that the AIER mechanism considerably outperforms static and dynamic routing schemes in terms of
average throughput, packet delay, and packet loss ratio. In future works, we will design an intelligent
routing scheme that considers link breakup between any two OpenFlow switches as feature data,
except for data flow traffic and link load, to enhance the comprehensiveness of the ANN model.
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