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Abstract: A set of stable and identifiable points—known as control points—are interconnected
by direction, distance or height differences measurements form a geodetic network. Geodetic
networks are used in various branches of modern science, such as monitoring the man-made
structures, analysing the crustal deformation of the Earth, establishing and maintaining a geospatial
reference frame, mapping, civil engineering projects and others. One of the most crucial components
for ensuring the network quality is Geodetic Network Design. The design of a geodetic network
depends on its purpose. In this paper, an automatic procedure for selection of control points
is proposed. The goal is to find the optimum control points location so that the maximum
influence of an anomaly measurement (outlier) on the coordinates of the network is minimum.
Here, the concept of Minimal Detectable Bias defines the size of the outlier and its propagation
on the network coordinates is used to describe the external reliability. The proposed procedure
was applied to design a levelling network. Two scenarios were investigated: design of a network
with one control point (minimally constrained levelling network) and another with two control
points (over-constrained levelling network). The centre of the network was the optimum position
to set the control point. Results for that network reveal that the centre of the network was the optimum
position to set the control point for the minimal constraint case, whereas the over-constraint case were
those with less line connections. We highlight that the procedure is a generally applicable method.

Keywords: geodetic network; outlier; reliability; reference points; surveying; quality control

1. Introduction

A geodetic network consists of a set of stable and identifiable points located on the Earth’s
surface or near it [1]. Their positions are associated with a coordinate reference system. These
points are referred to control points. These control points provide the common basis for surveying
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and mapping activities. of particular importance is the densification of a geodetic network. In that
case, new geodetic networks are established based on an existing network. In other words, new points
are often tied to previously established control points.

If we want to determine the coordinates of that new points, measurements based on directions,
distances, height differences and/or space-based geodetic techniques, such as Global Navigation
Satellite Systems (GNSS), should be performed between the new points and the existing control points
(now we just refer “existing control points” to as control points). In most cases of geodetic networks,
the measurements bear a known linear relationship with the unknown parameters. In other words,
the mathematical model that relates measurements to parameters is linear. In that case, the coordinates
of new points are unknown parameters, whereas the coordinates of control points are constraints on
the mathematical model. Details about constraints can be verified in [2].

The coordinates of the new points are often computed from the Least-Squares Estimation (LSE).
In other words, we seek to find the coordinates of the new points that minimises the sum-of-squares
of the residuals. The residuals is the difference between the observed values and the estimated
(or expected) values of the measurements [3–5].

A step prior to the deployment of a geodetic network is the Geodetic Network Design. The quality
of a geodetic network is characterised by its precision, reliability, and cost [6,7]. The covariance matrix
of the least-squares parameters is associated with the degree of the network precision. There is also
the internal and external reliability of a geodetic network, which were both introduced by [4]. Internal
reliability refers to the ability of a network to detect outliers in the set of observations, and external
reliability refers to the effect of the undetectable outliers on the estimated parameters. Here, outlier
is defined according to [8]: “An outlier is an measurement that is so probably caused by a gross error that it
is better not used or not used as it is”. The cost is related to the effort required to implement the design
and related expenses.

There is not the best geodetic network, but the optimal geodetic network. Designing
a geodetic network in the optimal sense involves designing an optimal configuration for the network
(e.g., selection of the position of network control points). Optimal design problem of a geodetic network
was widely investigated since the pioneering work of [9,10]. Since then, several works were described
in detail in papers published in scientific journals (see e.g., [1,6,7,11–19]). Details about the orders
of design is outside of discussion in this paper. However, details can be found in [10,11]. In this paper,
we provide an automatic procedure to design a geodetic network in terms of reliability. Here, we use
the reliability theory for designing geodetic networks. The reliability theory becomes a fundamental
part of modern data analysis [1,20–23]. This is due to [3,4].

Generally, the random measurement errors in a system are unavoidable. However, the presence
of an outlier in the dataset can jeopardise the reliability level of the system. To detect a possible
outlier, Baarda [4] introduced the Data Snooping procedure for the detection of a single outlier
in linear(ised) models. Most of conventional geodetic studies have a chapter on Baarda’s
data snooping procedure, e.g., [5,24]. Data snooping has become very popular and is routinely
used in adjustment computations [25]. Although introduced in the context of geodetic networks,
Data Snooping is a generally applicable method of outlier detection in both univariate and multivariate
approaches [26].

Data snooping is a procedure based on hypothesis testing, which consists of screening each individual
observation for a possible outlier. The test statistic associated with Data Snooping is given by a normalised
least-squares residuals. That test, known as Baarda’s w-test, can also be derived as a particular case
of the generalised likelihood ratio test [27]. Baarda’s w-test makes a decision between the null H0

(model in the absence of an outlier) and a single alternative hypothesisHA (model in the presence of an
outlier). In that case, rejection ofH0 automatically implies acceptance ofHA, and vice-versa [21,22,28].
Here, we restrict ourselves to the only one single alternative hypothesis. In the case where multiple
alternative hypotheses are in play, the readers can consult, for example, [22,26].
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Since Data Snooping is based on a hypothesis testing, it may lead to a errors decision. There
is the probability of rejecting a true null hypothesis H0, which is well-known type I decision error
(denoted by “α”). The probability level α (known as significance level of a test) defines the size of a test
and is often known as “false alarm probability” [29]. On the other hand, there is the probability
of rejecting a true alternative hypothesis HA (type II decision error—‘missed detection’, denoted
by “β”). Based on the probability levels α and β, Baarda [3,4] derived the concept of Minimal
Detectable Bias (MDB)—the term given [30]. The MDB is the additional bias (or are the additional
biases) in the parameters vector that can be detected by the w-test with a certain probability of 1− β.
The MDB can be computed before actual measurements were carried out, using only a functional model
and the expected stochastic properties of the data [5]. In addition, it is possible to describe the influences
of the MDBs on the geodetic network coordinates (i.e., on the parameters). The set of MDBs describes
the internal reliability, whereas their propagation on the parameters is said to describe the external
reliability [31].

The internal and external reliability, therefore, are very useful tool to assess the magnitude
of possible errors that can be detected during the pre-processing of the data. For this reason,
the concept of the internal (quantified by MDB) and external reliability can be applied during
the design stage of geodetic network. In this context, the goal is to apply the reliability theory
for designing geodetic network. The quality criterion considered here is based on the external
reliability. The position of the control point of geodetic network is selected so that the maximum
influence of an MDB on the coordinates of the network points is minimum. A levelling network
is used as an example of application of the proposed method. Here, we consider a scenario where
the observations of the network have the same uncertainties and another with different uncertainties.
We also consider the case of minimally constrained (one control point in the case of levelling network)
and over-constrained network (two control points).

2. Conventional Reliability Theory

The null hypothesis H0 corresponds to a model in the absence of outliers. Thus, the null
hypothesis of the standard Gauss–Markov model in linear or linearised form is given by [24]:

H0 : E{y} = Ax +E{e} = Ax, (1)

where E{.} is the expectation operator, y ∈ Rn the vector of measurements, A ∈ Rn×u the Design
Matrix) (also referred as Jacobian matrix) of full rank u, x ∈ Ru the unknown parameter vector,
and e ∈ Rn the unknown vector of measurement errors.

Typically, it is assumed that the errors of the good measurements are normally distributed
with expectation zero [32], i.e.,:

e ∼ N(0, Qe), (2)

with a known positive definite symmetric covariance matrix Qe ∈ Rn×n. Here, we confine ourselves
to the case that A and Qe have full column rank.

The redundancy (or degrees of freedom) of the model in Equation (1) is r = n− u. However,
any model is only an approximation to the truth. This implies that we inevitably encounter misspecified
models. In contrast to theH0, Baarda [4] introduced a mean shift model that defines the alternative
hypothesisHA, also referred to as model misspecification, as follows:

HA : E{y} = Ax + ci∇i +E{e} =
(

A ci

)( x
∇i

)
, ∀i = 1, · · · , n (3)

where ci takes the form of a canonical unit vector with 1 as its ith entry and zeros elsewhere. The 1 value
means that an ith bias parameter of magnitude∇i affects an ith measurement and 0 otherwise. We have,
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for instance, ci=
(

0 0 0 · · · 1ith 0 · · · 0
)T

. In other words, ci specifies the type of model error
and ∇i the size of the model error, or outlier.

The likelihood ratio test to testH0 againstHA is given by:

Accept H0 i f |wi| ≤ k = Φ−1(1− α

2
), reject otherwise in f avour o f HA (4)

and the test statistics (known as Baarda’s w-test) are the normalised least-squares residuals given by [4]:

wi =
ci

TQ−1
e ê√

ciTQ−1
e QêQ−1

e ci

(5)

According to (4) and (5), we have:

• k is the critical value. The critical value k is the the tabular value from the cumulative distribution
function (cdf) of the standard normal N(0, 1) based on the chosen of a significance level α. Because
we perform a two-sided test of the form |wi| ≤ k we have α/2. For example, for α = 0.01,
we obtain k = 2.576. In this case, if |wi| > 2.576 for some yi one may rejectH0.

• Φ−1 denotes the inverse of the normal cumulative distribution function.
• ê is the least-squares residuals vector underH0 and Qê the covariance matrix of the best linear

unbiased estimator of ê underH0.

The decision rule in (4) says that if the test statistic |wi| in (5) is larger than some critical value
k, i.e., a percentile of its probability distribution, then we reject the null hypothesis H0 in favour
of the alternative hypothesisHA.

Because w-test is based on binary hypothesis testing, in which one decides between the null
hypothesisH0 and a single alternative hypothesisHA, it may lead to type I decision error (α) and type
II decision error (β). The probability level α is the probability of rejecting the null hypothesis when
it is true, whereas β is the probability of failing to reject the null hypothesis when it is false.
The complements of α and β are well-known confidence level (CL) and the statistical power (γ),
respectively. The first deals with the probability of accepting a true null hypothesis; the second,
with the probability of correctly accepting the alternative hypothesis. In other words, we have
CL = 1− α and γ = 1− β.

The normalised least-squares residual wi follows a standard normal distribution
with the expectation that µ = 0 if H0 holds true. On the other hand, if the system is contaminated
with a single error at the ith position of the dataset, there is an outlier that causes the expectation
of wi to become µ > 0. The effect can be best understood using the non-central chi-squared
distribution with one degree of freedom (i.e., for a single outlier). Under the alternative
hypothesis HA, the expectation of wi is the square-root of the non-centrality parameter λq=1 from
the chi-square distribution with one degree of freedom (q = 1), which is given by:

E{wi} =
√

λq=1 =
√

ciTQ−1
e QêQ−1

e ci∇2
i (6)

where λq=1 is the non-centrality parameter for one degree of freedom q = 1. UnderHA, the expectation
of wi is

√
λq=1, which is caused by the presence of an outlier.

The non-centrality parameter λq=1 in Equation (6) describes the expectation of a w-test when
the null hypothesis H0 is false (so the alternative hypothesis HA is true). This leads to their use
in calculating statistical power. The term ci

TQ−1
e QêQ−1

e ci in Equation (6) is a scalar for q = 1
and therefore it can be rewritten as follows [30]:

|∇i| = MDB(i) =

√
λq=1

ciTQ−1
e QêQ−1

e ci
, ∀i = 1, · · · , n (7)
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where |∇i| is the Minimal Detectable Bias MDB(i), which can be computed for each measurement
of the n alternative hypotheses according to Equation (3).

For a single outlier, the variance of estimated outlier, denoted by σ2
∇i

, is:

σ2
∇i

=
(

ci
TQ−1

e QêQ−1
e ci

)−1
, ∀i = 1, · · · , n (8)

Thus, the MDB can also be written as:

MDB(i) = σ∇i

√
λq=1, ∀i = 1, · · · , n (9)

where σ∇i =
√

σ2
∇i

is the standard-deviation of estimated outlier ∇i.
The MDB in Equations (7)–(9) of an alternative hypothesis is the smallest magnitude outlier that

can lead to rejection of a null hypothesis for a given α and β. Thus, for each model of the alternative
hypothesisHA, the corresponding MDB can be computed. The key point of MDB is that it can work as
a tool for designing systems capable of withstanding outlier with a certain degree of probability.

The non-centrality parameter λq=1 can be computed as a function of type 1 decision error α,
type 2 decision error β and the degrees of freedom of the test q. To obtain the non-centrality parameter
λq=1, here we use the recursive algorithm based on the work by [33], namely bisection algorithm.
with the non-centrality parameter, and knowing the uncertainty of the sensor and the architecture
of the model, it is possible to compute the MDB according to Equations (7)–(9). The MDB was further
investigated for a single outlier in a singular Gauss–Markov model [34]. There are also studies
covering either independent or correlated measurements [35–39]. It is also possible to set up for
the case of multiple (simultaneous) outliers. The readers who are interested in multiple (simultaneous)
outliers issue can refer to [40–44]. For more details about alternative models, refer to [8,45].

To quantify the external reliability, one should propagate each MDB on the parameters. In other
words, the external reliability measures the influence of an undetected outlier on the estimation
of coordinates of the geodetic network, and it is given by:

∇X = (ATW A)−1(ATWci|∇i|) (10)

where ∇X ∈ Ru is the influence of an undetectable outlier ∇i located at a given position according
to the vector ci in (3) and W ∈ Rn×n the known matrix of weights, taken as W = σ0

2Q−1
e , where σ2

0
is the variance factor.

Here, we compute the maximum external reliability (max (∇X)) as follows:

max {∇X} = max {(ATW A)−1(ATWci MDB)} (11)

It is important to mention that the maximum external reliability max {∇X} can be a positive or
a negative value. According to Equation (1), we consider the maximum influence of an undetectable
outlier ∇i = MDB on the parameters.

Although here the reliability theory was applied in a specific network, it is a generally applicable
method. For example, the reliability theory was used to measure the integrity of the receivers for civil
aviation, which is a main tool for safety-of-life applications, see e.g., [46].

In the next section, we present an automatic procedure for designing geodetic networks.
The proposed procedure was computationally developed based on reliability theory. Specifically,
we apply reliability theory to automatically define the optimal location of control points.

3. Automatic Procedure to Design the Location of Control Points in the Geodetic Network

For the establishment of a geodetic network, we must define which points of the network will
have their coordinates previously determined in the desired reference system. These points are called
control points, or constraint points. These points that allow the other points of the geodetic network
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to be linked to a reference system. Therefore, it is essential to define the location of these control points
at the design stage of a geodetic network. the proposed automatic method here focuses on designing
of the geodetic networks in terms of high reliability. Under the present proposal, the quality criterion
to be considered during the design stage is based on the smallest value of the maximum influence
of an outlier on the coordinates of the network (i.e., maximum external reliability). The method does
not depend on the real measurements values but only on the model design, i.e., the network geometry
and covariance matrix. The computations can be performed as follows:

1. Defining a significance level α and the type II error β in order to compute the non-centrality
parameter. Here, we use the recursive algorithm based on the work by Aydin and Demirel [33],
namely bisection algorithm, in order to obtain the non-centrality parameter for one degree
of freedom, i.e., λq=1. Typically a value of the level α = 0.001 and β = 0.2 is adopted (see,
e.g., [4]).

2. Defining a geodetic network configuration as well as the uncertainties of the observations,
i.e., the design matrix A and the covariance matrix of the observations Qe, respectively.
The covariance matrix of the observations Qe may consist of random effects and the uncertainties
associated with the correction of systematic effects. The latter follows from the instrument
precision, measurement techniques and field condition. In this step, the design matrix
and covariance matrix are conditioned to the position of the control point (or by the combination
of control points) in the network. It is important to mention that the design matrix defined must
have a minimum configuration to avoid rank deficiency [47].

3. Computing the MDB for each observation according to Equations (7)–(9).
4. Computing the external reliability according to Equation (10).
5. Computing and store the maximum external reliability according to Equation (11).
6. Checking whether all the points (or all combination of points) of the network were configured as

control point. If not, select a new control point (or new combination of control points) and return
to Step 3. Otherwise, the algorithm selects the configuration of the network that has the lowest
value of the maximum external reliability. Important to mention that matrix A is modified when
a new point (or a new combination of points) is selected as the control.

The proposed procedure is summarised as a flowchart in Figure 1.

-Significance  level  (α) 
 

-Type II decision error (β) 
 

- Matrices A and Qe 

Inputs: 

Compute MDBs: |∇i|= MDB(i) 

Compute the external reliability: ∇X 

Compute & store: max {∇X} 

Have all possible  
combinations  

of control points  
been performed? 

Select a new point  as “control “  
 (or new combination of points)    

& 
Redefine A matrix 

Compute smallest max {∇X}  

Define the network configuration 
based on smallest maximum external 

reliability (max {∇X})  

End of Design Stage 

NO YES 

Figure 1. Flowchart of the automatic method proposed to design the location of control points
in the geodetic network.
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4. Results and Discussion

In order to demonstrate the design method in practice, in this section we apply it to a closed
levelling network. the network is displayed in Figure 2. The goal is to illustrate the design method;
further considerations about levelling networks are outside the scope of this study. The results
of this paper are presented for γ = 0.8 and α = 0.001, which gives λq=1 = 17.075.

Figure 2. Simulated levelling geodetic network.

The results of the internal reliability are shown based on the relationship between MDB
and the standard-deviation of the observation. As an example of that relationship, for MDB = 5 mm
and σ = 2.5 mm, the ratio is MDB

σ = 5mm
2.5mm = 2⇒ MDB = 2σ.

Two typical cases were considered here: (a) a minimally constrained and (b) a over-constrained
least squares adjustment. The variances of the height difference (denoted by σ2

∆hi
) are assumed normally

distributed and uncorrelated. The variances were based on the relation between the differential
levelling lines and their lengths. In other words, the variances of differential levelling lines
are proportional to their lengths, i.e., the larger the lengths, the larger the variances of differential
levelling lines.

We consider that the equipment used here is a spirit level with nominal standard deviation
of ±1 mm/km for a double run levelling. In each scenario two variants are considered here:

1. all lengths of the differential levelling with 1 km, and therefore the variances equal to 1 mm2; and
2. lines with diversified lengths, and therefore levelling lines with different variances, whose values

are given in Table 1.

Table 1. Levelling lines with different lengths and variances for the Case 2.

Observation Length of Line (km) σ2
∆hi

(mm2)

∆h1 1.000 1.00
∆h3 1.000 1.00
∆h4 1.000 1.00
∆h6 1.000 1.00
∆h2 1.414 2.00
∆h5 1.414 2.00
∆h8 1.732 3.00
∆h9 1.732 3.00
∆h10 1.732 3.00
∆h11 1.732 3.00
∆h7 2.000 4.00
∆h12 2.000 4.00

In the first scenario (a), we consider the closed levelling network in Figure 2 with availability
of one control station, and 6 points with unknown heights, totalling six minimally constrained points
and 7 possible cases of control point configuration. In that case, there are n = 12 observations and u = 6
unknowns, which lead to n− u = 6 degrees of freedom.
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Moreover, the design matrix A has dimension 12× 6 and the covariance matrix of observations
Qe has dimension 12× 12. The stations C, D, E, F and G are involved in 4 height differences, so there
are three redundant observations for the determination of these heights. On the other hand, there
is one redundant observation for the determination of heights of the stations a and B.

The MDBs computed for each observation of the network and for each case of variances
configuration are displayed in Figure 3. It is important to mention that MDBs were invariant
with regard to the position of a single control point in the network. It can be noted that the observations
∆h7 and ∆h12 are more resistant to outlier than others, because theirs MDBs were the smallest
on the network.

Table 2 shows the maximum external reliability of the network. It can be noted that the smallest
value of the maximum influence of an MDB on the heights occurred when the station G was taken
as control point, i.e., when the control point was set to the centre of the network (3.28 mm, marked
in bold). The ± sign in Table 2 means that the maximum influence of an outlier on the network
occurs in two directions (up and down). The best network configuration obtained based on the optimal
position of the control point is shown in Figure 4.

Figure 3. MDB (σ) for a single control point—minimally constrained scenario (a)—for the cases
of observations with same variances and different variances.

Table 2. Maximum external reliability for a single control point for both observations with equal
variances and with different variances.

Maximum External Reliability (mm) Maximum External Reliability (mm)

Control Point Observations with Same Variance Observations with Different Variances

A ±3.97 ±5.70
B ±3.97 ±5.70
C −3.97 −5.70
D +3.97 +5.70
E −3.97 −5.70
F +3.97 +5.70
G ±3.28 ±3.94
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Figure 4. Optimum Configuration of the network for a single control point—minimally constrained
scenario (a).

In the second case, we consider the closed levelling network in Figure 2 over-constrained with two
control stations, totalling 21 possible combinations of control points. For example, taking A and B as
fixed, we have u = 5 unknown heights (C, D, E, F, G), n = 12 observations and n− u = 7 redundant
observations. In that case, the design matrix A has dimension 12 × 5 and the covariance matrix
of observations Qe has dimension 12× 12. On the other hand, we have u = 5 unknown heights
(B, D, E, F, G), n = 11 observations and n− u = 16 redundant observations in the case of selecting
control points a and C. In that case, when the control points are adjacent, the respective levelling
line are not observed and, therefore, the design matrix A has dimension 11× 5 and the covariance
matrix of observations Qe has dimension 11× 11. Figure 5 shows an example when the control points
are adjacent.

Figure 5. Example of the network configuration for adjacent control points a and C.

For the second case, we produce and analyse 21 graphs showing the MDB values. Due
to the large number of graphs, we show here a table with a summary of the results. Table 3
shows the overall statistics of the MDBs (average, maximum, minimum, and standard-deviation)
for each possible combination, two by two, of control points and for each scenario of variance. For
the case of same variances, it can be noted that when the points A and B were taken as control
points (AB), the observations presented a good level of homogeneity (homogeneous redundancy),
i.e., all of them had the same internal reliability. It means that, in the presence of an outlier, all
observations have the same ability to detect it. This fact is expected and due to the complete symmetry
of the network design and the variances of observations. The search for homogeneous redundancy
in all the observations has already been investigated in [14,15].

Figure 6 shows the maximum external reliability for the over-constrained network. The maximum
external reliability of the network for combinations of control points AB, AG, BG, CD, CF, DE and EF
had positive and negative signals. This is represented by the ± sign in Figure 6. It means that
the maximum influence of an outlier on the network occurs in two directions. It can be noted
that both cases of observations with same variances and different variances, the smallest value
of the maximum influence of an MDB on the heights occurred when the stations A and B were
fixed as control, with max (∇X) = 2.3mm. In general, the inflation of the variances in the network
amplified the maximum external reliability, i.e., it increased the maximum influence of a possible
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outlier on the network. The optimum configuration of the network according to our algorithm is shown
in Figure 7.

Table 3. Statistics of MDB for two control points—over-constrained scenario (b).

MDB (in σ unit)

Observations with Same Variances Observations with Different Variances

Control Point Average Max. Min. Std. Dev. Average Max. Min. Std. Dev.

AB 5.41 5.41 5.41 0.00 5.52 6.39 4.69 0.67
AC, AF, DB or BE 5.64 6.56 5.1 0.50 5.86 7.83 4.49 1.16

CD or EF 5.69 6.45 4.98 0.63 5.93 7.5 4.6 1.28
CG, DG, EG or FG 5.69 6.56 5.00 0.65 5.97 7.85 4.57 1.35
AD, AE, CB or BF 5.46 6.47 4.99 0.50 5.61 7.43 4.59 1.00

AG or BG 5.48 6.57 4.95 0.57 5.69 7.87 4.57 1.19
DE or CF 5.65 6.53 5.06 0.50 5.8 7.73 4.66 1.03
CE or DF 5.51 6.36 4.90 0.66 5.68 7.16 4.53 1.12

Figure 6. Maximum external reliability max (∇X) [mm] for two control points in the network.

Figure 7. Optimum configuration of the network for two control points.

5. Final Remarks

Within the context of applied sciences, we highlight that the core of the paper is to bring forward
a method for automatically selecting the location of the control point (or control points) of geodetic
networks based on the reliability theory.

The proposed method to design a geodetic network is based on the smallest value of the maximum
external reliability. The size of the outlier is defined according to MDB for a given type I and type
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II error probabilities. We highlight that the method discards the use of the observation vector
of the Gauss–Markov model. In fact, the only needs are the geometrical network configuration
(given by Jacobian matrix) and the uncertainties of the observations (given by instrument precision,
measurement techniques and/or field condition). Therefore, it can be applied for any kind of geodetic
network. In fact, it can be applied to any mathematical modelling for sensitivity analysis. In other
words, it can be employed to apportion the changes in outputs of a system to different configuration
in its inputs.

The method requires that a priori geodetic network configuration (i.e., geometric configuration
and uncertainty of observations) be provided by the user. The user-provided design matrix A presents
rank deficiency due to the lack of definition of a network datum. In other words, there are no minimal
constraints to solve a rank deficiency of a priori user-provided design matrix A. In order to have
a matrix A with full rank, the proposed algorithm select a point as control. Next, the maximum external
reliability is computed and stored. The procedure is repeated until all network points were selected
as a control point. Finally, the algorithm selects the network which has suffered the least influence
from a possible undetected outlier. In other words, the algorithm selects that network configuration
with the smallest value for maximum external reliability. As shown in the results, the proposed
procedure also works for designing geodetic networks with more than one control point.

The proposed method was applied to a closed levelling network. The MDB was computed
based on a power of the test of data snooping of 0.80 (80%) and the significance level of 0.001 (0.1%).
To apply the concepts in practice, two scenarios were presented for a simulated levelling geodetic
network: a minimally constrained network one and a over-constrained network. The observations were
assumed normally distributed and uncorrelated, which usually happens in the practice of levelling
network adjustment. In each scenario two variants were also considered: one in which the variances
of the measurements were assumed equal and another in which the variances were different. In the case
of the minimally constrained network, we highlight that the centre of the simulated network
was the optimum position to set the control point. In the over-constrained network, we highlight that
among the 21 possibilities of configuring the control points, the stations with less line connections
(i.e., with less redundant observations) provided the optimum configuration of geodetic network.

This simple example was provided to demonstrate the application of the method. Future
experiments based on real data will be performed in order to infer the actual application of the method.
The application to more complex networks and others optimization criteria (such as the value
and ratio of the eigenvalues of the covariance matrices of the unknowns to predict variances and their
homogeneity) will also be investigated in future works.

Furthermore, we highlight that the integration of the reliability and precision as a one-off criterion
is an issue in progress for future publications.

Author Contributions: Conceptualization, M.T.M. and V.F.R.; methodology, M.T.M. and V.F.R.; software, V.F.R.
and L.G.d.S.J.; validation, M.T.M., J.B.S.N. and A.C.R.A.; formal analysis, M.T.M., M.R.V. and V.F.R.; investigation,
M.T.M., V.F.R., I.K., J.B.S.N. and A.C.R.A.; data curation, M.T.M., V.F.R.; writing–original draft preparation,
M.T.M. and V.F.R.; writing–review and editing, M.T.M., V.F.R. and I.K.; supervision, M.T.M. and M.R.V.; project
administration, M.T.M. and M.R.V.; funding acquisition, M.T.M., M.R.V. and L.G.d.S.J. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the CNPq—Conselho Nacional de Desenvolvimento Científico e
Tecnológico—Brasil (proc. no 103587/2019-5). This research and the APC were also funded by PETROBRAS
(Grant Number 2018/00545-0).

Acknowledgments: We would like to acknowledge useful comments of the two anonymous reviewers that
improved the presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Klein, I.; Matsuoka, M.T.; Guzatto, M.P.; Nievinski, F.G.; Veronez, M.R.; Rofatto, V.F. A new relationship
between the quality criteria for geodetic networks. J. Geod. 2019, 93, 529–544. [CrossRef]

http://dx.doi.org/10.1007/s00190-018-1181-8


Appl. Sci. 2020, 10, 687 12 of 13

2. Lehmann, R.; Neitzel, F. Testing the compatibility of constraints for parameters of a geodetic adjustment
model. J. Geod. 2013, 87, 555–566. [CrossRef]

3. Baarda, W. Statistical concepts in geodesy. Publ. Geod. New Ser. 1967, 2, 74.
4. Baarda, W. A testing procedure for use in geodetic networks. Publ. Geod. New Ser. 1968, 2, 5.
5. Teunissen, P. Testing Theory: An Introduction, 2nd ed.; Delft University Press: Delft, The Netherlands, 2006.
6. Seemkooei, A.A. Comparison of reliability and geometrical strength criteria in geodetic networks. J. Geod.

2001, 75, 227–233. [CrossRef]
7. Seemkooei, A.A. Strategy for Designing Geodetic Network with High Reliability and Geometrical Strength.

J. Surv. Eng. 2001, 127, 104–117. [CrossRef]
8. Lehmann, R. On the formulation of the alternative hypothesis for geodetic outlier detection. J. Geod.

2013, 87, 373–386. [CrossRef]
9. Baarda, W. S-transformations and criterion matrices. Publ. Geod. New Ser. 1973, 5, 168.
10. Grafarend, E.W. Optimization of Geodetic Networks. Can. Surv. 1974, 28, 716–723. [CrossRef]
11. Grafarend, E.W.; Sansò, F. (Eds.). Optimization and Design of Geodetic Networks; Springer: Berlin/Heidelberg,

Germany, 1985. [CrossRef]
12. Teunissen, P.J.G. Quality Control in Geodetic Networks. In Optimization and Design of Geodetic Networks;

Grafarend, E.W., Sansò, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 526–547.
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