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Abstract: Recently, in order to satisfy the requirements of commercial communication systems and
military communication systems, automatic modulation classification (AMC) schemes have been
considered. As a result, various artificial intelligence algorithms such as a deep neural network
(DNN), a convolutional neural network (CNN), and a recurrent neural network (RNN) have been
studied to improve the AMC performance. However, since the AMC process should be operated
in real time, the computational complexity must be considered low enough. Furthermore, there is
a lack of research to consider the complexity of the AMC process using the data-mining method.
In this paper, we propose a correlation coefficient-based effective feature selection method that can
maintain the classification performance while reducing the computational complexity of the AMC
process. The proposed method calculates the correlation coefficients of second, fourth, and sixth-order
cumulants with the proposed formula and selects an effective feature according to the calculated
values. In the proposed method, the deep learning-based AMC method is used to measure and
compare the classification performance. From the simulation results, it is indicated that the AMC
performance of the proposed method is superior to the conventional methods even though it uses a
small number of features.

Keywords: automatic modulation classification; cumulant; correlation; effective feature; deep neural network

1. Introduction

In an effort to improve the transmission efficiency of satellite communication and mobile
communication systems, the systems should consider adaptive changing parameters such as a
modulation scheme, a transmission rate and a carrier frequency according to a channel state [1,2].
As part of this study, in order to effectively classify the modulation scheme, an automatic modulation
classification (AMC) method has been widely studied [3,4]. Generally, the receiver can estimate
the modulation scheme of the transmitted signal in the commercial system. However, since the
communication parameters of the enemy cannot be accurately estimated in military communications,
the research has been oriented to estimate the communication parameters by using only the received
signals [5]. Thus, in order to improve the jamming performance against the enemy communication
system, various research works have been undertaken to classify the modulation scheme by the AMC
method [6]. The techniques for the AMC can be roughly classified into two types. The first type
maximizes the likelihood function based on the statistical model from the received signal. However,
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this method has poor performance due to the error that occurs when there is a change in the channel
characteristics in the real environment. Moreover, considering different models, the computation of
the algorithm becomes very complicated and the calculation effort becomes large [7]. The second
type uses the machine-learning technique. This method uses training data to train machine learning
models to classify modulation type. Assuming that the training data is similar to the actual data,
it can demonstrate good performance even though the computational complexity is lower than
the likelihood method. Therefore, in order to classify the modulation type quickly and accurately,
the machine-learning algorithm is mainly used. The AMC scheme based on machine learning consists
of a feature extraction step that extracts features from the received signal and a signal classification
step that classifies the modulation type.

There are various techniques such as a deep neural network (DNN) [8], a convolutional neural
network (CNN) [9] and a recurrent neural network (RNN) [10] for the AMC that have been studied.
The CNN algorithm is a method that shows excellent performance in image processing. The research
has been carried out to classify the signals by using the constellation images of the received signals as
the features and to classify the signals by imaging the statistical characteristics [9]. The RNN algorithm
is an excellent method for analyzing time-series data but requires algorithmic complexity and high
calculation effort compared to performance [10]. On the other hand, the DNN algorithm can learn
complex structures from various data and shows good performance for various machine-learning
problems in recent years. The features frequently used in the AMC technique based on machine learning
use the higher-order statistic cumulant and signal size, frequency, phase dispersion, and wavelet
coefficient [11,12]. Therefore, in this paper, the cumulant is used as a feature for the AMC and as input
data of the DNN algorithm. Various research works have focused on machine-learning methods, rather
than analyzing features used as input data. Therefore, in this paper, we use only the features that greatly
affect the classification performance through the proposed algorithm to reduce the computational
complexity and to identify the received signal quickly while using the basic DNN structure algorithm.
In reference [13], we have confirmed the difference of signal classification performance according
to the features used as input data in the DNN algorithm and confirmed the features with high and
low importance. Based on this, an effective feature selection method using a correlation coefficient
is exploited to obtain the representative values and to verify the classification performance [14].
The proposed method is more effective than the conventional method, which uses mutual information
and correlation coefficients in selecting five features [15,16]. In this paper, we compare the performance
of the proposed method using only the correlation coefficient in various environments, the conventional
method using mutual information and correlation coefficients, and three methods using only mutual
information. In addition, we confirmed the performance of the proposed method with the addition
of four kinds of sixth-order cumulants with large variability in the low signal-to-noise ratio (SNR)
environment besides the second and fourth-order cumulant. In order to evaluate the proposed method,
the representative value was selected from various cumulants by using each method and two kinds of
the simulation were conducted. In the first simulation, in order to find the effective features values,
we ranked the cumulants based on the calculation from each method. Then, we sequentially measured
the classification performance by excluding the feature values one by one. In the second set of
simulations, in order to measure the classification performance according to the group, the cumulants
were divided into three groups (top, middle, and bottom) based on the ranking obtained from the
efficient features extraction method. The following is a summary of how each group is divided.

1. Top group: the five highest important representative values of each method.
2. Middle group: the five medium important representative values of each method.
3. Bottom group: the five lowest important representative values of each method.

The cumulants in each group were used as the input data of the DNN algorithm to measure the
classification performance. The three AMC environments that use the features of each group as input



Appl. Sci. 2020, 10, 588 3 of 14

values were implemented and the superiority of the proposed method was confirmed according to the
group performance.

The rest of the paper is organized as follows. In Section 2, we explain the features and data analysis
method. In Section 3, we introduce the proposed method and the conventional method. In Section 4
we describe the DNN structure used in this paper and present the simulation results. Finally, Section 5
provides the conclusions of the paper.

2. Data Analysis Techniques

2.1. Cumulant

The cumulant is one of the typical statistical features used in the hierarchical AMC scheme [17].
In this paper, the higher-order cumulants for baseband received signal samples r[n] generated in the
additive white Gaussian noise (AWGN) channel are extracted as representative features and used as
the inputs to the DNN algorithm. Since the proposed method exploits the correlation characteristics,
we consider the high-order cumulants as the feature values. Table 1 summarizes the expressions for
the second-, fourth- and sixth-order cumulants [16,18] used in this paper.

Table 1. The expressions for various cumulants.

Higher-Order Cumulant Expression

Second-Order Cumulant
|C20| |M20|

|C21| |M21|

Fourth-Order Cumulant
|C40|

∣∣∣M40 − 3M2
20 |

|C41| |M41 − 3M20M21|

|C42|
∣∣∣M42 − M2

20 − 2M2
21

∣∣∣
Sixth-Order Cumulants

|C60|
∣∣∣M60 − 15M20M40 + 30M3

20

∣∣∣
|C61|

∣∣∣M61 − 10M20M41 − 5M21M40 + 30M21M2
20

|C62|
∣∣∣M62 − 6M20M42 − 8M21M41 − M22M40 + 6M2

20M22 + 24M2
21M20

∣∣∣
|C63|

∣∣∣M63 − 9M21M42 + 12M3
21 − 3M20M42 − 3M22M41 + 18M20M21M22

∣∣∣
Here, Cxy is the (x + y)-th order cumulant and Mxy , E[(r[n])x−y(r∗[n])y], is the (x + y)-th order

moment of the received signal r[n]. Table 2 summarizes the theoretical absolute value according to the
modulation types; BPSK (binary phase shift keying), QPSK (quadrature phase shift keying), 8-PSK,
16-QAM (quadrature amplitude modulation).

Table 2. The theoretical absolute values of cumulants.

BPSK QPSK 8-PSK 16-QAM 64-QAM

|C20| 1 0 0 0 0
|C21| 1 1 1 1 1
|C40| 2 1 0 0.68 0.62
|C41| 2 0 0 0 0
|C42| 2 1 1 0.68 0.62
|C60| 16 0 0 0 0
|C61| 16 4 0 2.08 1.79
|C62| 16 0 0 0 0
|C63| 16 4 4 2.08 1.79

2.2. Correlation

In this paper, we use the correlation method which is one of data analysis methods to select the
effective feature. Correlation refers to the similarity between data, so features with a high correlation
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coefficient between feature values are relatively inefficient in the AMC processes. The Pearson
correlation for the variables X, Y is [19]:

cor(X, Y) =
C(X, Y)
σXσY

, (1)

where C(X, Y) is the covariance of the variables X and Y. Thus, (1) can be expressed as:

cor(X, Y) =
∑k

i=1(xi − x)(yi − y)
σXσY

, (2)

where σX and σY are the standard deviations of X and Y. From this correlation coefficient, information
on other data can be obtained through one data. The proposed method uses correlation as a data
analysis method to select effective features [19].

2.3. Mutual Information Quantity

When classifying a signal using the DNN algorithm, the input data should be selected to include
as much information as possible. The mutual information quantity is one of the methods used in
measuring the information of arbitrary variables used for this purpose [15]. When the modulation
scheme information used in the transmitter is represented by c, mutual information values for the i-th
feature and the module c are defined as:

I(xi; c) =
x

P(xi, c) log
P(xi, c)

P(xi)P(c)
dxidc, (3)

where P(xi, c) is the joint probability distribution of xi and c. The high mutual information value can
be useful for the AMC because the features contains a lot of information about the module c [15].

3. Proposed Effective Feature Selection Method

3.1. Conventional Effective Feature Selection Based on Mutual Information and Correlation

The conventional method based on mutual information and correlation performs preprocessing
before using it for input data. This is to reduce the computational complexity of the algorithm and
maintain the identification performance. The conventional mutual information and correlation method
for extracting an efficient feature is expressed as [15]:

maxx j∈X−Sm01

I(x j; c
)
−

1
m− 1

∑
xi∈Sm−1

I
(
x j; xi

), (4)

where I
(
x j; c

)
denotes the mutual information value between the feature value and the corresponding

module, Sm denotes a set of selected feature values up to m runs, and X denotes a set of all feature
values. A representative value according to each feature can be obtained from (4) and a feature having
a large representative value is the most efficient feature. Table 3 shows the representative values of
the second-, fourth-, and sixth-order cumulants of the conventional method [15]. As can be observed
from the table, the conventional method indicates that the most effective feature is C60 and the most
ineffective feature is C21 in the 10 dB SNR environment.
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3.2. Conventional Effective Feature Selection Based on Mutual Information

The conventional mutual information method is used among the data analysis methods and
the effective feature is selected from the information between the digital signals and the feature [20].
The mutual information quantities are expressed as

ECVIi =
M∑
i

∣∣∣∣I(r j, ti j
)∣∣∣∣, (5)

where r j denotes the j-th received signal and ti j denotes the i-th characteristic value of the j-th received
signal. If the amount of mutual information between the received signal and a specific feature is
high, the features is valuable on the AMC process because it contains more information regarding
the received signal. Therefore, the features having the largest representative value obtained from (5)
can be considered an effective feature that greatly affects the AMC performance. Table 4 shows the
representative values obtained from (5) of the mutual information method [20]. As shown in the table,
mutual information method identifies C62 as the most effective feature and C21 as the most ineffective
feature in the 10 dB SNR environment.

Table 3. Effective correlation values of each cumulant in various signal-to-noise ratio (SNR)
environments for the conventional method. High values indicate strong influence on the classification
performance, meaning that the associated cumulants are more effective features for AMC systems.

SNR −10 dB −5 dB 0 dB 5 dB 10 dB

C20 8.92 8.86 8.59 8.29 8.08
C21 6.08 7.23 6.35 5.56 4.98
C40 9.11 8.98 8.61 8.11 7.68
C41 9.05 8.93 8.63 8.31 8.09
C42 9.13 8.92 8.18 7.44 6.94
C60 9.04 9.02 8.85 8.49 8.20
C61 8.87 8.88 8.38 7.75 7.39
C62 9.02 8.91 8.63 8.31 8.15
C63 9.07 8.93 8.29 7.51 7.01

Table 4. Effective correlation values of each cumulant in various SNR environments for the mutual
information. High values indicate strong influence on the classification performance, meaning that the
associated cumulants are more effective features for automatic modulation classification (AMC) systems.

SNR −10 dB −5 dB 0 dB 5 dB 10 dB

C20 8.93 8.91 8.75 8.60 8.50
C21 6.13 7.34 6.58 5.95 5.43
C40 9.13 9.06 8.72 8.30 7.98
C41 9.08 9.01 8.84 8.61 8.55
C42 9.12 8.94 8.41 7.82 7.39
C60 9.09 8.89 8.90 8.70 8.51
C61 9.04 8.99 8.69 8.16 7.83
C62 9.11 9.04 8.85 8.68 8.60
C63 9.14 9.07 8.54 7.90 7.46

3.3. Proposed Effective Feature Selection Based on Correlation Coefficient

The optimal selection of the input data determines the optimal group of feature by comparing
all combinations of feature. However, it is difficult to perform because it requires a large amount
of computation. Therefore, in this paper, in order to reduce the computational complexity of the
AMC and to maintain the classification performance, we proposed an effective feature method with a
large influence on the classification performance based on the analysis of the correlation coefficient.
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Thus, the effect of each feature on the classification performance should be numerically expressed as a
representative value. The proposed method is expressed as:

ECVi =
M∑

j=1

M∑
k = 1
k , j

∣∣∣∣cor
(
xik, xi j

)∣∣∣∣, (6)

where M is the number of features, xi j is the j-th feature of the i-th modulation type, and cor
(
xik, xi j

)
is

the correlation coefficient between the two features. In this manner, one representative value can be
obtained according to each characteristic. A characteristic with a large representative value has a little
influence on the AMC performance. On the other hand, a feature with a small representative value has
a strong influence on the classification performance and becomes the effective feature required for the
AMC. As shown in Table 5, the proposed method indicates that the most effective feature is C40 and
the most ineffective feature is C21 in the SNR 10 dB environment. As shown in Tables 3–5 the effective
feature for each method is different, and the performance of each method is verified through two sets
of simulations.

Table 5. Effective correlation values of each cumulant in various SNR environments for the proposed
method. Unlike the other methods, small values indicate strong influence on the classification
performance, meaning that the associated cumulants are more effective features for AMC systems.

SNR −10 dB −5 dB 0 dB 5 dB 10 dB

C20 0.37 1.73 6.07 12.45 16.97
C21 1.80 3.07 9.07 15.63 18.34
C40 0.56 1.35 3.52 7.69 12.19
C41 1.19 3.1 8.21 14.62 18.23
C42 0.73 0.95 9.28 15.31 18.07
C60 1.82 0.65 1.77 8.08 14.02
C61 2.96 3.55 8.47 13.46 15.24
C62 3.34 4.77 8.5 14.64 18.07
C63 2.81 5.36 10.27 15.56 18.15

In the AMC structure of this paper, the modulated signals to be classified are generated in
the AWGN channel, and the cumulants are extracted for each signal. The extracted cumulants are
represented by one representative value through the proposed method as shown in Equation (6).
In order to reduce the computational complexity of the algorithm and to classify the modulation type
quickly, it extracts the top feature and classifies the modulation type after learning by using it as input
data to the DNN algorithm. The proposed AMC structure is shown in Figure 1.

Figure 1. The AMC structure of the proposed scheme.
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4. Simulation Results

4.1. Deep Neural Network (DNN) Structure and Simulation Environments

In this paper, five types of digital communication signals BPSK, QPSK, 8-PSK, 16-QAM, and 64-QAM
are considered. Additionally, the nine characteristic values consisting of the second, fourth and sixth-order
cumulant are used. The structure of the DNN algorithm consists of an input layer with nine feature in a
fully connected layer structure, a hidden layer consisting of three layers, 40 nodes, 20 nodes, and 10 nodes,
and finally an output layer for classifying signals. In the hidden layer, the Rectified Linear Unit (ReLU)
function [21] is used and in the last output layer, each modulation type is classified by Softmax [22].
Table 6 shows the nonlinear activation functions considered in this paper. Since the Softmax function
can produce the output in terms of probability, we can calculate the accuracy for each classified signal.
The DNN structure for the first set of simulations is shown in Figure 2.

Table 6. Definitions of the non-linear activation functions used in the deep neural network (DNN).
The ReLU was used for all hidden layers, while the Softmax was used for the output layer.

ReLU f(x) = max(x, 0)
Softmax f

(
x j

)
= exj∑

i exi

Figure 2. DNN structure for the first set of simulations.

In both sets of simulations, we trained the DNN algorithm several times for hyperparameter
optimization. Since the DNN is a very complex structure, it is difficult to find the optimal weighting
coefficients in one calculation. Therefore, in this paper we set up the hyperparameters and trained
the DNN algorithms through the following standard procedures. In the first step, we adjusted the
hyperparameters and trained the DNN using the backpropagation algorithm based on the gradient
descent, and applied the batch normalization to prevent the overfitting during the training. Next,
the validation errors were counted and the training was stopped to prevent overfitting when the
validation error started to increase. Also, when the validation errors did not decrease anymore,
we continued to train by cutting the learning rate in half. We utilized 20% of the input data for
the validation.

In order to train the above DNN structure, the epoch was set to 200, batch size to 64, and a total of
50,000 units of data (10,000 digital modulation symbols by each of 5 modulation schemes considered) were
generated in various SNR environments. Then, 9 features (C20, C21, C40, C41, C42, C60, C61, C62, C63)
were considered for each digital modulation symbol, yielding 450,000 features used as the input data.
In other words, the number of training data units is 450,000, and that of the test and the validation data is
90,000 each, which is 20% of the training data. The parameters of the first DNN obtained through the
above process are summarized in Table 7.
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Table 7. The DNN parameters used in the first simulation for optimal feature extraction and
performance verification.

Parameters Value

Number of input nodes 9
Number of hidden layer 3

Number of nodes of 1st hidden layer 40
Number of nodes of 2st hidden layer 20
Number of nodes of 3st hidden layer 10

Number of output nodes 5
Activation function of hidden layer ReLU
Activation function of output layer Softmax

Number of training data 450,000
Number of test data 90,000

Number of validation data 90,000
Epochs 200

Bacth Size 64

4.2. Simulation Result

In this paper, we propose an efficient feature extraction method to reduce training time while
maintaining AMC performance. In order to evaluate the proposed method, the representative value
was selected from various cumulants by using each method and two sets of simulations were conducted.
In the first simulation, in order to find the effective feature values, we ranked the cumulants based on
the calculation from each method. Then, we measured the classification performance sequentially by
excluding the feature values one by one. The structure of DNN is the same environment except for the
input layer. Table 8 summaries the classification performance according to elimination of each feature.

Table 8. Classification performance according to elimination of each feature [%]. The feature with the
lowest value is the most essential for the classification.

SNR −10 dB −5 dB 0 dB 5 dB 10 dB

ALL 86.37 89.67 95.70 98.61 99.91
C20 77.44 83.99 92.05 93.03 98.38
C21 83.10 84.60 91.85 97.56 98.92
C40 79.16 83.91 91.03 96.73 98.12
C41 83.19 84.93 91.92 97.52 98.40
C42 82.90 83.67 91.47 97.47 98.69
C60 83.09 83.14 91.14 96.91 98.35
C61 83.17 84.53 91.52 97.30 98.27
C62 83.28 84.87 92.14 97.42 98.55
C63 83.11 85.46 91.40 97.34 98.73

In the 10 dB SNR environment, the most essential or effective feature is C40 and the most
unnecessary or ineffective feature is C21. In the case of the proposed method, these features C40 and
C21 are identified precisely. On the other hand, the mutual information method identified C62 as
the most essential feature and C21 as the most unnecessary feature. In the case of the conventional
method, the most effective feature was extracted as C60 and the most unnecessary feature was extracted
as C21. In the proposed method, the most effective feature and the most unnecessary feature were
accurately identified in the 10 dB SNR environment, while the other two methods accurately identified
the unnecessary feature but failed to extract the most effective feature. In other words, the proposed
method shows superior performance in extracting effective features compared to the conventional
methods. Table 9 shows the difference in the classification performance when all the features are used
and when the effective features are excluded by each method. If a method shows the highest value for
a given SNR value in the table, that method is the best in correctly identifying the effective features.
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Table 9. Difference in classification performance when all features are used and when the effective
features are excluded by each method.

SNR −10 dB −5 dB 0 dB 5 dB 10 dB

Proposed 8.93 6.53 4.56 1.88 1.79
Mutual information 3.26 4.21 4.56 1.70 1.36

Conventional 3.47 6.53 4.56 1.70 1.56

In [14], only the second and the fourth-order cumulants are considered, and the variation of
characteristic values is small even in low SNR environments. Therefore, there was little variation in
efficiency ranking in a low SNR environment. However, in this paper, it can be seen that the order
of efficiency fluctuates significantly in a low SNR environment due to the sixth-order cumulant with
high variability. In this manner, when the feature with a large variability is used, the ranking of the
efficiency value of each feature can be changed according to each SNR. However, since the performance
is also changed to a similar trend, it becomes suitable even in environments using the feature with
high volatility. The proposed method shows higher performance not only when using the second- and
fourth-order cumulants but also when using the sixth-order cumulant.

In the second set of simulations, in order to measure the classification performance according
to the group, the cumulants were divided into three groups (top, middle, and bottom) based on the
ranking obtained from the efficient feature-extraction method. The cumulants in each group were used
as the inputs to the DNN algorithm to measure the classification performance. The parameters of the
second DNN are summarized in Table 10.

Table 10. The DNN parameters used in the second simulation for optimal feature group extraction and
performance verification.

Parameters Value

Number of input nodes 5
Number of hidden layer 2

Number of nodes of 1st hidden layer 30
Number of nodes of 2st hidden layer 10

Number of output nodes 5
Activation function of hidden layer ReLU
Activation function of output layer Softmax

Number of training data 250,000
Number of test data 50,000

Number of validation data 50,000
Epochs 200

Batch Size 64

Figure 3 and Table 11 shows the simulation results of the proposed method and Figures 4 and 5
show the results of the conventional method. Tables 12–14 represent the features used for each group.
In Figures 3–5, the desirable result is that the best classification performance is achieved when the top
group is used as the input data, while the worst classification performance is achieved when the bottom
group is used as the input data. In this respect, the conventional methods are unsatisfactory since
the top group cannot always obtain the best performance in all SNR ranges. However, the proposed
method shows a stable and the best performance over a wide SNR range of −2 dB to 10 dB. Even if the
same amount of data is exploited, there is a large difference in performance depending on the features
used. Also, even in the low SNR environment, the performance of the top group is better than that of
the bottom group in the high SNR environment. Therefore, we conclude that the proposed method is
very effective at extracting the useful feature group. Figure 6 shows the classification performance
when only the features of the top group of each method is used as the input data. This figure also
highlights that the proposed method shows superior performance in all SNR environments. Therefore,
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we conclude that the proposed method is very effective at extracting the input data group. Figure 6
shows the classification performance when only the features of the top group of each method are used
as the input data. where the proposed method shows superior performance in all SNR environments.

Figure 3. Classification performance of each group obtained by the proposed method. The top group
achieves the best classification performance while the bottom group achieves the worse performance,
which shows the validity of the proposed method.

Table 11. Classification performance of each group obtained through the proposed method.

SNR −10 dB −5 dB 0 dB 5 dB 10 dB

Top group 80.67 81.02 90.65 96.17 97.45
Middle group 80 81.76 86.69 95.05 96.46
Bottom group 80 82.06 85.73 88.86 91.59

Figure 4. Classification performance of each group obtained by the mutual information method.
The bottom group achieves the best classification performance while the top group achieves the worse
performance, which.



Appl. Sci. 2020, 10, 588 11 of 14

Figure 5. Classification performance of each group obtained by the conventional method.

Table 12. Feature of each group used in the proposed method.

SNR Top Group Middle Group Bottom Group

−10 dB C62, C61, C63, C60, C21 C63, C60, C21, C41, C42 C20, C40, C42, C41, C21
−5 dB C63, C62, C61, C41, C21 C61, C41, C21, C20, C40 C60, C42, C40, C20, C21
0 dB C63, C42, C21, C62, C61 C21, C62, C61, C41, C20 C60, C40, C20, C41, C61
5 dB C21, C63, C42, C62, C41 C42, C62, C41, C61, C20 C40, C60, C20, C61, C41
10 dB C21, C41, C63, C42, C62 C63, C42, C62, C20, C61 C40, C60, C61, C20, C62

Table 13. Feature of each group used in the mutual information method.

SNR Top Group Middle Group Bottom Group

−10 dB C63, C40, C42, C62, C60 C42, C62, C60, C41, C61 C21, C20, C61, C41, C60
−5 dB C63, C40, C62, C41, C61 C62, C41, C61, C42, C20 C21, C60, C20, C42, C61
0 dB C60, C62, C41, C20, C40 C41, C20, C40, C61, C63 C21, C42, C63, C61, C40
5 dB C60, C62, C41, C20, C40 C41, C20, C40, C61, C63 C21, C42, C63, C61, C40
10 dB C62, C41, C60, C20, C40 C60, C20, C40, C61, C63 C21, C42, C63, C61, C40

Table 14. Feature of each group used in the conventional method.

SNR Top Group Middle Group Bottom Group

−10 dB C42, C40, C63, C41, C60 C63, C41, C60, C62, C20 C21, C61, C20, C62, C60
−5 dB C60, C40, C41, C63, C42 C41, C63, C42, C62, C61 C21, C20, C61, C62, C42
0 dB C60, C62, C41, C40, C20 C41, C40, C20, C61, C63 C21, C42, C63, C61, C20
5 dB C60, C62, C41, C20, C40 C41, C20, C40, C61, C63 C21, C42, C63, C61, C40
10 dB C60, C62, C41, C20, C40 C41, C20, C40, C61, C63 C21, C42, C63, C61, C40
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Figure 6. Classification performance when only the features of the top group of each method are used
as the input data.

5. Conclusions

Recently, the DNN-based AMC scheme has been studied as a method to improve jamming
performance. However, research on the features used as the input data is insufficient and most studies
aim at improving the calculation and the performance of the algorithm. In this paper, we propose an
efficient feature-extraction method for the DNN-based AMC, we analyze feature used as input data,
and we select an effective feature through the proposed method. From the results, it can be established
that even if the same amount of data is used, the difference in classification rate performance according
to each feature is large and the task of extracting efficient features is important. The optimal activity of
selecting input data will be to find the optimal feature group by comparing the performance according
to the combination of all the features. However, this is a difficult method to actually perform because it
requires a large amount of calculation. Therefore, it is necessary to analyze features such as conventional
techniques and proposed methods that use mutual information and correlation between data. It is
expected that the AMC with high classification performance can be realized with a small computation
effort by extracting the efficient feature values using the proposed method. Thus, we conclude that the
proposed method can be considered a method to improve the performance of the AMC for military
communication systems, AMC-based jamming systems, and the automatic coding and modulation for
commercial wireless communication systems.
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