
applied
sciences

Article

PRIPRO: A Comparison of Classification Algorithms
for Managing Receiving Notifications in
Smart Environments

João Antônio Martins 1,* , Iago Sestrem Ochôa 1,2 , Luis Augusto Silva 1,* ,
André Sales Mendes 3 , Gabriel Villarrubia González 3 and Juan De Paz Santana 3

and Valderi Reis Quietinho Leithardt 1,4,5,*
1 Laboratory of Embedded and Distributed Systems-LEDS, University of Vale do Itajaí,

Itajaí SC88302-901, Brazil; iago.ochoa@edu.univali.br
2 Departamento de Informática e Redes de Computadores, Instituto Federal Catarinense (IFC),

Brusque 88354-300, Brazil
3 Expert Systems and Applications Lab, Faculty of Science, University of Salamanca, Plaza de los Caídos s/n,

37008 Salamanca, Spain; andremendes@usal.es (A.S.M.); gvg@usal.es (G.V.G.); fcofds@usal.es (J.D.P.S.)
4 Departamento de Informática, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
5 COPELABS, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal
* Correspondence: joao_martins@edu.univali.br (J.A.M.); luis.silva@edu.univali.br (L.A.S.);

valderi@univali.br (V.R.Q.L.)

Received: 1 November 2019; Accepted: 6 January 2020; Published: 10 January 2020
����������
�������

Abstract: With the evolution of technology over the years, it has become possible to develop intelligent
environments based on the concept of the Internet of Things, distributed systems, and machine
learning. Such environments are infused with various solutions to solve user demands from services.
One of these solutions is the Ubiquitous Privacy (UBIPRI) middleware, whose central concept
is to maintain privacy in smart environments and to receive notifications as one of its services.
However, this service is freely performed, disregarding the privacy that the environment employs.
Another consideration is that, based on the researched related work, it was possible to identify that
the authors do not use statistical hypothesis tests in their solutions developed in the presented context.
This work proposes an architecture for notification management in smart environments, composed by
a notification manager named Privacy Notification Manager (PRINM) to assign it to UBIPRI and to
aim to perform experiments between classification algorithms to delimit which one is most feasible to
implement in the PRINM decision-making mechanism. The experiments showed that the J48 algorithm
obtained the best results compared to the other algorithms tested and compared.

Keywords: smart environments; notification management; machine learning

1. Introduction

Technology is increasingly being incorporated into people’s daily lives, becoming more
distributed and no longer traditional across various areas of its activities, establishing a new concept,
contextualized as the Internet of Things (IoT) [1]. Since many of the objects (electronic components,
communication sensors, and mobile devices) that surround people’s daily lives are connected, a large
amount of information will be generated due to data collection and transmission.

Ordinary everyday places can become intelligent environments when they respond to the presence
of people in a versatile manner, meeting their specific needs with the help of IoT objects embedded
in the environment [2]. Consequently, people do not notice that they use a computer system directly
but understand that the physical environment interfaces with the interaction of the computer system

Appl. Sci. 2020, 10, 502; doi:10.3390/app10020502 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-7403-5981
https://orcid.org/0000-0002-0425-7829
https://orcid.org/0000-0002-9981-4586
https://orcid.org/0000-0003-0976-2784
https://orcid.org/0000-0002-6536-2251
https://orcid.org/0000-0001-9461-7922
https://orcid.org/0000-0001-9461-7922
http://www.mdpi.com/2076-3417/10/2/502?type=check_update&version=1
http://dx.doi.org/10.3390/app10020502
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 502 2 of 21

embedded there. Such environments are part of a distributed system that is a set of software running
on one or more computers and coordinating actions by messaging [3].

One of the technologies that assist IoT devices in intelligent environments, and commonly used
in distributed systems, is middleware (MW), which is a resource manager that offers your applications
the ability to share and deploy these resources efficiently in a network [4]. In addition to resource
management, MW offers services similar to those found in an operating system, such as application
communication facilities, security services, accounting services, and failure recovery.

In work developed by [5], an MW system was proposed for privacy control and management in
intelligent environments called Ubiquitous Privacy (UBIPRI). The central concept is to enable devices to
meet the needs of users or environments as a whole, while adapting to different environments and their
infrastructure, and adapting device limitations, and environmental privacy. Another goal of UBIPRI
is to classify the type of user access in smart environments based on variables such as profile type,
user frequency, environment type, and day of the week. Thus, providing users with the availability
of services present in the environment accessed and specific actions of these services. One of the MW
layer assignments is presented in Figure 1, and it is divided into modules, with each module having a
specific task and role in the system.

Figure 1. Privacy manager model. Adapted from UBIPRI (2015) [6].

According to Figure 1, Privacy Information Management and Control Module User (PRICMU),
Privacy Communications (PRICOM), and Privacy Device (PRIDEV) modules are responsible for the
management, privacy control, communication and devices, respectively. The Privacy Adapt (PRIADA)
module is responsible for adaptation management and control. Privacy Environment (PRIENV) is the
environment-related attributes registration module. Privacy History (PRIHIS) is the module for storing
and processing information related to user history. Privacy Security (PRISEC) is the module related to
user safety and the environment. Privacy Services (PRISER) is the environment service management
module. Connecting to all modules, the Data Module processes variables and parameters received
from other modules. The Controller Module is the module that receives access requests and performs
the control of the database directly in the tables.

The modules described above are not relevant to the development of the work, in contrast, the
modules Privacy Profiles (PRIPRO) and Privacy Criteria (PRICRI) are of high relevance. The PRIPRO
module is responsible for performing control transactions that are related to user profile management,
aiming to distribute and direct synthesized information to the next modules. This information is

Appl. Sci. 2020, 10, 502 3 of 21

adapted appropriately according to the individual privacy of the user and their profile adhered to
by UBIPRI. The PRICRI module has rules, criteria, and environment definitions such as access, use,
sharing, location, and other variables that can be added, changed, or modified pointing out that each
environment has unique characteristics, such that their definitions are treated individually by the other
modules that have specific controls.

One of the services that UBIPRI provides is the receipt of notifications for IoT devices in smart
environments that are performed freely without the intervention of MW, i.e., disregarding the privacy
that the environment employs and which users should expect. Therefore, it is noted that the related
work in the context of notification management in smart environments do not use statistical hypothesis
tests as a complement to statistical evaluation.

From the gap found in UBIPRI that results in the privacy issue of notifications in smart
environments, it is necessary to intelligently manage their receipt, as it is an MW of privacy control and
management. Therefore, to ensure the privacy that environments employ, we propose the architecture
of a notification manager. Having as its main component, a Decision Maker (DM) mechanism
intelligently implemented with a Machine Learning (ML) algorithm belonging to the category of
classifying supervision-tasks, for managing receiving notifications from users using UBIPRI.

This paper presents a comparison of classification algorithms to determine which one is the
most viable to implement in the PRINM notification manager DM mechanism that will be developed
in future work on UBIPRI middleware. It also presents the modeling of notifications’ management
architecture in the context of intelligent environments. Therefore, this paper aims to report the activities
of delimitation and use of classification algorithms and statistical hypothesis testing, generation of
artificial datasets, tests and comparisons of classification algorithms and application scenario testing.

This article consists of six sections: Section 2 presents information related to managing work
notifications in smart environments; Section 3 presents the methods and materials for the development
of the experiments; Section 4 refers to the proposed architecture and application scenario; Section 5
describes the methodology of the experiments performed and their results; and finally Section 6
presents the conclusions and contributions obtained.

2. Related Work

First, the authors in [7] restricts itself to detecting disruptive phone calls that are a major source of
annoyance to users. To this end, they evaluated six types of learning algorithms, namely: SVM (support
vector machine), NB (naive Bayes), KNN (K-nearest neighbors), RUSBoost, GP (genetic programming),
and AR (association rule learning). The dataset used for the assessment was collected over a period of
16 weeks with the help of a mobile app. Similar to this work, we also used the NB, SVM, and KNN
algorithms, and collected data from a mobile application to create the application scenario test.

Following notification-related studies, the authors at [8] developed an architecture of an intelligent
notification system that uses classification algorithms to manage the receipt of notifications according
to contextual perception and user habits. The system consists of modules that monitor the environment
and users, collecting information to send them to a DM mechanism. The primary relationships with this
work are the comparison of the classification algorithms on the classification precision metric, the use
of artificial dataset, and the system that implements a classification algorithm in the DM mechanism.

The authors at [9] report in their article, a proposal for location verification and user confirmation
in smart environments, in the context of notification control and management. User verification
and notification control are performed based on parameters such as environment type, user profile
type, location, time criteria, priority, and user preferences. The authors’ work is also based on one
of the modules of UBIPRI, being PRISER. Furthermore, this work is based on the modules PRIPRO
and PRICRI.

In the work of [10], a system has been developed to reduce manual user efforts by addressing and
receiving relevant notifications by wireless communication in a university setting. In development,
the Knuth–Morris–Pratt (KMP) algorithm was applied to a real dataset with the following attributes:

Appl. Sci. 2020, 10, 502 4 of 21

admin, dept, notice, notice, read-by, registration details, staff, and user table. Similar to this work,
attributes related to the context was used to perform the notification management.

The reference work [11] discusses in their article an assessment of an artificial dataset in a
notification management system. In general, the set has the characteristics of the notification content,
user context, and the receiving method, together with the synthetically entered data. In the evaluation,
the fuzzy inference system (FIS) algorithm was used to verify the behavior of the generated artificial
dataset. The primary relationship with this work is the generation and use of an artificial dataset for
PRINM evaluation.

Table 1 presents a synthesis of related work, pointing to the use of classification algorithms,
artificial datasets, if the proposed comparison of algorithms on the classification precision metric are
used, and if statistical hypothesis tests are used. Comparisons of literature with approaches are defined
as: (i) yes, literature treats the approach; (ii) no, the literature does not address the approach; (iii)
partial, the literature partially addresses the approach.

Table 1. Summary of related work.

Work Authors Uses Classification
Algorithms

Uses Artificial
Data

Uses Algorithm
Comparison

Uses Hypothesis
Tests Statistics

[7] Smith (2014) Yes No No No
[8] Corno (2015) Yes Yes Yes No
[11] Fraser (2017) No Yes No No
[10] Ghodse (2018) No No No No
[12] Martins (2018) Yes Yes Yes Partial
[9] Silva (2019) Yes No No No

This Work This Work Yes Yes Yes Yes

The work presented in [12] does not have a direct relationship with the notification management
context, but it is a part of a series of research that is related to UBIPRI. When compared to this work on
the notification management approach, only the works [10,11] do not use classification algorithms to
manage notifications, but they still have a similarity in artificial dataset approaches. Using artificial
datasets is not a good practice when it comes to using ML approaches. However, this practice is
becoming increasingly utilized, as in the works [8,11]. The works [7,9] do not address the comparison
of classification algorithms over the classification accuracy metric, since there is a range of algorithms
to be studied and compared. Only the work [8] addresses this comparison.

It is clear to realize that none of the related work use any statistical hypothesis test as a complement
to statistical analysis. This consequently and partially affects the solutions developed by the authors,
because with the application of a single statistical hypothesis test appropriate to the context of these
works, it would be possible to analyze the statistical differences of the algorithms when compared
thoroughly. As seen in this paper, the test performed in Section 5.5 identified that three classification
algorithms have the same classification performance, even though they obtain their distinct classification
precision metric values.

It is worth mentioning that the gap of not using statistical hypothesis tests presented in the related
work is applied in the context of notification management in smart environments. Therefore, they were
useful for the development and elaboration of experiments that contributed to solving the problem
listed in this work. Because of this, this work proposes to perform the activities of delimitation and
use of classification algorithms and statistical hypothesis testing, generation of artificial datasets, tests
and comparisons of classification algorithms, and application scenario testing. At the end of the work
development, it was determined that the J48 algorithm is the most viable for implementation in the
PRINM DM mechanism that will be developed in UBIPRI.

3. Methods and Materials

We briefly introduce the concept of ML, focusing on the classification task, which presents the
learning categories and their respective classification algorithms that are listed and selected. As well

Appl. Sci. 2020, 10, 502 5 of 21

as the study and delimitation of a statistical hypothesis test. Finally, this section includes the process
performed to generate artificial datasets.

3.1. Machine Learning Concept

Machine learning can be defined as programming that helps computers make decisions using data
from examples of past experiences. It is based on a model with parameters to be optimized from learning
training data. The model can be predictive, and used to make future predictions, or it can be descriptive
for data knowledge [13]. Therefore, there are two aspects of ML for model generation—supervised
and unsupervised. Each of them can further be broken down into different types of tasks, such as
classification, regression, grouping, and association, which consequently have different characteristics
and require different algorithms. For the development of the work, we used the classification task that
belongs to supervised learning in the concept of ML. The next subsection will describe and approach
this task with greater emphasis.

3.1.1. Classification Task

A classification task consists of recognizing models that describe and distinguish classes for the
purpose of using the model to predict the class of data that has not yet been classified. The task is
also stated as: Given a training dataset along with associated predictive attributes, determine the
class attribute for an unassigned test dataset. However, the diversity of classification algorithms that
exist to solve various problems is large, so it is necessary to study in order to find out which ones are
potentially better applied to certain types of problems [14].

Figure 2 presents the learning categories on which the classification algorithms are based.
Each learning category directly affects the computational behavior of the algorithm, delimiting how
learning is performed and the generated predictor model.

Figure 2. Classification task learning categories.

There are several types of algorithms in each learning category, so one algorithm from each
category was selected. In the related literature searched, it was not possible to identify classification
algorithms that act correctly in the context of notification management in smart environments.
Another purpose for this is that classification algorithms act heterogeneously depending on the problem
in which it is applied. The selected algorithms were naive Bayes (NB), J48, K-nearest neighbors (KNN),
multilayer perceptron (MLP), PRISM, and support vector machine (SVM). The following subsections
briefly describe the concept of each classification algorithm.

3.1.2. Naive Bayes Algorithm

The NB algorithm is considered to be a simple classifier, and due to its simplicity, has broad
applicability in real-time forecasts, news classification, spam filtering, recommendation systems,
among others. A peculiarity of classification, called being naive, is that the algorithm disregards
the correlation between attributes of a dataset, i.e., it treats each attribute as if it were independent.
Because it is a simple algorithm, NB has no adjustable parameters [15].

Appl. Sci. 2020, 10, 502 6 of 21

3.1.3. J48 Algorithm

The J48 algorithm is considered to be a fast classifier, and it provides good accuracy rating
compared to other classification task algorithms. Derived from its predecessor algorithms ID3, C4.5,
and C5.0, J48 builds its tree based on the strategy of division and conquest, by calculating entropy
and information gain. A peculiarity of its classification is that the algorithm considers only the most
relevant attributes, meaning that, it discards specific attributes that are not relevant to the generation
of the predictor model [16]. The main adjustable parameter is the use of pruning, which removes the
dirt, thus providing a compact size tree [17].

3.1.4. K-Nearest Neighbors Algorithm

The KNN algorithm is the best known and most commonly used instance-based learning
algorithm among the scientific community. It is categorized as lazy, as it does not generate a predictor
model. Instead, it uses a similarity calculation with all data in the set to classify the new data entered.
Therefore, its classification consists of storing training examples, which consequently postpone the
processing of training data until new data needs to be classified. The main adjustable parameters are
the K variable, which determines the number of nearest neighbors to be discovered, and the similarity
calculation to be used [18].

3.1.5. Multilayer Perceptron Algorithm

The MLP algorithm consists of a simple system of artificial neurons connected by weights and
output signals, which are a function of the sum of inputs for the modified neuron from a linear
activation function. The network is divided into three layers: input, hidden, and output. The input
layer receives the value vector for network initialization, the hidden layer performs training, and the
output layer receives the output vector. The main adjustable parameters are the maximum amount of
iterations, learning rate, momentum, and the number of neurons in the hidden layer [19].

3.1.6. PRISM Algorithm

The PRISM algorithm is one of the pioneers of its learning category. Others were implemented
based on its design. It has in its computational behavior of classification the induction of rules from
a dataset. This induction is represented by a fixed set of individual rules for each of the dataset
classes. To do so, it has some limitations, such as not generating value enumeration attributes, lacking
the robustness of missing values, and performing no pruning. The algorithm has no adjustable
parameters [20].

3.1.7. Support Vector Machine Algorithm

The SVM algorithm is one of the most efficient classifiers and is used in academia because it can
classify data based on mathematical terms. Therefore, it needs a function that describes the factors
that must be controlled and guarantees the good performance of the classification. The SVM predictor
model generation is based on support vectors, which are used to learn and define the best separation
line in the created hyperplane. The algorithm learns the straight line considering the maximum
margin defined by it, thus providing the classification between different classes. The main adjustable
parameters are kernel and cost [21].

3.2. Statistical Hypothesis Tests

The use of statistical hypothesis testing in comparisons of classification algorithms implies an
analysis complement between them, indicating whether one algorithm is better than another in a
specific task and determining the probability of incorrectly detecting a statistical difference when there
is no difference [22]. One of the goals of these tests is to verify the truth of the null hypothesis, which is
the statement that there is no distribution difference between samples (datasets). Thus, the hypothesis

Appl. Sci. 2020, 10, 502 7 of 21

verified is H0 (valid and not rejected) or H1 (not valid and rejected) [23]. There are different types of
statistical hypothesis testing, namely:

1. Normality testing that is used to evaluate the assumption of a sample taken from a distributed
population [24];

2. Correlation test that analyzes sample datasets to identify if two variables are related to each
other [25];

3. Association test that reports on the relationship of the statistical association between variables [26];
4. Variance test comparing the means of different populations [27];
5. Central tendency test that uses central tendency measures (arithmetic mean, median) to test a

probability distribution [28].

From the relationship of the described test types, the central tendency test is the most suitable
for the development of the work, because it uses the classification accuracy metric as a measure of
central tendency. Table 2 presents the central tendency tests. There are different characteristics among
the types of tests presented in Table 2, as follows:

1. Categorization indicates whether the test is parametric or nonparametric. Parametric tests evaluate
the null hypothesis from specific data or parameters (mean, standard deviation, etc.). Nonparametric
tests evaluate the null hypothesis from distribution types and group relationships [29];

2. Variable indicates the types of variables the test supports;
3. Group, which matches whether the group comparison is individual, paired, or multiple. In this

context the classification algorithms are the groups;
4. Pairing, which corresponds to whether it is paired or unpaired. Paired tests match that the data

used for predictor model training are also used to test the predictor model, whereas unpaired
tests use one dataset for training and another for testing [30].

Based on the characteristics of the statistical hypothesis tests, we listed those that fit the
experiments performed in Section 5, as follows: nonparametric, quantitative, multiple, and paired.
The nonparametric characteristic was selected, as it was necessary to identify whether there is really a
statistical difference in classification performance between classification algorithms. The classification
accuracy metric coincides with the quantitative variable characteristic. Therefore, it is necessary to use
multiple comparison tests because the comparison uses six algorithms. Finally, paired tests are best
suited, as a single artificial dataset is used for training and testing. Therefore, the Friedman test with
these characteristics was listed, to be applied for the comparison of classification algorithms in the
Section 5.4 classification precision metric.

By testing the null hypothesis, it is possible to find out if datasets are different from each other,
but it is not possible to identify which ones are. Therefore, to solve this impasse, the Friedman test
is used, which performs multiple comparisons between equal-sized datasets analyzing the variance
and randomization between them. The comparison is made from a ranking presented in Figure 3.
To implement, it is necessary to transform raw data into ordered data [31].

In the context of classification algorithms and datasets, xbk represents the placement that the
algorithm obtained relative to the dataset in the ranking. This matches that each ranking row corresponds
to the random seed value with which the dataset was shuffled and each column corresponds to the
algorithm that was applied. Thus, placing xbk corresponds to the value of the classification accuracy
metric acquired from the predictor model generated with a given random seed value. Thus, the algorithm
with the highest metric value gets the first position in the ranking, the second highest gets the second
position, and so on [32]. Equation (1) presents the mathematical calculation of the ranking.

Appl. Sci. 2020, 10, 502 8 of 21

Table 2. Types of central tendency tests.

Name Categorization Variable Group Pairing

Z-test Parametric Quantitative Individual -

T-test Parametric Quantitative Individual -

Wilcoxon for 1 sample No parametric Quantitative, ordinal qualitative Individual -

T-test for 2 samples Parametric Quantitative, nominal Pairs No paired

T-test for 2 samples
with different variances Parametric Quantitative, nominal Pairs No paired

T-test
paired Parametric Quantitative, nominal Pairs Paired

ANOVA Parametric Quantitative, nominal Multiple No paired

Welch’s ANOVA Parametric Quantitative, nominal Multiple No paired

ANOVA for
repeated measures Parametric Quantitative, nominal Multiple Paired

Mann-Whitney No parametric Quantitative,
ordinal qualitative, nominal Pairs No paired

Wilcoxon Paired No parametric Quantitative,
ordinal qualitative, nominal Pairs Paired

Kruskal-Wallis No parametric Quantitative,
ordinal qualitative, nominal Multiple No paired

Friedman No parametric Quantitative,
ordinal qualitative, nominal Multiple Paired

Test for 1 proportion Parametric Nominal Individual -

Test for 2 proportion Parametric Nominal Pairs No paired

Figure 3. Friedman test ranking.

From the calculation of Equation (1), the value of the critical difference is the most important,
because it indicates whether there is a statistical difference between the summation values of two
algorithms in the ranking. This difference is discovered by subtracting these values. Thus, if the
result of the subtraction obtained is greater than the critical distance, then it corresponds that the two
algorithms are statistically different and that one of them is better in the task adhered to them, that
is, in the dataset in which they were applied [33]. Therefore, with the Friedman test, it is possible to
identify if there is a statistical difference between classification algorithms in the face of a given dataset
when there is such a difference.

∣∣Ri − Rj
∣∣ ≥ Z

(
α

k (k− 1)

)√
N × k (k + 1)

6
(1)

where:

Appl. Sci. 2020, 10, 502 9 of 21

• Ri and Rj is the sum of the positions of the algorithms i e j in the ranking;
• |Ri − Rj| is the difference between the sum of the algorithms;

• Z
(

α
k(k−1)

)√
N×k(k+1)

6 is the critical difference.

3.3. Artificial Datasets

To perform the experiments, three artificial datasets were generated from a script executed in
the NetBeans IDE, consisting of predictor attribute values and classifier attributes arranged in the
ARFF file format. All three datasets use the same predictor attributes and different classifier attributes,
therefore, for each set a different classification objective is defined as follows:

• Target: classifies which user the notification must be notified to;
• Period: classifies what time of day the notification must be notified;
• Setting: classifies which device configuration notification must be notified.

The number of data instances is precisely the same for each set containing 4320 data. The predictor
attributes and their values are shown in Figure 4, and the classifier attributes and their values are
shown in Figure 5.

Figure 4. Predictor attributes.

Figure 5. Classifier attributes.

The description of the predictive attributes are as follows: (i) user, identifies which user is in the
smart environment; (ii) profile, determines the type of user profile used. This attribute is related to
the PRIPRO module; (iii) environment, determines which type the environment has. This attribute is
related to the PRICRI module; (iv) activity, indicates the relevance of the activity the user is performing
in the environment; (v) status, indicates the status of the device that should be notified; (vi) inPeriod,
indicates the period that the notification was received in the smart environment; (vii) inTarget, indicates
to which user the notification should be notified.

To do so, the classifying attributes are: (i) outTarget, classifies which user the notification must be
notified to; (ii) outPeriod, classifies what time of day the notification must be notified; (iii) outSetting,
classifies which device configuration notification must be notified;

Predictor and classifier attributes are assigned different types of values and may contain one
or more of them that are related to the context of the work. Thus, the user attribute is assigned the
values Member1, Member2, Member3, stating that the environment has three members. The profile
types are determined with the values Blocked, Guest, Basic, Advanced, Administrator of the attribute
profile. There are three distinct types of environment indicated by the Public, Private, Restrict values
of the environment attribute. The values attribute the relevance of activities performed by users
Relevance1, Relevance2, Relevance3 of the attribute activity, being respectively the first with less,
the second with average and the third with high relevance. The On, Off values of the status attribute

Appl. Sci. 2020, 10, 502 10 of 21

indicate respectively whether the device is on or off. The period in which notification was received in
the environment is assigned by the InMorning, InAfternoon, InNight, InDawn values of the inPeriod
attribute. Finally, the InMember1, InMember2, InMember3, InAll values of the inTarget attribute
determine which user the notification should be notified to, either for specific users or for everyone.

Starting with the values of the classifier attributes, the outTarget attribute is assigned the values
OutMember1, OutMember2, OutMember3, OutAll, OutNone indicating to which user the notification
must be notified, either to specific users or to all. The outPeriod attribute that is assigned the values
OutMorning, OutAfternoon, OutNight, OutDawn, OutPeriodNone, indicating the period in which
notification must be notified to the user. Finally, the setting that the notification must be notified of is
delimited by the OutSilent, OutVibrate, OutCurrent, OutSettingNone values of the outSetting attribute.
Values ending with None mean the notification must not be notified.

4. Notification Management Architecture

We divided the architecture into three layers which are: the smart environment, UBIPRI,
and PRINM. In the smart environment layer, the sensors have the purpose of collecting information
about the environmental context in which it operates and the users present in it. The UBIPRI layer
receives the information and delivers it to the PRICRI and PRIPRO modules, which then sends the
environment and user attributes to PRINM. At the PRINM layer, online services notifications collected
by the receiver are received, sending attributes and notifications to the DM mechanism. Finally, the DM
mechanism classifies for which user, period and device configuration notifications must be notified
from the acquired attributes. Figure 6 presents the architecture overview.

Figure 6. Notification management architecture.

Considering the architecture presented in Figure 6 with the theoretical framework of smart
environments and the UBIPRI discussed in Section 1, and the basis for the classification algorithms
described in Section 3. PRINM is an implementation to be developed in UBIPRI to maintain the privacy
of environments in the context of receiving notifications, utilizing an intelligent DM mechanism
assigned a classification algorithm that receives attributes regarding the environment, users and
notifications. The manager ensures the delivery of notifications according to the privacy managed by
UBIPRI in the smart environment in which it operates.

For a better understanding of the proposed architecture, an application scenario was created based
on the generated artificial datasets and contextualization presented. The scenario is a car dealership
that uses the services of UBIPRI, composed of four different areas, designated showroom, sales, kitchen,
and office. Each area has a specific environment type. The scenario also has three users, denominated

Appl. Sci. 2020, 10, 502 11 of 21

customer, employee, and owner, who have their IoT devices attached to UBIPRI. As long as users are
in the dealership while receiving notifications, PRINM’s decision making will notify them. Figure 7
shows the view of the dealership building and each area with its environment type.

Figure 7. Car dealership building.

In order not to increase the scope of PRINM’s performance in the application scenario, we
determined that it would happen in just one day with pre-established actions for each user. Thus, for a
better understanding and contextualization of the scenario, we individually described the actions of
each user within the dealership:

• Customer: He arrives at the dealership in the middle of the morning to search for cars to buy in
the showroom. He is serviced by the employee, who then directs him to the sales department to
negotiate with the owner. He leaves late in the morning and returns midway through the afternoon.
He is attended to by the employee in the showroom, who then directs him to the sales department
to continue negotiating with the owner. The deal is closed at the owner’s office. He leaves late in
the afternoon.

• Employee: He arrives at the dealership early in the morning to open it and perform its tasks
in the showroom. He takes a break in the kitchen. He serves the customer and forwards it for
negotiation with the owner in the sales sector. He takes a break for lunch in the kitchen. He opens
the dealership in the afternoon and performs tasks in the showroom. He covers the homeowner
on sales tasks and leaves late in the afternoon.

• Owner: He arrives at the dealership, already opened by the employee early in the morning, and
performs their tasks in the sales department. He performs tasks in his office and soon after goes
to the sales department to attend the customer referred by the employee. He takes a break in the
kitchen. In the early afternoon, he performs tasks in the sales department. He meets the customer
again, they close the deal in their private office. He takes a break in the early evening in the
kitchen. He does some tasks in his office and leaves in the middle of the night.

Considering each user’s actions in the developed application scenario, we developed tests in
Section 5.6 to evaluate the architecture of PRINM behavior with the most viable classification algorithm
delimited in its DM mechanism.

5. Experiments and Results

This section presents the experiments performed with the delimited classification algorithms and
the artificial datasets generated in Section 3. The tools used were the WEKA GUI, NetBeans, Excel,
and RStudio. All tests were performed on a notebook with the following configurations:

• Intel Core i5-5200U;

Appl. Sci. 2020, 10, 502 12 of 21

• CPU: 2.20 GHz;
• RAM: 6.00 GB.

Therefore, we present the test that identifies whether artificial datasets are suitable for use—the test
for adjustable parameters, CPU time for training, and classification of the classification algorithms;
the comparison test of classification algorithms on the classification accuracy metric; Friedman’s
test as a complement to statistical analysis; and finally, the application scenario test presenting the
applicability of the architecture over PRINM.

5.1. Artificial Datasets Test

After the generation of the Target, Period and Setting artificial datasets presented in Section 3.3,
it was necessary to perform tests to identify if they are suitable for application in other experiments of
this section. For this, we used the rule learning algorithm ZeroR, which aims to generate the baseline
of the classification precision metric. This matches that if the metric of the algorithms intended to be
used in the dataset is smaller than that of ZeroR, then it is not indicated or appropriate to use these
algorithms. Another objective of the algorithm is to predict the majority class of the dataset, that is,
it classifies unclassified data with the class that has the most instances in the training dataset [34].
Table 3 presents the tests performed to generate the baseline with the three artificial datasets, using the
validation model cross-validation with the value 10.

Table 3. ZeroR baseline generator.

Artificial Dataset Classification Accuracy Majority Class

Target 80% OutTargetNone
Period 80% OutPeriodNone
Setting 75% OutSettingNone

Table 3 shows that the baseline in all sets was above 70%, which, according to [35] is considered
the appropriate mean for testing in WEKA of the precision metric of classification. The majority class
in each dataset references notifications that must not be notified to users in the smart environment,
indicating that these values have the most in their datasets. Defining the baseline in each dataset,
the algorithms delimited in Section 3.1.1 were applied to identify whether they reach the percent of
the classification accuracy metric above the baseline of the ZeroR algorithm in each set of artificial
data. Figure 8 presents the tests performed by applying the algorithms to the artificial datasets Target,
Period, and Setting, and using the validation model cross-validation with the value 10.

Figure 8. Baseline test.

Appl. Sci. 2020, 10, 502 13 of 21

Presenting Figure 8, we noticed that the percentage of the classification accuracy metric of all
algorithms in each dataset were above the baseline generated by the ZeroR algorithm in the previous
test seen in Table 3. This indicates that all delimited algorithms are suitable for use in the Target, Period,
and Setting sets.

After testing with the ZeroR algorithm and identifying the baseline of the classification accuracy
metric, tests with the OneR algorithm were performed. This algorithm generates rules based on a single
predictor attribute of the applied dataset, that is, it creates rules for each dataset attribute and selects
the rules with the lowest error rate as the only rules to use [36]. Table 4 presents the test performed
by applying the OneR algorithm to the Target, Period, and Setting artificial datasets, and using the
cross-validation model with the value 10.

For all sets, the algorithm defined the user attribute as having the lowest error rate among
the other predictor attributes and the classify outputs were OutTargetNone, OutPeriodNone, and
OutSettingNone respectively for the Target, Period, and Setting sets. However, the generated rules were
not consistent with the context of notification management, as all sets were classified that notifications
must not be notified to users. Thus, another test, presented in Table 5, was performed with the same
configurations of the previous test and using preprocessing to remove the values OutTargetNone,
OutPeriodNone, and OutSettingNone of the class attributes of each artificial dataset.

Table 4. OneR test.

Artificial Dataset Rules

Target
Member1 > OutTargetNone
Member2 > OutTargetNone
Member3 > OutTargetNone

Period
Member1 > OutPeriodNone
Member2 > OutPeriodNone
Member3 > OutPeriodNone

Setting
Member1 > OutSettingNone
Member2 > OutSettingNone
Member3 > OutSettingNone

Table 5. OneR test with preprocessing.

Artificial Dataset Rules

Target

InMember1 > OutMember1
InMember2 > OutMember2
InMember3 > OutMember3

InAll > OutAll

Period

InMorning > OutMorning
InAfternoon > OutAfternoon

InNight > OutMorning
InDawn > OutMorning

Setting
Relevance1 > OutCurrent
Relevance2 > OutVibrate
Relevance3 > OutSilent

Based on Table 5, we obtained rules consistent with the context of notification management
compared to Table 4. In the Target dataset, the attribute selected with the lowest error rate inTarget
was the most relevant, that is, the algorithm identified notifications that should be notified to certain
users are actually notified to them. Therefore, in the Period dataset, the selected attribute was inPeriod,
indicating that notifications that arrive in a given period in the environment must be notified in the
same period. It just does not happen with the InNight and InDawn values. Finally, in the Setting

Appl. Sci. 2020, 10, 502 14 of 21

dataset, the selected attribute was activity, showing that the more relevant the activity the environment
user is performing, the less disturbance there will be when a notification is notified.

Therefore, with the tests performed, it was identified that the artificial datasets generated are
suitable for use over the management context in receiving notifications in smart environments. It was
observed that the datasets have an adequate baseline of the classification accuracy metric and that the
delimited algorithms were above it, and the previously generated rules followed a logic consistent
with the proposed context of the work. Thus, we chose to use, in the remaining tests of the next
subsections, the datasets without preprocessing, because the values OutTargetNone, OutPeriodNone,
and OutSettingNone still have relevance in each dataset.

5.2. Adjustable Parameters Test

We also developed adjustable parameter tests between algorithms to identify which parameters
are the best. Thus, for the J48 algorithm, we tested the parameter that determines the use of pruning in
the decision tree. In the KNN algorithm, we evaluated the K parameters and similarity calculation.
The kernel and cost parameters were tested on the SVM algorithm. Finally, for the MLP algorithm,
we tested the parameters of the maximum amount of iterations, learning rate, momentum, and the
number of neurons in the hidden layer. The PRISM and NB algorithms do not have adjustable
parameters, because of this, no tests were performed with them. The tests were performed with the
three artificial datasets Target, Period, and Setting by verifying the classification accuracy metric and
using cross-validation with a value of 10. Table 6 presents the adjustable parameter test results for
each algorithm.

Table 6. Test adjustable parameters.

Algorithms Parameters

J48 Pruning: use

KNN
Distance calculation: Euclidean

K: 3

SVM
Kernel: Linear

Cost: 10

MLP

Iteration: 500
Learning rate: 0.3
Momentum: 0.2

Hidden layer neurons: attribute + class

In Table 6, we identify the best adjustable parameters for each classification algorithm. Thus,
these parameters were used in the experiments presented in the following subsections.

5.3. CPU Time Test

After defining the best adjustable parameters in each algorithm, we developed tests of the CPU
time metric for predictor model training and the CPU time for the classification of new data instances.
The CPU time metric was listed as relevant to the scope of the work because, in the context of IoT, there
is a great need for information to be transmitted in real-time to both users and IoT devices. Therefore,
the tests performed were conducted on each artificial dataset Target, Period, and Setting and using
predictive model cross-validation with a value of 10. Tables 7 and 8 show the test results of training
and classification time, respectively.

With the results presented in Table 7, the NB, KKN, and J48 algorithms obtained the shortest times,
respectively, following the PRISM and SVM algorithms, and the MLP algorithm obtained the longest
training time. At the end of the test, it was identified that the KNN algorithm is better and the MLP
algorithm is the worst in the training time of a predictor model. Therefore, for Table 8, the algorithms

Appl. Sci. 2020, 10, 502 15 of 21

J48, PRISM, and NB obtained the shortest times, respectively, followed by the algorithms MLP, SVM,
and KNN. At the end of the tests, it was identified that the J48 algorithm is the best and the KNN
algorithm is the worst in the classification time of a new data instance.

Table 7. CPU time test for training.

Artificial Dataset NB PRISM J48 KNN SVM MLP

Target 0.47 ms 12.03 ms 2.19 ms 0.47 ms 43.44 ms 15.815,31 ms
Period 0.47 ms 124.69 ms 5.63 ms 0.47 ms 417.66 ms 15.969,53 ms
Setting 0.94 ms 48.91 ms 3.75 ms 0.16 ms 472.66 ms 14.249,53 ms
Average 0.62 ms 61.87 ms 3.85 ms 0.36 ms 311.25 ms 62.011,45 ms

Table 8. CPU time test for classification.

Artificial Dataset NB PRISM J48 KNN SVM MLP

Target 1.25 ms 0.16 ms 0.63 ms 116.56 ms 6.25 ms 2.19 ms
Period 1.56 ms 1.87 ms 0.31 ms 123.59 ms 47.03 ms 3.13 ms
Setting 1.72 ms 0.47 ms 0.31 ms 123.28 ms 49.06 ms 1.25 ms
Average 1.51 ms 0.83 ms 0.41 ms 121.14 ms 34.11 ms 2.19 ms

5.4. Classification Precision Metric Test

Regarding the comparison of the classification algorithms on the classification precision metric,
the six classification algorithms were applied to the three artificial datasets. For each algorithm, we
used the parameters delimited by Table 6 and the test with predictor model cross-validation equal to a
value of 10. Therefore, the algorithms were executed 30 times in each artificial dataset. For each run,
we used the random seed generator with different values following an increasing pattern, starting from
the value 1. This was done to obtain greater randomness in the metric results, and for the Friedman
test Section 5.5. Therefore, each result of the classification accuracy metric for each seed was placed in
an Excel spreadsheet to calculate the average of the metric between the algorithms.

Unlike the other tests performed, the classification algorithms were executed in the NetBeans
programming IDE using the WEKA package that contains the main features of the tool. This was
necessary due to a large number of iterations performed in each algorithm, as it would take a long time
if it were performed in GUI technology. Table 9 presents the average results of each randomization
seed from the classification accuracy metric.

Table 9. Comparison of classification accuracy metric.

Artificial Dataset NB PRISM J48 KNN SVM MLP

Target 100% 100% 100% 99.99% 100% 100%
Period 80% 96.87% 97.49% 97.22% 87.53% 99.96%
Setting 85.26% 98.86% 99.54% 99.89% 86.89% 100%

From Table 9, we observed that all algorithms obtained the metric value above 70% in all
artificial datasets. Analyzing the comparison of the algorithms separately in each dataset, in Target,
almost all the algorithms obtained the percentage with the maximum value, only the KNN algorithm
obtained a lower value. In the Period dataset, the MLP algorithm obtained the best result, the PRISM,
J48, and KNN algorithms obtained similar values close to the MLP algorithm value, and the NB and
SVM algorithms obtained lower values than the other algorithms. In Setting, the same behavior of the
previous dataset was maintained, being the MLP algorithm with the best value, the PRISM, J48, and
KNN algorithms with values similar to the MLP value, and finally the NB and SVM algorithms with
lower values than other algorithms.

Upon considering the comparison made of the classification algorithms on the artificial datasets
and analyzing it in general, it was observed that the MLP algorithm, in all sets, obtained the best

Appl. Sci. 2020, 10, 502 16 of 21

classification performance when compared to other algorithms, following the PRISM, J48, and KNN
algorithms whose performances were very close to the MLP algorithm. Finally, the NB and SVM
algorithms have always obtained lower-ranking performances than the other algorithms. Therefore,
it was necessary to perform the Friedman statistical hypothesis test to verify if there is a statistical
difference between the compared classification algorithms. This test determines whether one algorithm
has better or worse rating performance than another, even if its rating accuracy metric percentage is
higher or lower.

5.5. Friedman Test

As for Friedman’s statistical hypothesis test, we proceeded from the comparison made in the
previous subsection. The test was implemented in the R programming language, using the RStudioIDE
together with the Excel program to transform quantitative data (classification accuracy) into ordinal
qualitative data (ranking positions). As the Friedman test requires ordered data, the Excel program was
used to generate a ranking for each artificial dataset. Each ranking has the positions of classification
algorithms in each value of the seed generating randomness. Thus, the algorithm that obtains the
highest value of the classification precision metric at a given seed value will be ordered first in the
ranking and so on with the other algorithms according to their values. The classification precision
metric values of each algorithm and seed were obtained through the 30 executions performed in the
comparison of Section 5.4. The rankings have the positions of each algorithm in each seed value,
as well as the average rankings for each algorithm. After creating the rankings of each artificial dataset,
files were generated from them in CSV format with only the positions of the algorithms in each seed
value, for import into IDE RStudio and thus perform the Friedman test.

For a better understanding of the positions of the algorithms in each artificial dataset, the data is
presented Table 10, which reflects directly with the classification accuracy averages of Table 9. Thus,
in all artificial datasets the MLP algorithm gets the first position, the J48, KNN, and PRISM algorithms
alternating in second, third, and fourth position, and the SVM and NB algorithms in fifth and sixth
position, respectively. This did not happen when there was a tie between the algorithms.

Table 10. Average ranking placements.

Artificial Dataset NB PRISM J48 KNN SVM MLP

Target 3.45 3.45 3.45 3.75 3.45 3.45
Period 6.0 3.85 2.15 3.0 5.0 1.0
Setting 6.0 4.0 3.0 2.0 5.0 1.0

Friedman’s test was performed using an external package called "tools for R," using the CSV files
generated from the ranking of each artificial dataset [37]. Figure 9 presents Friedman’s tests performed
with the Target, Period, and Setting datasets.

In the Target dataset, all algorithms are statistically equal and obtained their averages from similar
positions, only the KNN algorithm obtained its slightly lower average position. Starting with the Period
dataset, the MLP algorithm obtained the best position average and the NB algorithm the worst. The MLP,
J48, and KNN algorithms were the most outstanding in this set, proving that they are statistically equal.
This also happens for the Setting dataset, which has the same behavior as the previous set, with only
the second and third place settings varying between the KNN and J48 algorithms.

Among all Friedman tests performed with artificial datasets, the algorithms that showed the
most satisfactory results were the MLP, J48, and KNN algorithms since they were always among the
first three ranking positions on the classification accuracy metric and proving that their classification
performances are statistically equal in the context of the proposed work. The NB, SVM, and PRISM
algorithms have always got the worst positions in all datasets, except when referring to the Target set.

Appl. Sci. 2020, 10, 502 17 of 21

Figure 9. Friedman test.

With the experiments performed so far in this section, it was defined that the J48 algorithm is the
most suitable to be used in the application scenario test. Taking into consideration the classification
accuracy metric and the CPU time metrics analyzed, the algorithm has the best performance in both
accurately classifying notifications for which user, time of day and type of device configuration,
notification for the response time of classification, and training of the predictor model. Therefore,
in the application scenario test, its behavior will be tested in a real scenario in the context of notification
management in smart environments.

5.6. Application Scenario Test

To test the J48 classification algorithm implemented in the PRINM DM mechanism from the
attributes and their values of Figures 4 and 5, the application scenario described in Section 4 was used.
The predictive attributes used in the application scenario were the same as those used to generate
the artificial Target, Period, and Setting datasets. Based on this, the J48 algorithm was trained with
the three artificial datasets, thus, creating three decision trees that classify for which user, period, and
device configuration notifications must be notified throughout the application scenario. The Target set
tree has a size of 36 nodes, 27 of these are leaf nodes. The tree of the Period set has a size of 235 nodes,
169 of these are leaf nodes. Finally, the tree of the Setting set had a size of 224 nodes, 159 of these are
leaf nodes.

Predictive data were collected from an artificial and a real source. For the artificial source, the data
were collected from the users’ actions in the application scenario for the values of the attributes user,
profile, environment, and activity. For the real source, data were collected from the mobile PRISER:
Notification Collector application developed by [38] for the values of the attributes status, inPeriod, and
inTarget. Data from both sources were merged, thus, generating three unclassified datasets (test sets).
Artificial source data are presented in Tables 11–13 for each user.

Table 11. Customer user data.

Period Profile Environment Activity

10:10–10:25 | Morning Guest Show Room | Public 1
10:25–11:50 | Morning Guest Sector of Sales | Private 2

16:00–16:15 | Afternoon Guest Show Room | Public 1
16:15–16:30 | Afternoon Guest Sector of Sales | Private 2
16:30–18:00 | Afternoon Basic Office | Restrict 3

Appl. Sci. 2020, 10, 502 18 of 21

Table 12. Employee user data.

Period Profile Environment Activity

7:00–9:30 | Morning Basic Show Room | Public 2
9:30–10:00 | Morning Advanced Kitchen | Private 1

10:00–11:50 | Morning Basic Show Room | Public 2
11:50–14:00 | Afternoon Advanced Kitchen | Private 1
14:00–16:30 | Afternoon Basic Show Room | Public 2
16:30–18:00 | Afternoon Basic Sector of Sales | Private 3

Table 13. Owner user data.

Period Profile Environment Activity

7:30–8:30 | Morning Administrator Sector of Sales | Private 2
8:30–10:25 | Morning Administrator Office | Restrict 3

10:25–11:50 | Morning Administrator Sector of Sales | Private 2
11:50–14:00 | Afternoon Administrator Kitchen | Private 1
14:00–16:30 | Afternoon Administrator Sector of Sales | Private 2
16:30–18:00 | Afternoon Administrator Office | Restrict 3

18:00–19:00 | Night Administrator Kitchen | Private 1
19:00–20:00 | Night Administrator Office | Restrict 2
20:00–22:00 | Night Administrator Office | Restrict 1

Real source data was collected by the mobile application installed on three different mobile
devices, representing the three users of the application scenario. The application collected notifications
from the three mobile phones for 24 h, generating information in the JSON format of each notification.
For each JSON, only the information corresponding to the attributes status, inPeriod, and inTarget
were extracted, which coincide with the periods of each user within the dealership. Therefore, they
were extracted for the client user from 10:10 a.m. until 11:50 a.m. and 04:00 p.m. until 06:00 p.m.,
for the employee user from 7:00 a.m. until 06:00 p.m., and the owner user from 7:30 a.m. until 10:00
p.m. Other notifications outside these times of each user was discarded. Therefore, 1377 notifications
were received within the defined times for the client user (mobile phone 1), of these, 209 were extracted;
813 for the employee user (mobile phone 2), of these, 399 were extracted; and 413 for the owner user
(mobile phone 3), of these, 333 were extracted.

The application scenario test aims to analyze the behavior and classification performance of
the J48 algorithm on the classification accuracy metric using predictive data from the test sets and
classifying them. However, after merging the predictive data from the two sources for generating
test sets, they were also merged into them, specifically, data classes following the same logic as the
script that generated the artificial dataset Target, Period, and Setting. This was necessary because
it would not be possible to demonstrate all the values of the class attributes that the J48 algorithm
would classify from the predictive data of the test sets in the application scenario. Therefore, the test
sets merged with the client, employee, and owner user class data were applied to the decision trees
created by the J48 algorithm. The results presented show that the J48 algorithm was able to classify
with 100% accuracy new unclassified data inserted in each decision tree. Thus, it is concluded that
the J48 algorithm has the proper behavior regarding the classification performance of notifications
received in smart environments and that it is the most viable for implementation in the PRINM DM
mechanism that will be developed in UBIPRI.

6. Conclusions

This paper presents a comparison of classification algorithms for managing receiving notifications
in smart environments. UBIPRI was used as a base, which is an MW that has as its primary objective
the treatment of privacy in smart environments. Therefore, an architecture was proposed that presents
the performance of PRINM together with the PRIPRO and PRICRI modules provided by the addressed

Appl. Sci. 2020, 10, 502 19 of 21

MW. With it, it was possible to manage notifications that are received in environments that UBIPRI
operates, obtaining data from the PRINM DM mechanism for which user, time of day, and device
configuration.

The methods and materials were fundamental for understanding the complexity involved in
developing the proposed solution of this work. PRINM is an implementation to be developed in UBIPRI
to maintain the privacy of environments in the context of receiving notifications. Attributed from an
intelligent DM mechanism that is implemented with a classification algorithm that receives attributes
regarding the environment, users, and notifications. The manager ensures the delivery of notifications
according to the privacy employed by UBIPRI in the smart environment in which it operates.

The activities carried out were the delimitation and use of NB, J48, KNN, MLP, PRISM, and
SVM algorithms, delimitation and application of Friedman test, generation of artificial datasets,
tests and comparisons of classification algorithms and scenario test of application. The delimited
algorithms obtained high efficiency in the tests in which they were applied, satisfactorily contributing
to the developed solution of the work. With Friedman’s statistical hypothesis test, it was possible
to identify statistical differences in the classification performance of the classification algorithms.
Regarding the artificial datasets, they were suitable for use. The experiments identified the best tunable
parameters, CPU time for training and classification, and classification accuracy metric values between
classification algorithms. Finally, the application scenario test presented the applicability of PRINM on
the notification management architecture.

Regarding the use of the Friedman test, it was of great importance for the development of the
work solution. For without its application, it would not be possible to identify that the algorithms
MLP, J48, and KNN have the same classification performances. It is thus proving among the three and
from the other experiments, that the J48 algorithm is the most viable to implement in the PRINM DM
mechanism that will be developed in UBIPRI. Regarding the CPU time test, besides the classification
accuracy metric that was the main one addressed in the work, the CPU time metric was also pertinent
for the analysis of the classification algorithms in the context of management in receiving notifications
in smart environments. It is possible to measure the time of construction of a predictor model and
classification of new data, since applications that use the IoT concept need information transferred and
generated in real-time when requested.

The first item for future work is the development of PRIPRO and PRINM, and to assign it in
UBIPRI, based on the coined architecture and the implementation of the J48 algorithm in the DM
mechanism. It is also suggested to optimize artificial datasets by inserting new attributes, as well
as using other MW modules addressed, so that notification management becomes more meticulous
about the privacy that UBIPRI employs in smart environments. Thus, the following topics for work
are proposed:

• Extend the comparison to use real data;
• Extend the comparison to include other classification algorithms;
• Extend the comparison to include other predictive attributes;
• Extend the comparison to include other classifying attributes;
• Extend the comparison to include other metrics and statistical tests;
• Develop the notification manager PRIPRO and PRINM;
• Perform tests on real application scenarios;

Author Contributions: Conceptualization, J.A.M.; Investigation, J.A.M., I.S.O. and L.A.S.; Methodology, J.A.M.,
I.S.O. and L.A.S.; Project Administration, L.A.S., V.R.Q.L.; Resources, V.R.Q.L., G.V.G. and J.D.P.S.; Supervision,
V.R.Q.L., L.A.S. and J.D.P.S.; Validation, I.S.O., L.A.S. and V.R.Q.L.; Writing—original draft, J.A.M., L.A.S.;
Writing—review and editing, I.S.O., L.A.S., A.S.M., G.V.G., J.D.P.S. and V.R.Q.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was supported in part by the Programa de Bolsas Universitárias de Santa Catarina/SC—
UNIEDU for Instituições Comunitárias de Ensino Superior and CAPES. This study was financed in part

Appl. Sci. 2020, 10, 502 20 of 21

by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.
Supported by project PLATAFORMA DE VEHÍCULOS DE TRANSPORTE DE MATERIALES Y SEGUIMIENTO
AUTÓNOMO — TARGET. 463AC03, SA063G19. The research of André Filipe Sales Mendes has been co-financed
by the European Social Fund and Junta de Castilla y León (Operational Programme 2014–2020 for Castilla y León,
EDU/556/2019 BOCYL). Project co-financed with Junta Castilla y León, Consejería de Educación and FEDER
funds, including a cooperation with the project international cooperation project Control and History Management
Based on the Privacy of Ubiquitous Environments—Brazil/Portugal. This work has been supported by the Junta
De Castilla Y León - CONSEJERIA DE ECONOMIA Y EMPLEO: Sistema para la simulación y entrenamiento en
técnicas avanzadas para la prevención de riesgos laborales mediante el diseño de entornos de realidad híbrida
with ref J118.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]

2. Guerra, C.A.N. Um Modelo para Ambientes Inteligentes Baseado em Serviços Web Emânticos. Ph.D. Thesis,
Universidade de São Paulo, São Paulo, Brazil, 2007.

3. Birman, K.P. Guide to Reliable Distributed Systems: Building High-Assurance Applications and Cloud-Hosted Services;
Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.

4. Tanenbaum, A.S.; Van Steen, M. Distributed Systems: Principles and Paradigms; Prentice-Hall: Upper Saddle River,
NJ, USA, 2007.

5. Leithardt, V.R.Q. UbiPri: Middleware para Controle e Gerenciamento de Privacidade em Ambientes Ubíquos.
Ph.D. Thesis, UFRGS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2015.

6. Leithardt, V.R.; Correia, L.H.A.; Borges, G.A.; Rossetto, A.G.; Rolim, C.O.; Geyer, C.F.; Silva, J.M.S. Mechanism
for Privacy Management Based on Data History (UbiPri-His). J. Ubiquitous Syst. Pervasive Netw. 2018,
10, 11–19. [CrossRef]

7. Smith, J.; Lavygina, A.; Ma, J.; Russo, A.; Dulay, N. Learning to recognise disruptive smartphone notifications.
In Proceedings of the 16th International Conference on Human-Computer Interaction with Mobile Devices
& Services, Toronto, ON, Canada, 23–26 September 2014; pp. 121–124.

8. Corno, F.; De Russis, L.; Montanaro, T. A context and user aware smart notification system. In Proceedings
of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015;
pp. 645–651.

9. Silva, L.A.; Leithardt, V.R.Q.; Rolim, C.O.; González, G.V.; Geyer, C.F.; Silva, J.S. PRISER: Managing
Notification in Multiples Devices with Data Privacy Support. Sensors 2019, 19, 3098. [CrossRef] [PubMed]

10. Ghodse, A.G.; Kshirsagar, V.; Nagori, M. Pattern Based Smart Notification in Education. In Proceedings of
the 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Bengaluru, India, 10–12 July 2018; pp. 1–6.

11. Fraser, K.; Yousuf, B.; Conlan, O. An in-the-wild and synthetic mobile notification dataset evaluation.
In Proceedings of the Intelligent Systems Conference (IntelliSys), London, UK, 7–8 September 2017; pp. 510–519.

12. Martins, J.A.; Silva, L.A.; Rolim, C.O.; Leithardt, V.R. Uma Avaliação de Algoritmos para a Classificação de
Perfis Evolutivos em Ambientes Inteligentes. An. SULCOMP 2018, 9. Available online: http://periodicos.
unesc.net/sulcomp (accessed on 25 October 2019).

13. Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2009.
14. Aggarwal, C.C. Data Classification: Algorithms and Applications; CRC Press: Boca Raton, FL, USA, 2014.
15. Pinto, C.M.S.; Gama, J.; do Porto, U. Algoritmos Incrementais para Aprendizagem Bayesiana; Faculdade de

Economia da Universidade do Porto: Porto, Portugal, 2005. Available online: http://w3.ualg.pt/~cpinto/
tese.pdf (accessed on 12 October 2019).

16. Crepaldi, P.G.; Avila, R.N.P.; de Oliveira Paulo, J.P.M.; Rodrigues, R.; Martins, R.L. Um estudo sobre a árvore
de decisão e sua importância na habilidade de aprendizado. 2011. Available online: https://docplayer.com.
br/10942662-Um-estudo-sobre-a-arvore-de-decisao-e-sua-importancia-na-habilidade-de-aprendizado.html
(accessed on 10 October 2019).

17. Patil, T.R.; Sherekar, S. Performance analysis of Naive Bayes and J48 classification algorithm for
data classification. Int. J. Comput. Sci. Appl. 2013, 6, 256–261.

http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.5383/JUSPN.10.01.002
http://dx.doi.org/10.3390/s19143098
http://www.ncbi.nlm.nih.gov/pubmed/31337032
http://periodicos.unesc.net/sulcomp
http://periodicos.unesc.net/sulcomp
http://w3.ualg.pt/~cpinto/tese.pdf
http://w3.ualg.pt/~cpinto/tese.pdf
https://docplayer.com.br/10942662-Um-estudo-sobre-a-arvore-de-decisao-e-sua-importancia-na-habilidade-de-aprendizado.html
https://docplayer.com.br/10942662-Um-estudo-sobre-a-arvore-de-decisao-e-sua-importancia-na-habilidade-de-aprendizado.html

Appl. Sci. 2020, 10, 502 21 of 21

18. Aha, D.W. Lazy Learning; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
19. Gardner, M.W.; Dorling, S. Artificial neural networks (the multilayer perceptron)—A review of applications

in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [CrossRef]
20. Cendrowska, J. PRISM: An algorithm for inducing modular rules. Int. J. Man Mach. Stud. 1987, 27, 349–370.

[CrossRef]
21. Chand, N.; Mishra, P.; Krishna, C.R.; Pilli, E.S.; Govil, M.C. A comparative analysis of SVM and its stacking

with other classification algorithm for intrusion detection. In Proceedings of the International Conference
on Advances in Computing, Communication, & Automation (ICACCA), Dehradun, India, 8–9 April 2016;
pp. 1–6.

22. Dietterich, T.G. Statistical tests for comparing supervised classification learning algorithms. IWS 1997.
[CrossRef] [PubMed]

23. Lehmann, E.L.; Romano, J.P. Testing Statistical Hypotheses; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2006.

24. Yazici, B.; Yolacan, S. A comparison of various tests of normality. J. Stat. Comput. Simul. 2007, 77, 175–183.
[CrossRef]

25. Billings, S.; Zhu, Q. Nonlinear model validation using correlation tests. Int. J. Control 1994, 60, 1107–1120.
[CrossRef]

26. Estatistica, A. Teste do Qui-Quadrado para anáLise da Associação estatíStica Entre Variáveis categóRicas.
2018. Available online: http://analise-estatistica.pt/2015/12/teste-do-qui-quadrado-para-analise-da-
associacao-estatistica-entre-variaveis-categoricas.html (accessed on 18 September 2019).

27. Milone, G. Estatística: Geral e Aplicada; Pioneira Thomson Learning: Ed. Thomson, São Paulo, 2004.
28. Weisberg, H.; Weisberg, H.F. Central Tendency and Variability; Number 83; Sage: Newcastle upon Tyne, UK, 1992.
29. Dutta, A. Parametric and nonparametric event study tests: A review. Int. Bus. Res. 2014, 7, 136–142.

[CrossRef]
30. Stacey, R. Statistical Tests for Comparing Machine Learning and Baseline Performance. 2019. Available

online: https://towardsdatascience.com/statistical-tests-for-comparing-machine-learning-and-baseline-
performance-4dfc9402e46f (accessed on 13 September 2019).

31. Zimmerman, D.W.; Zumbo, B.D. Relative power of the Wilcoxon test, the Friedman test, and repeated-
measures ANOVA on ranks. J. Exp. Educ. 1993, 62, 75–86. [CrossRef]

32. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.
33. Martins, J.A.; Rolim, C.O.; Leithardt, V.R. Uma Proposta de Análise de Algoritmos de Machine Learning

para o Envio e Recebimento de Notificaç oes em Ambientes Inteligentes. 2018. Available online: https:
//www.setrem.com.br/erad2019/data/pdf/forum_ic/192073.pdf (accessed on 21 October 2019).

34. Witten, I.H.; Frank, E.; Trigg, L.E.; Hall, M.A.; Holmes, G.; Cunningham, S.J. Weka: Practical Machine Learning
Tools and Techniques with Java Implementations; University of Waikato: Hamilton, New Zealand, 1999.

35. Abernethy, M. Data mining with WEKA, Part 2: Classification and clustering. IBM Dev. 2010.
Available online: https://developer.ibm.com/articles/os-weka2/ (accessed on 16 September 2019).

36. Soman, T.; Bobbie, P.O. Classification of arrhythmia using machine learning techniques. WSEAS Trans. Comput.
2005, 4, 548–552.

37. Kourentzes, N. TStools for R. 2018. Available online: https://kourentzes.com/forecasting/2014/04/19/
tstools-for-r/ (accessed on 19 September 2019).

38. Silva, L.A.; dos Santos, D.A.; Dazzi, R.L.S.; Silva, J.S.; Leithardt, V.R.Q. PRISER-Utilização de BLE para
localização e notificação com base na privacidade de dados. Rev. Eletrônica Argent.-Bras. De Tecnol. Da
Informaç Ao E Da Comun. A 2018, 2. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S1352-2310(97)00447-0
http://dx.doi.org/10.1016/S0020-7373(87)80003-2
http://dx.doi.org/10.1162/089976698300017197
http://www.ncbi.nlm.nih.gov/pubmed/9744903
http://dx.doi.org/10.1080/10629360600678310
http://dx.doi.org/10.1080/00207179408921513
http://analise-estatistica.pt/2015/12/teste-do-qui-quadrado-para-analise-da-associacao-estatistica-entre-variaveis-categoricas.html
http://analise-estatistica.pt/2015/12/teste-do-qui-quadrado-para-analise-da-associacao-estatistica-entre-variaveis-categoricas.html
http://dx.doi.org/10.5539/ibr.v7n12p136
https://towardsdatascience.com/statistical-tests-for-comparing-machine-learning-and-baseline-performance-4dfc9402e46f
https://towardsdatascience.com/statistical-tests-for-comparing-machine-learning-and-baseline-performance-4dfc9402e46f
http://dx.doi.org/10.1080/00220973.1993.9943832
https://www.setrem.com.br/erad2019/data/pdf/forum_ic/192073.pdf
https://www.setrem.com.br/erad2019/data/pdf/forum_ic/192073.pdf
https://developer.ibm.com/articles/os-weka2/
https://kourentzes.com/forecasting/2014/04/19/tstools-for-r/
https://kourentzes.com/forecasting/2014/04/19/tstools-for-r/
http://dx.doi.org/10.5281/zenodo.1336806
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Methods and Materials
	Machine Learning Concept
	Classification Task
	Naive Bayes Algorithm
	J48 Algorithm
	K-Nearest Neighbors Algorithm
	Multilayer Perceptron Algorithm
	PRISM Algorithm
	Support Vector Machine Algorithm

	Statistical Hypothesis Tests
	Artificial Datasets

	Notification Management Architecture
	Experiments and Results
	Artificial Datasets Test
	Adjustable Parameters Test
	CPU Time Test
	Classification Precision Metric Test
	Friedman Test
	Application Scenario Test

	Conclusions
	References

