
applied
sciences

Article

Semi-CNN Architecture for Effective Spatio-Temporal
Learning in Action Recognition

Mei Chee Leong 1 , Dilip K. Prasad 2,* , Yong Tsui Lee 3 and Feng Lin 4

1 Institute for Media Innovation, Interdisciplinary Graduate School, Nanyang Technological University,
Singapore 639798, Singapore; MLEONG006@e.ntu.edu.sg

2 Department of Computer Science, UiT The Artic University of Norway, 9019 Tromsø, Norway
3 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798,

Singapore; mytlee@ntu.edu.sg
4 School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798,

Singapore; asflin@ntu.edu.sg
* Correspondence: dilip.prasad@uit.no

Received: 5 December 2019; Accepted: 10 January 2020; Published: 12 January 2020
����������
�������

Abstract: This paper introduces a fusion convolutional architecture for efficient learning of
spatio-temporal features in video action recognition. Unlike 2D convolutional neural networks
(CNNs), 3D CNNs can be applied directly on consecutive frames to extract spatio-temporal features.
The aim of this work is to fuse the convolution layers from 2D and 3D CNNs to allow temporal
encoding with fewer parameters than 3D CNNs. We adopt transfer learning from pre-trained 2D
CNNs for spatial extraction, followed by temporal encoding, before connecting to 3D convolution
layers at the top of the architecture. We construct our fusion architecture, semi-CNN, based on
three popular models: VGG-16, ResNets and DenseNets, and compare the performance with their
corresponding 3D models. Our empirical results evaluated on the action recognition dataset UCF-101
demonstrate that our fusion of 1D, 2D and 3D convolutions outperforms its 3D model of the same
depth, with fewer parameters and reduces overfitting. Our semi-CNN architecture achieved an
average of 16–30% boost in the top-1 accuracy when evaluated on an input video of 16 frames.

Keywords: action recognition; spatio-temporal features; convolution network; transfer learning

1. Introduction

Action recognition via monocular video has valuable applications in surveillance, healthcare,
sports science and entertainment. Deep learning methods such as convolutional neural network
(CNN) [1] have demonstrated superior learning capabilities and potential in discovering underlying
features when given a large number of training examples.

An action in video sequences can be characterized by its spatial and temporal features across
consecutive frames. Spatial features provide contextual information and visual appearance of the
content, while temporal features define the motion dynamics that happens in the range of the video
frames. The task of action recognition is to effectively learn discriminative and robust spatio-temporal
representations from video sequences for identifying different action classes. However, network
performance often degrades when dealing with high variations of realistic and complex videos, due
to major challenges such as occlusion, camera viewpoints, background clutter and variations in the
subjects and motion involved.

Supervised learning with CNNs has been studied and exploited to perform action recognition,
where representations in the spatial and temporal dimensions can be encoded in separate streams
or simultaneously. Spatial features are extracted directly from RGB frames using 2D CNNs, while

Appl. Sci. 2020, 10, 557; doi:10.3390/app10020557 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-8123-8982
https://orcid.org/0000-0002-3693-6973
https://orcid.org/0000-0002-1199-5870
http://www.mdpi.com/2076-3417/10/2/557?type=check_update&version=1
http://dx.doi.org/10.3390/app10020557
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 557 2 of 14

temporal features are represented by pre-computed hand-crafted features such as optical flow or
motion trajectory, or a stack of consecutive frames. Direct learning of spatio-temporal features from
video frames can be implemented using 3D CNNs, which share a similar structure as 2D CNNs, but
replace all the 2D convolution kernels with 3D ones.

This paper exploits the architecture of 2D and 3D CNNs and introduces an efficient fusion
approach that combines the spatial layers in 2D CNN and spatio-temporal layers in 3D CNN. We
utilize pre-trained models on ImageNet to initialize our 2D convolution layers and perform fine-tuning
on the 1D and 3D convolution layers. Our empirical results demonstrate that segregation and fusion of
convolution layers in the spatial and temporal spaces outperforms its 3D model of the same depth,
when evaluated on the action recognition dataset UCF-101 [2].

2. Related Work

A two-stream architecture [3–5] consists of two separate 2D CNNs to train a classifier for each of
the spatial and temporal features. The prediction scores from both streams will then be fused to form
the final prediction. On the other hand, a 3D CNN [6–8] can directly learn spatio-temporal information
when applied on consecutive frames, without explicitly computing the motion features. However,
the number of trainable parameters increases substantially in deep models, leading to overfitting on
smaller-scale datasets [9]. Different fusion methods have been investigated, such as fusing two-stream
CNN and 3D CNN [10] or mixing 2D and 3D convolutions in an architecture [11], and splitting 3D
convolution to 2D spatial and 1D temporal convolutions [12]. These methods have demonstrated
improved performances over individual architectures that utilize full 2D or 3D convolutions.

3D CNN. In order to capture both spatial and temporal features across video frames, Ji et al. [6]
proposed a 3D CNN model to perform 3D convolution on multiple frames and achieved better
performance in action recognition as compared to 2D CNN. Jung et al. [13] improved the model by
capturing multiple timescales at different layers of the convolutional network; while Tran et al. [7]
experimented with different network architectures and kernel sizes for 3D convolutions. Hara et
al. [8] built a 3D ResNets architecture, by exploiting the effectiveness of residual learning in deep 2D
ResNets [14]. Varol et al. [15] trained 3D CNNs on both image frames and motion features using
multiple spatio-temporal scales, to obtain combined results.

Two-stream CNN. Simonyan and Zisserman [3] designed a two-stream CNN architecture, which
captures spatial and temporal features in separate CNNs before combining them to train a classifier.
Gkioxari and Malik [5] trained separate CNNs for video frames and flow signals in region proposals for
action prediction in individual frames. Instead of using the full image as input, their system search for
region proposals and train the classifier for action prediction in individual frames. The identified action
regions will be linked with consecutive frames to form connected motions. Similarly, Tu et al. [16] also
employed a human-based region proposals to train a multi-stream CNN that consists of appearance,
motion and region features as input stream. Zhang et al. [4] achieved real-time action recognition by
learning motion vector from a pre-trained optical flow network. Diba et al. [17] encoded features from
each CNN stream using temporal linear encoding and concatenate them to form a descriptor. Another
work by Girdhar et al. [18] learned aggregation of features for both spatial and temporal streams, to
form a new encoded representation in action classification.

Spatio-temporal fusion. Sun et al. [19] introduced the factorizing of 3D spatio-temporal
convolution kernels to 2D and 1D kernels, where their architecture starts from 2D convolution
layers and splits into two streams for spatial and temporal encoding. Feichtenhofer and Zisserman [10]
introduced a fusion of two-stream CNN and 3D CNN, where fusion at different layers was investigated.
Tran et al. [11] introduced two variants of spatio-temporal learning. The first one contains both 2D and
3D convolutions in a ResNet model, while the second variant decomposes a 3D convolution into a 2D
spatial convolution and a 1D temporal convolution.

The variant of the architecture that is the most related to our proposed framework is the mixed
convolutions network by Tran et al. [11]. The difference is that our architecture performs spatial

Appl. Sci. 2020, 10, 557 3 of 14

convolutions at the lower layers, followed by temporal convolutions and spatio-temporal convolutions
at the higher layers. In addition, our model outperforms 3D ResNet by up to 18% in the top-1 accuracy
for an input of 16 video clips when evaluated on the UCF-101 dataset, and it reduces overfitting issues
as faced in 3D ResNet models [9].

3. Proposed Architecture

Our proposed framework started from adopting an existing CNN model as base model to initialize
the network architecture. Pre-trained weights for 2D convolution layers were transferred to our
semi-CNN to form the bottom layers of our architecture. Temporal convolution layers were then
added to form the intermediate structure. Temporal encoding downsamples the depth features while
preserving its spatial dimension. Lastly, spatio-temporal encoding layers were added on top before
connecting to a fully-connected layer for classification prediction. Figure 1 illustrates the comparison of
architecture designs for 2D CNN (Figure 1a), 3D CNN (Figure 1b) and our semi-CNN model (Figure 1c).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 14

convolutions at the lower layers, followed by temporal convolutions and spatio-temporal
convolutions at the higher layers. In addition, our model outperforms 3D ResNet by up to 18% in the
top-1 accuracy for an input of 16 video clips when evaluated on the UCF-101 dataset, and it reduces
overfitting issues as faced in 3D ResNet models [9].

3. Proposed Architecture

Our proposed framework started from adopting an existing CNN model as base model to
initialize the network architecture. Pre-trained weights for 2D convolution layers were transferred to
our semi-CNN to form the bottom layers of our architecture. Temporal convolution layers were then
added to form the intermediate structure. Temporal encoding downsamples the depth features
while preserving its spatial dimension. Lastly, spatio-temporal encoding layers were added on top
before connecting to a fully-connected layer for classification prediction. Figure 1 illustrates the
comparison of architecture designs for 2D CNN (Figure 1a), 3D CNN (Figure 1b) and our semi-CNN
model (Figure 1c).

Figure 1. Architecture comparison for (a) 2D convolutional neural network (CNN), (b) 3D CNN and
(c) our proposed semi-CNN.

3.1. Base Models

We constructed our architecture based on three popular convolutional networks: VGG-16 [20],
ResNet [14] and DenseNet [21]. We attempted to preserve the network configurations and model’s
depth, while aggregating the layers to perform convolution in the spatial, temporal and
spatio-temporal dimensions.

3.1.1. Very Deep Convolutional Networks (VGG)

The architecture of very deep CNN, named VGG, with a depth of 16–19 layers was introduced
by Simonyan and Zisserman [20] for the task of large-scale image classification. The convolution
filter size was fixed at 3 × 3 for all layers to allow deeper implementation while increasing
non-linearity functions (by adding a rectification layer after each convolution) to learn complex
representations. After the convolution layers, the output was max pooled before connecting to three
fully-connected layers of 4096-D. This leads to a high number of learnable parameters, with 138 M
for VGG-16 layers and 144 M for VGG-19 layers.

3.1.2. Residual Networks (ResNets)

Figure 1. Architecture comparison for (a) 2D convolutional neural network (CNN), (b) 3D CNN and
(c) our proposed semi-CNN.

3.1. Base Models

We constructed our architecture based on three popular convolutional networks: VGG-16 [20],
ResNet [14] and DenseNet [21]. We attempted to preserve the network configurations and
model’s depth, while aggregating the layers to perform convolution in the spatial, temporal and
spatio-temporal dimensions.

3.1.1. Very Deep Convolutional Networks (VGG)

The architecture of very deep CNN, named VGG, with a depth of 16–19 layers was introduced by
Simonyan and Zisserman [20] for the task of large-scale image classification. The convolution filter
size was fixed at 3 × 3 for all layers to allow deeper implementation while increasing non-linearity
functions (by adding a rectification layer after each convolution) to learn complex representations.
After the convolution layers, the output was max pooled before connecting to three fully-connected
layers of 4096-D. This leads to a high number of learnable parameters, with 138 M for VGG-16 layers
and 144 M for VGG-19 layers.

Appl. Sci. 2020, 10, 557 4 of 14

3.1.2. Residual Networks (ResNets)

When developing deeper networks by stacking more and more convolution layers, a critical
problem arises during back-propagation where the gradients decrease and become too small or vanish
while propagating to the lower layers. This prevents weights learning and updating in the layers,
which prevents the network from converging. Hence, adding more layers without any remedy will
result in stagnant accuracy or even poorer performance [14]. He et al. [14] proposed a residual learning
framework, which incorporates a residual learning formulation in the stacked layers to allow better
optimization. Residual learning is implemented using “shortcut connections” where the output of
a previous layer can be mapped and added to the output of the connecting stacked layers. Another
benefit of residual learning is that it does not incur additional complexity or parameters to the network,
which makes the development of extremely deep network (up to 152 layers) possible, with complexity
much lower than VGG nets.

3.1.3. Dense Convolutional Networks (DenseNets)

Another work proposed to build deeper architecture by connecting each convolution layer to
all the subsequent layers, forming a densely connected network, DenseNet [21]. Feature maps from
previous connected layers were re-used in subsequent layers, hence reducing the number of trainable
parameters. Besides, the vanishing gradient problem is also addressed by the skip connections (similar
to the shortcut connections in ResNets) between layers, which map the output of a previous layer to the
next connecting layer, and allow the gradients from every layer to be accessed during back-propagation.
DenseNet has a considerably lower number of parameters when compared with ResNet of the same
depth, and yet retains a high training capacity when the model goes deeper.

3.2. Configuration Settings

Our semi-CNN performs spatial convolution first, followed by temporal convolution and finally
spatio-temporal convolution. To retain the same network depth as its 2D convolution network, we
reduced the number of layers in the spatial convolution blocks and added layers to the temporal and
spatio-temporal blocks. When computing the spatial convolution, the output shape of the temporal
depth was preserved, and similarly when computing the temporal convolution, the spatial dimension
of the output was retained. During spatio-temporal convolution, features were convolved in all three
dimensions. For semi-ResNets, residual learning was retained in all the convolutional blocks; while for
semi-DenseNets, dense connections between layers in each block were preserved.

Our semi-CNN architecture took input with dimensions of 16 × 224 × 224, where 16 denotes the
number of consecutive frames, and 224 × 224 denotes the spatial dimension. The input would be
passed through spatial convolution blocks and pooling layers to obtain spatial features with an output
of size 16 × 14 × 14. Then, the features were convolved with temporal blocks and downsampling
to 8 × 14 × 14. At the top layers of the architecture, we performed spatio-temporal convolution and
pooling to reduce the feature size to 2 × 3 × 3 or 2 × 4 × 4, before connecting to a global pooling layer
to obtain a 1-D representation. The representation would then be passed to fully-connected layers for
classification prediction.

3.3. Comparison with 2D and 3D CNN

This section presents a comparison of the layers configuration in 2D, 3D and our semi-CNN, for
models VGG, ResNet and DenseNet. The network configuration was simplified and presented in
Table 1 for easy reference and comparison.

Appl. Sci. 2020, 10, 557 5 of 14

Table 1. Configuration comparison for 2D, 3D and semi-CNN architecture, using base model VGG,
ResNet and DenseNet.

Model 2D-CNN 3D-CNN Semi-CNN

VGG-16 13 8 (9, 1, 3)
ResNet-18 BasicBlock [2, 2, 2, 2] BasicBlock [2, 2, 2, 2] BasicBlock ([2, 1], [1], [1, 1, 2])
ResNet-34 BasicBlock [3, 4, 6, 3] BasicBlock [3, 4, 6, 3] BasicBlock ([3, 2], [2], [3, 3, 3])
ResNet-50 Bottleneck [3, 4, 6, 3] Bottleneck [3, 4, 6, 3] Bottleneck ([3, 2], [2], [3, 3, 3])
ResNet-101 Bottleneck [3, 4, 23, 3] Bottleneck [3, 4, 23, 3] Bottleneck ([3, 2], [2], [12, 11, 3])
ResNet-152 Bottleneck [3, 8, 36, 3] Bottleneck [3, 8, 36, 3] Bottleneck ([3, 4], [4], [18, 18, 3])

DenseNet-121 [6, 12, 24, 16] [6, 12, 24, 16] ([6, 6], [6], [12, 12, 16])
DenseNet-169 [6, 12, 32, 32] [6, 12, 32, 32] ([6, 6], [6], [16, 16, 32])

The notation for the configuration setting for semi-CNN was set as ([ss], tt, [st]), where ss denotes
the number of spatial layers with convolutional kernel (1 × x × x), tt denotes the number of temporal
encoding layers with kernel size (x × 1 × 1) and st denotes the number of spatio-temporal layers with
convolutional kernel size of (x × x × x). The value of convolutional kernel size, x, was set with reference
to the configurations in the 2D base model. For instance, the spatial kernel size for semi-VGG-16 was
(1 × 3 × 3), while for semi-ResNet-18, the kernel size for the first spatial convolutional block was (1 × 7
× 7). The notation [. . .] denotes a building block configuration that consists of a stack of convolutional
layers. The value shown inside the bracket denotes the number of blocks constructed in the network.
Both ResNet and DenseNet models were constructed with building blocks.

For VGG model, we compared with 2D VGG-16 [20], a 3D convolution network (C3D) [7] and our
semi-VGG-16. C3D had 11 layers (eight spatial layers and three fully-connected layers), while VGG-16
had 16 layers (13 spatial layers and three fully connected layers) in their networks.

For ResNet, we compared with 2D ResNets [14], 3D ResNets [8] and our semi-ResNets. ResNet
models were constructed with two types of residual blocks [14]—basic block and bottleneck block.
Semi-ResNet was constructed with reference to the building blocks used in the 2D model.

Comparison of DenseNet is the 2D model [21], 3D model (derived from 2D network) and our
semi-DenseNet model. Similarly, the network configuration is represented by a stack of building
blocks that consists of densely connected layers. Dense connections between layers in each block were
preserved in the semi-CNN architecture.

The configurations described in Table 1 were not optimized, but have shown reasonably good
performance when validated in the experimental section. A detailed architecture comparison could be
found in Table A1 in the Appendix A.

4. Experiments

4.1. Implementation Details

We evaluated our framework using the popular action recognition dataset, UCF-101. It contained
a total of 13320 video clips, with 101 action classes, and was divided into three training–validation
splits. In our experiments, we only utilized the split-1 training and validation sets for evaluation.
During training, 16 consecutive frames were randomly sampled from each video. Input frames were
re-scaled and randomly cropped at multiple scales, before resizing them to the size of 224 × 224. They
were also randomly flipped horizontally to allow data augmentation for better training. The input was
normalized using the mean and standard deviation of the ImageNet dataset. For validation, the input
frames from each validation video were sampled at fixed locations. The frames were rescaled and
center cropped, without horizontal flipping.

Our network was trained end-to-end using stochastic gradient descent with learning rate 0.1,
momentum 0.9, dampening 0.9 and weight decay of 0.0001. The learning rate was reduced by a factor
of 10 when the validation loss value did not decrease for 10 epochs. The network architecture and
training was implemented in PyTorch with CUDA, utilizing two GPUs of GeForce RTX2080Ti. Due

Appl. Sci. 2020, 10, 557 6 of 14

to memory constraints, we implemented accumulated gradients during training to allow processing
of large batch sizes, while retaining the size of the computation graph. We used a mini batch size of
8 (or 4 or 2 depending on the network complexity) and accumulated the gradients for 32 iterations
(effective batch size is 256) before back-propagation. The architecture was trained for 50 epochs and
we presented the validation results for comparison.

4.2. Trainable Parameters

This section presented the number of trainable parameters for each model VGG, ResNet and
DenseNet, and compared with the architectures of full 2D, 3D and our semi-CNN model. As our
model utilized transfer learning to initialize our network parameters, we also presented the number of
pre-trained parameters for each network. The 2D convolution network took an input of size (48, 224,
224), and its input channel size was 48, while the input dimension for 3D and our semi-convolution
was (3, 16, 224, 224), with channel size 3 for each frame’s RGB.

Table 2 describes the number of training parameters for VGG, ResNet and DenseNet models.
As can be seen from the table, 3D convolution networks had a much higher number of trainable
parameters as compared to their corresponding 2D convolution networks. Our semi-CNN architecture
had the lowest number of parameters for the VGG-16 model. As for ResNet and DenseNet models,
our network had higher parameters than 2D convolution networks, but lower than 3D convolution
networks. The trainable parameters were obtained from the lower layers of the pre-trained network
for our spatial convolutions only.

Table 2. Number of training parameters in millions(M) for VGG, ResNet and DenseNet models.

Model
2D-CNN 3D-CNN Semi-CNN

Params Params Pre-Trained Params Total Params

VGG-16 134.7 M 179.1 M 5.3 M 82.2 M
ResNet-18 11.4 M 33.3 M 0.4 M 31.7 M
ResNet-34 21.5 M 63.6 M 0.8 M 60.5 M
ResNet-50 23.9 M 46.4 M 0.9 M 45.8 M
ResNet-101 42.8 M 85.5 M 0.9 M 84.8 M
ResNet-152 58.5 M 117.6 M 1.4 M 115.6 M
DenseNet-121 7.2 M 11.4 M 0.8 M 10.4 M
DenseNet-169 12.8 M 18.8 M 0.8 M 17.9 M

4.3. Evaluation on Validation Dataset

This section presented the evaluation results for our architecture and the comparison of its
performance with the corresponding 3D-CNN model. Since a previous study [7] has demonstrated
that 3D-CNN outperforms 2D-CNN in action recognition tasks, we did not explicitly train 2D-CNN
models for our comparison here.

The validation results on the UCF-101 Split-1 dataset are presented in Table 3. These results
were obtained after training for 50 epochs, which might not have fully converged, but were presented
here for comparison and reference. These results show a significant improvement on the prediction
accuracy for our semi-CNN when applied on all the different models—VGG, ResNet and DenseNet.
For the VGG-16 model, our architecture outperforms C3D [7] by 18% in accuracy. For ResNet models,
an average of 16% improvement was achieved, while for the Densenet-121 model, the boost was
almost 30%. Deeper networks of ResNet and DenseNet (such as ResNet-101 and DenseNet-169) were
not presented here as the validation results deteriorate for both 3D- and semi-CNN architectures,
demonstrating that the UCF-101 dataset was too small to be trained for a deep 3D network, as stated
in [9,22]. Figure 2 illustrates the comparison of the training performance for the models listed in
Table 3.

Appl. Sci. 2020, 10, 557 7 of 14

Table 3. Comparison of validation results for models VGG, ResNet and DenseNet, with 3D-CNN and
semi-CNN architectures.

Model
3D-CNN Semi-CNN

Top-1 acc (%) Top-5 acc (%) Top-1 acc (%) Top-5 acc (%)

VGG-16 36.53 62.70 54.27 81.21
ResNet-18 47.11 73.65 64.92 85.51
ResNet-34 48.19 74.41 66.53 88.58
ResNet-50 37.67 64.60 50.67 78.91

DenseNet-121 12.64 37.88 42.48 76.53

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 14

Table 3. Comparison of validation results for models VGG, ResNet and DenseNet, with 3D-CNN
and semi-CNN architectures.

Model
3D-CNN Semi-CNN

Top-1 acc (%) Top-5 acc (%) Top-1 acc (%) Top-5 acc (%)
VGG-16 36.53 62.70 54.27 81.21

ResNet-18 47.11 73.65 64.92 85.51
ResNet-34 48.19 74.41 66.53 88.58
ResNet-50 37.67 64.60 50.67 78.91

DenseNet-121 12.64 37.88 42.48 76.53

Model
Top-1 accuracy

3D-CNN Semi-CNN
VGG-16

ResNet-18

ResNet-34

ResNet-50

Figure 2. Cont.

Appl. Sci. 2020, 10, 557 8 of 14

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 14

DenseNet-121

Figure 2. Performance plots for 3D-CNN and semi-CNN architectures applied on VGG, ResNet and
DenseNet models.

In Figure 2, the gap between the training and the validation plots (blue and orange lines) for
3D-CNN models was much bigger as compared to the plots in semi-CNN. This indicates that
overfitting occurs when we train a more complex model (or a deeper network) on a relatively small
dataset. Our architecture learned faster as could be seen in the steeper slope, which is a result of
transfer learning, which initializes the parameters in our spatial convolution layers. For deeper
networks such as ResNet-50 and DenseNet-121, huge fluctuations could be seen in the validation
loss of the 3D architecture, which could mean that the network is overfitting as it could not
generalize its training parameters on the validation set. Although fluctuations also occur in our
semi-CNN architecture, it is more stable and the validation loss is progressively reduced when
trained for more epochs.

This empirical study provides strong support for our semi-CNN architecture in that a fusion of
convolution layers outperforms a full 3D convolution network, with additional advantages on: (1)
lower number of training parameters, (2) transfer learning from pre-trained models is feasible and
(3) more stable training and faster convergence. Due to our limited computational resources, we
only presented our validation results on shallower networks on UCF-101 dataset, and we expected
that the performance could be generalized to deeper networks when applied on larger datasets.

4.4. Features Visualization and Qualitative Results Comparison

We reported the comparisons of qualitative results for 3D- and Semi-ResNet-18 models, as well
as illustrations of features for Semi-ResNet-18 in Figure 3. The top two rows of Figure 3 show 16
consecutive frames sampled from the validation video as network input. Subsequent three rows in
Figure 3 illustrate examples of features extracted in the spatial, temporal and spatio-temporal space
in Semi-ResNet-18 (detailed architecture is presented in Table A1 in the Appendix A). Spatial
features shown were obtained after the spatial convolution and pooling layers, with output
dimension (16 × 14 × 14). After the temporal convolution block and max pooling layer, we obtained
temporal features with dimension (8 × 14 × 14). The features were then processed by spatio-temporal
blocks, where the output size was further reduced to (2 × 4 × 4). At the bottom row, we illustrated the
top-5 prediction scores for both 3D- and Semi-ResNet-18.

Figure 3a–c show examples where our semi-CNN model outperformed 3D-ResNet, while
Figure 3d shows example of 3D-ResNet with better performance. Figure 3e displays an example
where both models make the correct prediction, while Figure 3f displays an example where both
models fail. From the top-5 prediction scores in Figure 3, it is obvious that some of the predictions
did not match with the action class. This could be due to: (1) the network having not fully converged
and requiring more training epoch, and (2) insufficient training data to train the high number of
network parameters.

Figure 2. Performance plots for 3D-CNN and semi-CNN architectures applied on VGG, ResNet and
DenseNet models.

In Figure 2, the gap between the training and the validation plots (blue and orange lines) for
3D-CNN models was much bigger as compared to the plots in semi-CNN. This indicates that overfitting
occurs when we train a more complex model (or a deeper network) on a relatively small dataset.
Our architecture learned faster as could be seen in the steeper slope, which is a result of transfer
learning, which initializes the parameters in our spatial convolution layers. For deeper networks
such as ResNet-50 and DenseNet-121, huge fluctuations could be seen in the validation loss of the 3D
architecture, which could mean that the network is overfitting as it could not generalize its training
parameters on the validation set. Although fluctuations also occur in our semi-CNN architecture, it is
more stable and the validation loss is progressively reduced when trained for more epochs.

This empirical study provides strong support for our semi-CNN architecture in that a fusion
of convolution layers outperforms a full 3D convolution network, with additional advantages on:
(1) lower number of training parameters, (2) transfer learning from pre-trained models is feasible and
(3) more stable training and faster convergence. Due to our limited computational resources, we only
presented our validation results on shallower networks on UCF-101 dataset, and we expected that the
performance could be generalized to deeper networks when applied on larger datasets.

4.4. Features Visualization and Qualitative Results Comparison

We reported the comparisons of qualitative results for 3D- and Semi-ResNet-18 models, as well
as illustrations of features for Semi-ResNet-18 in Figure 3. The top two rows of Figure 3 show 16
consecutive frames sampled from the validation video as network input. Subsequent three rows in
Figure 3 illustrate examples of features extracted in the spatial, temporal and spatio-temporal space in
Semi-ResNet-18 (detailed architecture is presented in Table A1 in the Appendix A). Spatial features
shown were obtained after the spatial convolution and pooling layers, with output dimension (16 × 14
× 14). After the temporal convolution block and max pooling layer, we obtained temporal features
with dimension (8 × 14 × 14). The features were then processed by spatio-temporal blocks, where the
output size was further reduced to (2 × 4 × 4). At the bottom row, we illustrated the top-5 prediction
scores for both 3D- and Semi-ResNet-18.

Figure 3a–c show examples where our semi-CNN model outperformed 3D-ResNet, while Figure 3d
shows example of 3D-ResNet with better performance. Figure 3e displays an example where both
models make the correct prediction, while Figure 3f displays an example where both models fail. From
the top-5 prediction scores in Figure 3, it is obvious that some of the predictions did not match with the
action class. This could be due to: (1) the network having not fully converged and requiring more
training epoch, and (2) insufficient training data to train the high number of network parameters.

Appl. Sci. 2020, 10, 557 9 of 14

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 14

(a)

(b)

Figure 3. Cont.

Appl. Sci. 2020, 10, 557 10 of 14

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 14

(c)

(d)

Figure 3. Cont.

Appl. Sci. 2020, 10, 557 11 of 14

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 14

(e)

(f)

Figure 3. Examples of qualitative results for 3D- and Semi-ResNet-18 for different action classes: (a)
hammer throw, (b) Still rings, (c) Military parade, (d) Wall pushups, (e) Sky diving, and (f) Bench
press.

4.5. Experiment on Discontinued Motion

So far, the evaluation for semi-CNNs and 3D CNNs are based on continuous motion input with
16 consecutive frames. This section further investigated the network capability in learning

Figure 3. Examples of qualitative results for 3D- and Semi-ResNet-18 for different action classes: (a)
hammer throw, (b) Still rings, (c) Military parade, (d) Wall pushups, (e) Sky diving, and (f) Bench press.

Appl. Sci. 2020, 10, 557 12 of 14

4.5. Experiment on Discontinued Motion

So far, the evaluation for semi-CNNs and 3D CNNs are based on continuous motion input
with 16 consecutive frames. This section further investigated the network capability in learning
spatio-temporal features when there exists motion discontinuity between frames. For experiment, we
divided a full video into four segments and sample four consecutive frames from each segment to form
the same input size of 16 frames. These 4 × 4 frames with motion discontinuity were then fed to CNN
architectures for training. We utilized the same architecture and training parameters as described in
Section 4.1 and reported the comparison results in Table 4.

Table 4. Comparison of validation results for discontinued motion input trained on 3D-CNN and
semi-CNN architectures.

Model
3D-CNN Semi-CNN

Top-1 acc (%) Top-5 acc (%) Top-1 acc (%) Top-5 acc (%)

VGG-16 42.61 70.18 57.94 82.58
ResNet-18 47.87 75.23 68.65 88.79
ResNet-34 47.45 73.83 70.50 89.00
ResNet-50 34.05 63.20 53.77 80.62
DenseNet-121 13.14 36.37 44.25 77.72

Semi-CNNs with frames sampled from different segments of a full video provides better action
prediction than using a stack of consecutive frames. The average performance boost for semi-CNNs is
3.2% when compared to the results in Table 3. For 3D CNNs, the performance varies across models.
VGG model shows an improvement of 6.08%, while the accuracy of ResNet-34 and ResNet-50 decreases.
Do note that 3D-VGG-16 has more than double the number of training parameters as compared to
Semi-VGG-16, but its accuracy is still much lower than our network’s performance, with a difference
of 15.3%. For ResNet models, Semi-ResNet consistently shows improvement of 3% even for deeper
models, while the performances of 3D-ResNets deteriorate (from 0.8% to −3.6%) when the network
goes deeper. For DenseNet-121, 3D-CNN does not show obvious improvement, with 0.5% increment,
while semi-CNN shows an increment of 1.8% in accuracy.

This experiment has further validated the high learning capability of semi-CNN on spatio-temporal
features, even when motion discontinuity occurs. This provides an advantage for video-level action
recognition where motion changes in a full action can be captured for better discrimination.

5. Conclusions

The work in this paper demonstrated the effectiveness of our architecture as compared to
existing fusion models and 3D convolution models. We evaluated our architecture on three popular
models—VGG, ResNet and DenseNet. Our empirical results show significant improvements over the
3D convolution networks of the three models. In addition, our architecture shows faster convergence
with transfer learning and had fewer training parameters, which reduced overfitting. The learning
properties and the network depth for existing models were preserved. More experiments could be
conducted to find the optimal configurations for the spatial, temporal and spatio-temporal convolution
layers, as well as the segregation of the layers for each network. Deeper networks could be trained on
larger datasets and fine-tuned on UCF-101 to further enhance the prediction accuracy.

Author Contributions: Conceptualization, methodology, validation, analysis and draft preparation, M.C.L.;
software, resources, funding acquisition and draft review, D.K.P.; supervision, draft review and editing, Y.T.L.;
draft review and editing, F.L. All authors have read and agreed to the published version of the manuscript.

Funding: The publication charges for this article have been funded by a grant from the publication fund of UiT
The Arctic University of Norway.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2020, 10, 557 13 of 14

Appendix A

Table A1. Configuration comparison for 2D ResNet, 3D ResNet and our semi-ResNet, for an
18-layers network.

Layer Name
2D ResNet [14] 3D ResNet [8] Semi-ResNet (Ours)

18-layer Output
Shape 18-layer Output

Shape 18-layer Output
Shape

Conv1 [7 × 7, 64]
stride 2 (112, 112) [7 × 7 × 7, 64]

stride (1, 2, 2) (16, 112, 112) [1 × 7 × 7, 64]
stride (1, 2, 2) (16, 112, 112)

Max pool [3 × 3]
stride 2

(56, 56)

[3 × 3 × 3]
stride 2

(8, 56, 56)

[1 × 3 × 3]
stride (1, 2, 2)

(16, 56, 56)

Conv2_x

[
3× 3, 64
3× 3, 64

]
× 2

[
3× 3× 3, 64
3× 3× 3, 64

]
× 2

[
1× 3× 3, 64
1× 3× 3, 64

]
× 2

Conv3_x

[
3× 3, 128
3× 3, 128

]
× 2

(28, 28)

[
3× 3× 3, 128
3× 3× 3, 128

]
× 2

(4, 28, 28)
[

3× 3× 3, 128
3× 3× 3, 128

]
(16, 28, 28)

Max pool - [1 × 3 × 3]
stride (1, 2, 2)

(16, 14, 14)
Temporal conv

block -
[

3× 1× 1, 128
3× 1× 1, 128

]
Temporal max

pool - [3 × 1 × 1]
stride (2, 1, 1)

(8, 14, 14)
Spatio- temporal

conv block -

[
3× 3× 3, 256
3× 3× 3, 256

]
stride 1

Conv4_x

[
3× 3, 256
3× 3, 256

]
× 2

(14, 14)

[
3× 3× 3, 256
3× 3× 3, 256

]
× 2

(2, 14, 14)
[

3× 3× 3, 256
3× 3× 3, 256

]
(4, 7, 7)

Conv5_x

[
3× 3, 512
3× 3, 512

]
× 2

(7, 7)

[
3× 3× 3, 512
3× 3× 3, 512

]
× 2

(1, 7, 7)

[
3× 3× 3, 512
3× 3× 3, 512

]
× 2

(2, 4, 4)

Avg pool [7 × 7] (1, 1) [1 × 7 × 7] (1, 1, 1) [2 × 4 × 4] (1, 1, 1)

Fc 101-d, softmax

References

1. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

2. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A Dataset of 101 Human Actions Classes from Videos in the
Wild. arXiv 2012, arXiv:1212.0402.

3. Simonyan, K.; Zisserman, A. Two-stream convolutional networks for action recognition in videos. In
Proceedings of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, Montreal, QC, Canada, 8–13 December 2014.

4. Zhang, B.; Wang, L.; Wang, Z.; Qiao, Y.; Wang, H. Real-time action recognition with enhanced motion vector
CNNs. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016.

5. Gkioxari, G.; Malik, J. Finding action tubes. In Proceedings of the 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

6. Ji, S.; Xu, W.; Yang, M.; Ku, K. 3D convolutional neural networks for human action recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2013, 35, 221–231. [CrossRef] [PubMed]

7. Tran, D.; Bourdev, L.; Fergous, R.; Torresani, L.; Paliri, M. Learning spatiotemporal features with 3d
convolutional networks. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 7–13 December 2015.

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/TPAMI.2012.59
http://www.ncbi.nlm.nih.gov/pubmed/22392705

Appl. Sci. 2020, 10, 557 14 of 14

8. Hara, K.; Kataoka, H.; Satoh, Y. Learning spatio-temporal features with 3D residual networks for action
recognition. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops
(ICCVW), Venice, Italy, 22–29 October 2017.

9. Hara, K.; Kataoka, H.; Satoh, Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet.
In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–23 June 2018.

10. Feichtenhofer, C.; Pinz, A.; Zisserman, A. Convolutional two-stream network fusion for video action
recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las
Vegas, NV, USA, 26 June–1 July 2016.

11. Tran, D.; Wang, H.; Torresani, L.; Ray, J.; LeCun, Y.; Paluri, M. A closer look at spatiotemporal convolutions
for action recognition. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern, Salt
Lake City, UT, USA, 18–23 June 2018.

12. Yao, T.; Li, X. Yh technologies at activitynet challenge 2018. arXiv 2018, arXiv:1807.00686.
13. Jung, M.; Hwang, J.; Tani, J. Multiple spatio-temporal scales neural network for contextual visual recognition

of human actions. In Proceedings of the 2014 Joint IEEE International Conferences on Development and
Learning and Epigenetic Robotics (ICDL-Epirob), Genoa, Italy, 13–16 October 2014.

14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

15. Varol, G.; Laptev, I.; Schmid, C. Long-term temporal convolutions for action recognition. IEEE Trans. Pattern
Anal. Mach. Intell. 2018, 40, 1510–1517. [CrossRef] [PubMed]

16. Tu, Z.; Xie, W.; Qin, Q.; Roppe, R.; Veltkamp, R.C.; Li, B.; Yuan, J. Multi-stream CNN: Learning representations
based on human-related regions for action recognition. Pattern Recognit. 2018, 79, 32–43. [CrossRef]

17. Diba, A.; Sharma, V.; Van Gool, L. Deep temporal linear encoding networks. In Proceedings of the 2017
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

18. Girdhar, R.; Rananan, D.; Gupta, A.; SIvic, J.; Russel, B. ActionVLAD: Learning spatio-temporal aggregation
for action classification. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

19. Sun, L.; Jia, K.; Yeung, D.-Y.; Shi, B.E. Human action recognition using factorized spatio-temporal
convolutional networks. In Proceedings of the 2015 IEEE International Conference on Computer Vision,
Santiago, Chile, 7–13 December 2015.

20. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

21. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26
July 2017.

22. Carreira, J.; Zisserman, A. Quo vadis, action recognition? A new model and the kinetics dataset. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2017.2712608
http://www.ncbi.nlm.nih.gov/pubmed/28600238
http://dx.doi.org/10.1016/j.patcog.2018.01.020
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Architecture
	Base Models
	Very Deep Convolutional Networks (VGG)
	Residual Networks (ResNets)
	Dense Convolutional Networks (DenseNets)

	Configuration Settings
	Comparison with 2D and 3D CNN

	Experiments
	Implementation Details
	Trainable Parameters
	Evaluation on Validation Dataset
	Features Visualization and Qualitative Results Comparison
	Experiment on Discontinued Motion

	Conclusions
	
	References

