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Abstract: In order to protect human lives and infrastructure, as well as to minimize the risk of
damage, it is important to predict and respond to natural disasters in advance. However, currently,
the standardized disaster response system in South Korea still needs further advancement, and the
response phase systems need to be improved to ensure that they are properly equipped to cope
with natural disasters. Existing studies on intelligent disaster management systems (IDSSs) in South
Korea have focused only on storms, floods, and earthquakes, and they have not used past data.
This research proposes a new conceptual framework of an IDSS for disaster management, with
particular attention paid to wildfires and cold/heat waves. The IDSS uses big data collected from
open application programming interface (API) and artificial intelligence (AI) algorithms to help
decision-makers make faster and more accurate decisions. In addition, a simple example of the use of
a convolutional neural network (CNN) to detect fire in surveillance video has been developed, which
can be used for automatic fire detection and provide an appropriate response. The system will also
consider connecting to open source intelligence (OSINT) to identify vulnerabilities, mitigate risks,
and develop more robust security policies than those currently in place to prevent cyber-attacks.

Keywords: decision support system; big data; artificial intelligence; Internet of Things; disaster
management

1. Introduction

Urban climate change is an important research issue that must be investigated using
multidisciplinary approaches that include both engineering and socio-environmental sciences [1].
An effective approach to strengthen disaster reduction strategies is to build a decision support system
(DSS) for each region. A DSS is based on the correlation between the infrastructure, industries, and
related communities in a region. Information on the technical, social, and economic properties of
a region is collected to establish an effective natural disaster prevention strategy. By analyzing the
collected data, we can easily identify the vulnerabilities. Disaster-preparedness strategies for all citizens
will make it easier to prepare and respond to real disasters.

Decision Support System

A DSS is an information system that supports decision-making by selecting the best option by
developing and comparing multiple alternatives to solve various issues. DSSs have a long history
of development. From the late 1950s to the early 1960s at the Carnegie Institute of Technology, Nutt
studied the theory of decision-making at an organization [2]. In the 1960s, MIT conducted technical
research related to reciprocating computer systems. Subsequent studies by Pomerol and Adam
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contributed to the development of the DSS concept [3]. In 1981, Bonczek, Holsapple, and Whinston
established a DSS framework in a book entitled “Foundations of Decision Support Systems” [4]. Similarly,
in 1988, Turban et al. [5] proposed a system to solve semistructured and unstructured problems.
This type of effective decision-making by combining the information gained from data processing,
learning, and decision-making experience is known as “intelligence DSS.” Today, DSSs are proven
to be an effective support system in businesses. In addition, DSSs have been the foundation for the
development of numerous hypotheses and tools, such as artificial intelligence (AI), human–computer
interaction, simulation methods, software engineering, and telecommunication for applications in
DSSs. The use of DSSs has grown rapidly since the 1950s, particularly with the aid of effective data
analysis tools, enabling improved decision-making using data and information. Several attempts are
being made by scientists to improve the effectiveness of decision-making by combining technologies
from related fields.

The components of a DSS include data management, model management, user interface,
knowledge management, and users, as presented in Figure 1. A DSS is an interactive system
that allows decision-makers to easily analyze and evaluate decision models and to process the data to
solve complex, unstructured, and nonrepetitive decision-making tasks. The decision-makers access
the system via the interface and management components and extract various types of data and
information from the database model according to their requirements.
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Figure 1. Decision support system components.

(a) Data Management: The data management component comprises a database that stores various
data for decision-making as well as a database management system (DBMS). The function of the
DBMS in a DSS is to store and provide the data for the decision-making.

(b) Model Management: The model management component comprises a model base that stores
various models necessary for the decision-making as well as a model base management system
(MBMS). Particularly, the MBMS plays a key role in decision support by providing functions to
develop, modify, and control the models required for the decision-making.

(c) User Interface: The user interface is the module system providing an interface between the user
and the system for importing and exporting data and performing various analytical procedures.
It is also known as the dialogue generation and management software (DGMS) because it provides
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user-friendly and dialogue functions that are easy to understand and use, via menus or graphics
processing formats.

(d) Knowledge Management: This module provides quantitative information about the relationships
between complex data. Knowledge management provides decision-makers with knowledge
and alternative solutions for problem solving. It also signals to the decision-makers if there is a
difference between the predicted result and the actual result.

(e) Users: The users who use a DSS are primarily the managers who are responsible for important
business decisions. They choose the most appropriate model from the model base, enter the
necessary data from the database or import them directly into the model, and then evaluate and
analyze the options to determine the best alternative.

This paper is organized as follows. Section 2 presents a literature review about the applications of
DSSs, AI, and big data for disaster management. Section 3 discusses the methodology regarding the
conceptual framework of an intelligent DSS (IDSS). It also introduces the recent problems of heatwaves,
cold waves, and wildfires, and then proposes an AI IDSS system. Finally, Section 4 presents the results
and future research.

2. Literature Review

2.1. DSS for Disaster Management

Although the use of DSSs to support disaster recovery efforts has provided tremendous benefits,
these systems have certain disadvantages. One of the disadvantages is the inability to freely and rapidly
transfer data between individuals and organizations. This is because the systems and technologies
of different organizations are different or incompatible. Nonetheless, DSSs have overcome these
disadvantages and are widely used by managers. Rajabifard et al. [6] used an intelligent disaster
DSS (IDDSS) as a platform to integrate road, traffic, geographic, economic, and meteorological data.
IDDSSs are used in the management of road networks during floods. To prevent hazardous traffic
scenarios, they provide the law enforcement with the exact locations to establish traffic management
points (TMPs) during an emergency. In 2011, Ishak et al. [7] created a conceptual model of a smart DSS
for reservoir operations in case of emergencies such as heavy rainfall. This model can help reservoir
operators make accurate decisions for releasing reservoir water so that there is sufficient space for the
released water, to avoid local flooding. Moreover, AI has also been integrated into DSSs to increase
the decision-making efficiency. Dijkstra’s algorithm can find the shortest path between two points
and has several applications in various areas. This algorithm has been widely employed in forest fire
simulations [8] and in improving the efficiency of route planning [9]. In 2011, Akay et al. [10] improved
this algorithm using the Geographic Information System (GIS) to assist firefighters in determining the
fastest and safest access routes. This system requires numerous spatial databases, including those of
road systems and land. Barrier systems have also been established to simulate the scenario of banned
roads; hence, these systems are not only used to determine the fastest route but also to assist firefighters
in identifying unforeseen scenarios and determining safe and reliable routes.

To deal with disasters, we require an effective disaster management system. However, disaster
management systems depend on various data and information and knowledge of previous disasters.
Therefore, coordination between the relevant agencies is necessary to integrate the data effectively.
A DSS is unable to prevent all catastrophic damage; however, it can mitigate the potential risks by
developing early warning strategies and preparing appropriate options. Particularly in the context of
disaster management [11], the process of developing intelligent systems focuses on the methods of
transferring expertise from human experts to computers and implementing theoretical models based on
the transferred knowledge. The model proposed by Turban (Figure 2) included the five main activities
of DSS components [12]. Within the scope of AI, there are several methods for solving interdependent
problems. Examples of alternative methods include Bayesian networks, which approximate reasoning
(fuzzy logic), and metadata (artificial neural networks, machine learning, genetic algorithms, and
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swarm intelligence), which involves the use of a hybrid approach combining the fuzzy IF–THEN rules
and optimization techniques to collect and present inaccurate information [13].Appl.Sci, 2019, 11, x; doi: 4 of 13 
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Figure 2. The process of knowledge engineering (adapted).

2.2. AI for Disaster Management

AI is used in various applications, such as customer service, transactions, and healthcare. Recently,
researchers have found that AI can be employed to predict disasters. With numerous high-quality
datasets, AI can predict the occurrence of natural disasters, which can assist in saving the lives of
thousands of people and in preventing financial losses. Natural disasters that can be predicted by AI
include earthquakes, floods, storms, forest fires, and volcanic eruptions. In the field of earthquake
prediction, researchers are collecting vast amounts of seismic data for analysis using deep-learning
systems. Researchers use the data collected from past earthquakes to make improved predictions
for future earthquakes. Alarifi et al. [14] proposed an AI prediction system based on artificial neural
networks, which could be used to predict the magnitude of an earthquake. AI can also employ seismic
data to analyze the magnitude and pattern of an earthquake, as well as to aid in predicting the occurrence
of an earthquake. Goymann et al. [15] presented data for the establishment, training, and evaluation of
a neural network to detect flood and water levels. AI-based systems can learn rainfall records, climate
records, and flood simulation tests and can predict floods better than traditional systems.

2.3. Big Data for Disaster Management

Big data result from the large amount of data generated by the explosive growth of information
technology and communications, as well as by the rapid spread of smart devices [16,17]. They have
been applied in several fields [18,19]. Using large datasets, it is possible to analyze past disaster data
and develop future scenarios for the possibilities of disasters and the damage caused by them [20].
Big data contribute to the science of decision-making by developing a technology that can read common
patterns of user behaviors and predict future steps [21]. AI is defined as a computer program that can
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think and process information like a human being. It is the science that enables computers to perform
intellectual activities based on experience and knowledge. Existing data serve as the criteria for
core judgments, and an AI learning algorithm narrows the choices for decision-making and provides
feedback that is very similar to human judgment. For an optimal response to complex disasters, a
large amount of data should be analyzed and used; hence, AI can be used to understand large-scale
social phenomena [22]. By big data analysis and simulation, the selection of the required actual data
can be achieved using the judgment of AI based on the existing empirical data.

2.4. Intelligent Decision Support Systems

Using AI, researchers have attempted to improve the effectiveness of decision-making. Integrated
AI support systems or IDSSs have been created and used in various fields, such as healthcare
and commerce.

These systems use AI tools to infer, learn, memorize, plan, and analyze the data. Simon presented
four stages in a decision-making process, which are displayed in Figure 3 [23]. Intelligence is the first
stage of the study and requires the decision-makers to develop an understanding of the problem and
collect information related to the decision-making. Similarly, the design stage involves characterizing
the data with important variables based on decision issues, determining the criteria for the decisions,
and developing decision models that can be used to evaluate alternative decisions. In the third stage,
the decision-makers review the alternatives and choose the consolidated decisions that satisfy the
alternatives. The final stage, sometimes referred to as evaluation, is when the decision-makers assess
the consequences of a decision.

Appl.Sci, 2019, 11, x; doi: 5 of 13 

 

as the criteria for core judgments, and an AI learning algorithm narrows the choices for 

decision-making and provides feedback that is very similar to human judgment. For an optimal 

response to complex disasters, a large amount of data should be analyzed and used; hence, AI can be 

used to understand large-scale social phenomena [22]. By big data analysis and simulation, the 

selection of the required actual data can be achieved using the judgment of AI based on the existing 

empirical data. 

2.4. Intelligent Decision Support Systems 

Using AI, researchers have attempted to improve the effectiveness of decision-making. 

Integrated AI support systems or IDSSs have been created and used in various fields, such as 

healthcare and commerce. 

These systems use AI tools to infer, learn, memorize, plan, and analyze the data. Simon 

presented four stages in a decision-making process, which are displayed in Figure 3 [23]. Intelligence 

is the first stage of the study and requires the decision-makers to develop an understanding of the 

problem and collect information related to the decision-making. Similarly, the design stage involves 

characterizing the data with important variables based on decision issues, determining the criteria 

for the decisions, and developing decision models that can be used to evaluate alternative decisions. 

In the third stage, the decision-makers review the alternatives and choose the consolidated decisions 

that satisfy the alternatives. The final stage, sometimes referred to as evaluation, is when the 

decision-makers assess the consequences of a decision. 

INTELLIGENCE
• Observe and understand the problem

• Develop a statement of the problem and 
decision

• Acquire information relevant to the decision

DESIGN
• Identify variables and criteria for the decision 

• Specify relationship between variables

• Identify controllable and uncontrollable 
events

• Develop decision models that can be used to 
evaluate alternatives

• Develop alternatives

CHOICE

• Evaluate decision alternatives

• Make or recommend a decision that best 
meets the decision criteria

IMPLEMENTATION
• Consider consequences of the decision 

• Gain confidence in the decision

• Develop an implementation plan

• Secure needed resources

• Put implementation plan into action

 

Figure 3. Four decision-making stages  

IDSSs utilize AI techniques to provide better support to decision-makers. AI tools, such as 

fuzzy logic, case-based reasoning, evolutionary computing, artificial neural networks, and 

intelligent agents, when combined with a DSS provide powerful methods for solving difficult 

problems that are frequently real-time and involve large amounts of distributed data [24]. IDSSs 

utilize some of the below-mentioned tools: 

o Fuzzy logic for intelligent decision support; 

Figure 3. Four decision-making stages



Appl. Sci. 2020, 10, 666 6 of 13

IDSSs utilize AI techniques to provide better support to decision-makers. AI tools, such as
fuzzy logic, case-based reasoning, evolutionary computing, artificial neural networks, and intelligent
agents, when combined with a DSS provide powerful methods for solving difficult problems that are
frequently real-time and involve large amounts of distributed data [24]. IDSSs utilize some of the
below-mentioned tools:

# Fuzzy logic for intelligent decision support;
# Expert systems for intelligent decision support;
# Evolutionary computing for intelligent decision support;
# Intelligent agents for intelligent decision support.

Disaster response is a continuous decision-making process based on past experiences, because a
disaster scenario is recognized as a disaster until it ends. In the past, because of the limitations regarding
information and data-collection technology, the decision-making process had various constraints and
relied on the subjective experiences of the decision-makers. Recently, however, information technology
has developed considerably and the amount of information that can be used to make decisions
has increased sharply. The information processing ability of humans is limited, and responding to
disasters requires timely decisions. The benefits of combining a DSS and AI to create an IDSS in
disaster management are clear. However, the use of information of past disasters to analyze and
make predictions has not sufficiently been investigated. Therefore, this study aims to contribute
to this growing area of research by exploring a conceptual framework that supports intelligent
decision-making using big data to help decision-makers make more rapid and more accurate decisions.

Recently, a series of innovative solutions based on free and open-source software has been
developed [25–27]. Open source information is data collected from publicly available sources and
the system data. In this study, the proposed system also collected data from various open sources.
With the growth of big data and online social networks, increasing amounts of data are available online,
which creates opportunities for criminals—particularly adversaries preparing for a cyberattack [28].
Thus, an IDSS can become vulnerable to cyberattacks. Consequently, the scientific community,
companies, practitioners, and governments worldwide are searching for solutions to mitigate risks [29].
Hayes and Cappa [30] introduced open source intelligence (OSINT) to provide tactical and strategic
recommendations for organizations to prevent cyberattacks by identifying vulnerabilities, mitigating
risks, and formulating robust security policies.

3. Methodology

Heat waves, cold waves, and wildfires are the main concerns for the South Korean government,
because of the difficulty in predicting and responding to these events. Therefore, the proposed AI
IDSS focuses on the aforementioned phenomena. In the next two subsections, the issues and scenarios
regarding heat waves, cold waves, and wildfire phenomena in South Korea are briefly introduced.
Based on these issues, an AI IDSS with a multifunction AI algorithm is presented.

3.1. Issues and Scenarios of Heatwave/Cold Wave Disasters

The fund for disaster support money paid to the families of those who are killed by heat is limited
between 5000 and 10,000 dollars (in the case of household heads) based on the South Korea disaster
relief regulations and costs (DRRCs) for disaster recovery. However, no system or technology has
been established to objectively determine the causes of deaths during the summer in South Korea.
In addition, there have been numerous difficulties in diagnosing the causes of deaths owing to victim
interventions and ethical issues that may have arisen. Furthermore, while heatwave damage occurs in
almost all areas during the summer, the extent of the damage varies depending on the local scenarios
and personal health conditions, which can lead to legal repercussions.
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A domestic cold wave alarm is issued based on three criteria. It is issued during the winter
(October to April), when the minimum temperature the following morning is expected to drop by more
than 10 ◦C compared to that of the previous day and is below 3 ◦C, or when the temperature is lower
than the average winter temperature values of previous years by 3 ◦C. The warning is also issued when
the minimum morning temperature is expected to be below 12 ◦C for two days or more, or when there
is a significant loss of life and property due to a sudden fall in the temperature. If there is a specific list
of victims or temperature damages, it is possible to set an absolute standard for facility damages or
loss of life. However, as such a database has not yet been established, cold weather management will
need to be implemented and systematically managed by generating the associated database.

There is no big data AI study case for heat and cold waves. In 2018, the Ministry of Public
Administration and Security identified heat and cold waves as new types of disasters. Currently, there
is no specific management standard to deal with crises caused by heat and cold waves in Korea. It is
also necessary to improve the speed and accuracy of the system that predicts heat and cold waves.
For example, it is possible to predict pre-heat phenomena two days in advance; however, in developed
regions such as Europe or the U.S., this can be done three to five days in advance. Through this study,
by collecting data to prevent and be prepared for disasters, an AI-based support system was developed
to enable more rapid and more accurate decision-making than is currently achievable.

3.2. Issues and Situations Of Forest Fire Disaster

When considering information on the direction and speed of a spreading fire, a possibility of
widespread fire is found to exist. Accordingly, a rapid plan to protect nearby houses and evacuate
people is required. However, a gap remains in relaying the wildfire information from the fire helicopter
to the ground firefighter commander. Even if a firefighter commander decides that an emergency
defense is needed, it is still necessary to go through the integrated fire protection procedure to adopt
the necessary measures. In the process, damages are frequently increased because of the inappropriate
propagation of information or lack of content transformation. Therefore, it is necessary to improve the
information sharing system for handling forest fires.

3.3. A System Using Big Data and AI for Intelligent Decision Support

The level of success of a DSS is assessed using two parameters. The first parameter is the data input
rate and output rate, which represent the information that is useful for the decision-making process. The
second parameter is time. To improve the efficiency of the DSS in this study, a conceptual framework
using big data and AI to enhance the above-mentioned parameters is proposed. The decision points of
the standard manual for heat/cold wave and forest fire crisis management and the services provided
by the decision-maker in the event of a disaster are summarized in Figure 4, along with the big data
system processes and big data analysis. The proposed big data process is composed of data sources,
collection, storage, analysis, and presentation order, and is built on the basis of the data lake (DL)
form. The data collection is performed based on the type of natural disaster that a given DSS is built
to deal with. The choice of data source for the analysis is extremely important. If the collected data
are not reliable, they will be difficult to process and discard. Extreme disasters, such as heat and cold
waves, need to be analyzed, forecasted, and planned for in advance. By contrast, with forest fires,
the post-disaster response includes population evacuation, which is more important than forecasting.
Therefore, camera data should be analyzed to predict the speed and direction of the flames and to send
information to the people in the affected areas.
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To collect and store data, it is important to build a DL. A DL differs from a data warehouse (DW) in
that the former contains both structured and unstructured data. Post data collection, it undergoes the
process of extraction, transformation, and loading (ETL); however, this process is time-consuming and
makes it difficult to arrive at a timely decision. Hence, this system splits the DL archive into two parts.
The first is a platform that can store the data in the original form without going through the ETL process,
and the second is the data analysis platform that undertakes the ETL process. The collected data
include real-time data and batch data. Real-time data are structured data, which can be periodically
collected and processed by the existing DWs. Batch data are the raw and unstructured data that need
to be used for analysis.

3.4. Data Collection and Storage

Essentially, most structured data are collected by an open API. The data are provided in
Comma-Separated Values (CSV) format on a public data portal operated by the Ministry of
Administration and Security. Because big data systems use data from various organizations, the range
of the collected data is wide. However, only the data considered necessary for the analysis must be
used. In the case of image data that require real-time processing, satellite image information can be
used to cover a wide area. Along with satellite images, Closed-Circuit Television (CCTV) cameras
can collect image data anytime and anywhere, and they can be used to detect a fire early. Most CCTV
cameras in South Korea are used for traffic or crime prevention, and their data storage cycle is only
30 days. Thus, their application to machine learning in the disaster field is limited. These elements are
listed in Table 1, which describes the types of disaster, data sources, and organizations responsible for
answering the questions of decision-makers and enabling them to make rapid and precise decisions.
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Table 1. Questions and data sources required for disaster response (Application Programming Interface
(API), Closed-Circuit Television (CCTV), Unmanned Aerial Vehicle (UAV)).

Disaster Type Data Source Question

Extreme Weather Statistical Geographic Information
Service (Open API)

Current status of population and households
in heat/cold wave expected areas

Extreme Weather Statistical Geographic Information
Service (Open API)

Status of land use and age of buildings in
heat/cold wave expected areas

Extreme Weather Data Portal (Open API) Status of operation of hot/cold shelter in
heat/cold wave expected areas

Extreme Weather Korea Centers for Disaster Control
and Prevention (Document)

Cases of human damage from past
heat/cold waves

Extreme Weather
Wildfire

Korea Meteorological Administration
(Open API)

Weather status (temperature, precipitation,
wind, humidity, atmospheric pressure)

Extreme Weather
Wildfire CCTV, UAV, Satellite (Image, Video) Disaster image information

Heat Wave K-Water (Open API) Status of water supply in heat/cold wave
expected areas

Wildfire Data Portal (Open API) Forest fire danger rating index

Wildfire Data Portal (Open API) Past wildfire disaster cases

Wildfire Korea Database on Protected Areas
(CSV)

Status of cultural assets and hazardous
facilities near the forest area

3.5. Machine Learning Based on a Data Analysis Algorithm for AI Management

The algorithm modeled for the machine learning data analysis is displayed in Figure 5. It uses
convolutional neural network (CNN) and generative adversarial network (GAN) algorithms for natural
disaster detection and employs reinforcement learning (RL) to predict wildfire direction. A CNN is a
specific type of artificial neural network that uses perceptron, a machine learning unit algorithm, to
analyze the data. A CNN can be applied to image processing, natural language processing, and other
types of cognitive tasks.
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The GAN algorithm, which is an unsupervised learning algorithm used in the model, utilizes
image data both from fires and from normal conditions for learning. Real-time CCTV and Unmanned
Aerial Vehicle (UAV) data are then fed into and trained in the models to determine the occurrence of a
fire. If it is not a forest fire, then the used data will be stored and utilized for subsequent training. In the
case of forest fires, significant information about the weather and real-time satellite images are required.
The weather data include the temperature, wind speed, wind direction, rainfall, and humidity. At this
point, the model is transformed into an enhanced model that predicts the propagation speed and the
direction of the fire per unit of space.

The following discussion presents how the proposed algorithm can be used for fire detection and
response. CNNs were first introduced by LeCun et al. [31]. By collective knowledge from the training
data, computers can learn and understand a structure based on a hierarchy of concepts. A common
CNN architecture contains various types of processing layers including convolution, pooling, and
fully connected layers [32]. The optimization process of a CNN is conducted by trial and error and
guided by checking the validation set error [33]. In this study, the overall architecture and layers of
FireNet [33] were used. The FireNet CNN architecture contains three convolutional layers of sizes
64, 128, and 256, with kernel filters of sizes 5 × 5, 4 × 4, and 1 × 1, respectively. Each convolutional
layer is followed by a max-pooling layer with a kernel size of 3 × 3 and local response normalization.
This set of convolutional layers is followed by two fully connected layers, each with 4096 incoming
connections and a hyperbolic tangent activation function. A dropout of 0.5 is applied across these two
fully connected layers during the training to offset the residual over-fitting. Finally, we obtain a fully
connected layer with two incoming connections and a soft-max activation output [33].

The experiment was performed using a dataset of 9852 images from Chenebert et al. [33], and the
testing was conducted on 2931 images.

The experiment was performed using an NVIDIA GeForce GTX 2080 Ti with 12 GB onboard
memory and a deep learning framework [34] on an Intel Xeon CPU E3-1230 v6 with 32 GB RAM. From
the results, it was noted that FireNet could predict the test data with an accuracy of 91.2%. Figure 6
displays the grad class activation map (CAM) results, elucidating how the computer differentiated
between a fire and a non-fire. This demonstrates that this algorithm can be used for automatic fire
detection and can suggest the appropriate response.
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4. Conclusions

With climate change, natural disasters have increased in frequency and intensity compared to
those in the past. Thus, in this study, we proposed a support system for disaster response decisions
using big data storage and machine learning analysis. We focused on forest fires and hot/cold disasters,
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which cause significant loss of life and property annually. Current disaster area systems focusing on
simple methods of information collection, efficient visualization, storage systems, and big data analysis
are inadequate. In other countries, big data analysis conducted during the entire process of disaster
management, including prevention, preparation, response, and recovery, mainly uses video data and
social media. Based on previous studies, we developed a big data analysis algorithm to support
decisions for heat wave disasters and proposed its application. In the field of disaster management,
which requires prompt decisions, if the current forest fire detection system employs image recognition
technology intelligently, preventive responses can reduce the damage. In addition, it can provide
information that may be useful for decision-making, instead of yielding simple statistical information.
Moreover, a simple example of using a CNN to detect fire in a surveillance video was introduced.
It was evident that this algorithm could be used for automatic fire detection and provide an appropriate
response. This conceptual framework can support decision-makers and enable them to make correct
decisions that can save lives, reduce property damage, and assist in predicting disasters. In the future,
the system and the algorithm will be tested with real events to gradually increase its accuracy by
diversifying the input data and correcting the algorithms. We will also consider connecting the system
with OSINT to identify vulnerabilities, mitigate risks, and formulate more robust security policies than
the current ones to prevent cyberattacks.
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Abbreviations

The following abbreviations are used in this manuscript:

Decision Support System DSS
Big Data BD
Internet of Things IOT
Database Management System DBMS
Model Base Management System MBMS
Dialogue Management and Management Software DGMS
Intelligent Disaster Decision Support System IDDSS
Traffic Management Points TMP
Artificial Intelligence AI
Intelligent Decision Support System IDSS
Open Source Intelligence OSINT
Disaster Relief Regulations and Costs DRRC
Data Base DB
Data Lakes DL
Extraction, Transformation, and Loading ETL
Social Networking Service SNS
User Interface UI
k-Nearest Neighbor KNN
Convolutional Neural Network CNN
Recurrent Neural Network RNN
Multilayer Perceptron MLP
Support Vector Machine SVM
Generative Adversarial Network GAN
Bidirectional Encoder Representations from Transformers BERT
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Data Warehouse DW
Comma-Separated Values CSV
Closed-Circuit Television CCTV
Class Activation Maps CAMs
Unmanned Aerial Vehicle UAV
Application Programming Interface API
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