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Featured Application: Fabrication of rare-earth-doped fiber amplifiers and high-power fiber lasers.

Abstract: This paper reports on the fabrication of alumina-doped preforms using a modified chemical
vapor deposition (MCVD)-vapor phase chelate delivery system with Al(acac)3 as the precursor.
The objectives of this work are to study the deposition process, the efficiency of the fabrication process,
and the quality of the fabricated fiber preforms. Two parameters are studied, the Al(acac)3 sublimator
temperature (TAl

◦C) and the deposition direction (i.e., downstream and upstream). Other parameters
such as the oxygen flow and deposition temperature are fixed. The results show that high uniformity
of the refractive index difference (%RSD < 2%) and core size (%RSD < 2.4%) was obtained along the
preform length using downstream deposition, while for the combined upstream and downstream
deposition, the uniformity deteriorated. The process efficiency was found to be about 21% for TAl

◦C
of 185 ◦C and downstream deposition. From the EDX elemental analysis, the refractive index was
found to increase by 0.0025 per mole percent of alumina.

Keywords: MCVD (Modified Chemical Vapor Deposition); chelate delivery system; Al(acac)3;
alumina; vapor phase doping; EDX (X-ray spectroscopy)

1. Introduction

Alumina (Al2O3) is an interesting dopant material for silica optical fiber technology. It does not
only function as a refractive index raiser but also helps dissolve other co-dopants such as rare-earth
elements in the silica matrix. Thus, alumina is very essential to the fabrication of rare-earth-doped fiber
amplifiers and high-power fiber lasers. The use of alumina was first reported by Maurer and Schultz [1]
in 1972 for passive fiber applications, followed by Simpson and Macchesney [2], Ohmori et al. [3],
Roba [4], Wang et al. [5,6], and Čampelj et al. [7]. The fabrication techniques used were outside vapor
deposition (OVD), vertical axial deposition (VAD), and modified chemical vapor deposition (MCVD).
With the rapid progress on rare-earth specialty fibers, more research is being focused on incorporating
alumina in silica, particularly by the MCVD method. The most common technique for doping
alumina is conventional MCVD with solution doping (non-vapor phase) (e.g., [8]). This technique
has been very successful in the fabrication of fiber amplifiers such as erbium-doped fiber (EDF).
However, the technique suffers from limitations, including the inability to deliver advanced fiber
design requirements such as high dopant concentration, large core, and precise wave guiding structure.
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Furthermore, due to the nature of the MCVD solution doping process that involves several stages,
it tends to degrade the quality of the preform or fiber.

Another alternative technique is MCVD with a chelate delivery system, which was first reported
by Tumminelli et al. [9]. This technique offers in situ vapor phase deposition of dopants in a controllable
process, thus improving the quality of the fabricated preform or fiber. Since the study by Tumminelli
et al., several research groups have reported on the use of MCVD with chelate delivery systems,
e.g., [10–17]. In most of these studies, anhydrous aluminum chloride (AlCl3) has been used as
the precursor for alumina, with few using aluminum acetylacetonate (Al(C5H7O2)3; Al(acac)3) as a
precursor, e.g., [16]. AlCl3 is commonly used due to its relatively high vapor pressure. In this paper,
we report on the fabrication of alumina-doped preforms using Al(acac)3. Even though Al(acac)3

has lower vapor pressure than AlCl3, it exhibits some advantages over AlCl3, including its low cost,
non-corrosive properties, and chemical stability. However, the conversion of Al(acac)3 to Al2O3 requires
more oxygen (compared to AlCl3) in order to eliminate incomplete oxidation of Al(acac)3 which can
lead to carbon contamination. The total gas flow rate (oxygen and carrier gas) QT is thus considerably
higher compared to that in the standard MCVD process. This entails the study of the chemistry and the
deposition mechanism involved, as well as the effect of various process parameters on the deposition
and incorporation efficiency of the Al2O3 particles formed during the process. In this work, we studied
the fabrication process of alumina-doped silica fiber preforms with different Al(acac)3 sublimator
temperature (TAl

◦C) and deposition direction (i.e., downstream and upstream). Other parameters
such as total oxygen flow, deposition temperature, carriage speed (Vb), and spindle rotation were
fixed. The aim is to achieve the highest possible doping amount of alumina, which, in turn, allows for
greater incorporation of rare-earth elements into silica fibers. The fabricated preforms were checked
for radial and longitudinal uniformity. The efficiency of the fabrication process was also determined
by comparing the Al2O3 concentration obtained from energy-dispersive X-ray spectroscopy (EDX)
analyses with that derived theoretically. We are hopeful that the outcome of this study will add to the
growing research concerning the MCVD-vapor phase fabrication of (highly) rare-earth-doped silica
fibers for high-power fiber lasers and fiber amplifiers.

2. Materials and Methods

Our chelate delivery system is depicted in Figure 1. The Al(acac)3 is placed in a sublimator
(maximum operating temperature of 220 ◦C), and the vapor is carried to the reaction zone by a constant
flow of high-purity helium gas using heated stainless steel tubes. A ceramic heater is placed at the
end of the delivery tube and just before the MCVD main oxyhydrogen burner in order to prevent any
condensation of Al(acac)3 vapor on the walls of the glass substrate tube.

The fabrication process is divided into two major consecutive steps; first is the MCVD process,
and second is the Al(acac)3 oxidation process. These steps are then followed by a standard MCVD
procedure including sintering and collapsing of the glass substrate tube to a solid preform. At the MCVD
step, a Heraeus F300 synthetic silica substrate tube (25mm (Outer Diameter), 19 mm (Inner Diameter))
is first rinsed with isopropanol/acetone to remove any organic contaminants. The tube is then mounted
onto a glass working lathe and is etched with SF6 for several passes of the oxyhydrogen burner at a very
high temperature. Several layers of high-purity SiO2 are then deposited and sintered to act as a barrier
between the glass substrate tube and the preform’s core. Finally, for the preform’s core, two layers of
unsintered SiO2 are deposited for doping with alumina. For the Al(acac)3 oxidation step, Al(acac)3

vapor is delivered to the glass substrate tube where it is converted to Al2O3 at high temperature and in
the presence of high-purity oxygen gas. The deposition of the formed Al2O3 particles occurs on the
surface of the deposited unsintered silica layers. Table 1 lists the process parameters used in this work.
For Preform 1 (P1), Al(acac)3 was sublimed at TAl

◦C of 175 ◦C, with carrier gas (He) and O2 flow
rates of 1440 and 2400 sccm, respectively. The deposition temperature (Tdep

◦C) was fixed at 1850 ◦C
with a carriage speed (Vdep) of 100 mm/min and spindle rotation of 50 rpm (rotation per minute). A
total of 10 layers were deposited in the downstream direction. For Preforms 2 (P2) and 3 (P3), TAl

◦C
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was fixed at 185 ◦C, with P2 having a total of 8 layers deposited in the downstream direction and P3
having 7 layers deposited in each direction (i.e., downstream and upstream). Figure 2 illustrates the
downstream and upstream deposition directions.
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Figure 1. A schematic diagram for the modified chemical vapor deposition (MCVD)-chelate delivery
system [14]. The Al(acac)3 is placed in a sublimator consisting of a stainless steel plate, a heater, and a
gas system (outlet and inlet). The stainless steel delivery tube is equipped with a heater to prevent any
Al(acac)3 vapor condensation. The standard MCVD delivery lines and the chelate delivery line are
joined with a special rotary seal. A ceramic heater is placed just before the hot zone.

Table 1. Process parameters and calculated flow rates for the fabrication process.

Preform TAl (◦C)
Gas Flow (sccm) Qv

(g/min) 1
Qm

(g/min) 1
Number of Passes

Total Qm (g) 1

He O2 Forward Backward

P1 175
1440 2400

0.062 0.97 × 10−2 10 - 0.34

P2
185 0.116 1.82 × 10−2

8 - 0.58

P3 7 7 1.02
1 Vdep 100 mm/min, Qv is the flow rate of reactant (g/min), Qm is the product’s flow rate (g/min), and total Qm is the
total amount of product during the process (g). The vapor pressure for Al(acac)3 was taken from [18].
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Figure 2. (a) The downstream deposition direction with Vdep 100 mm/min and Vret (burner return
speed) 1500 mm/min; and (b) downstream and upstream deposition directions (Vdep 100 mm/min and
Vret = Vdep = 100 mm/min).

The refractive index profiles (RIPs) and longitudinal uniformity of the fabricated preforms were
determined using a preform analyzer (Photon Kinetics, P104). The longitudinal uniformity of the
fabricated preforms was determined by scanning the preform at 2.0 cm intervals. For each preform,
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an approximately 3.0-mm-thick disk (with known index difference) was cut from the preform, polished,
and subjected to EDX analyses. The EDX analyses were performed using the point identification
technique with 10 × 10 grid points mapped in each preform’s core area and an acquisition time of 240 s
per point. The fabricated preforms were pulled into fibers (125 µm in diameter) using a standard fiber
drawing tower and were also subjected to EDX point identification analyses in order to determine
the amount and radial distribution of alumina in the core region. The efficiency of the fabrication
process was determined by dividing the alumina concentration obtained from EDX analyses by that
derived theoretically.

3. Results and Discussion

Figure 3 shows the oxidation process of Al(acac)3 at Tdep 1850 ◦C and an oxygen flow rate
of 2400 sccm. As the Al(acac)3 vapor passes through the hot zone, alumina particles (soot) are
formed and then deposited on the substrate tube wall downstream of the oxyhydrogen burner due
to thermophoretic forces. It was observed that the alumina soot was deposited further from the
oxyhydrogen burner (i.e., longer taper region). This can be attributed to the high total gas flow rate
(QT) used during the oxidation process (3840 sccm). The length over which the deposition takes place
is proportional to QT/α [19], where α is the thermal diffusivity. Since the hot zone created by our
oxyhydrogen burner is small (~2 cm in length), and QT is high, the residence time of Al(acac)3 inside
the hot zone is short. This results in the formation of predominantly fine alumina particles that can be
uniformly distributed along the substrate tube. Continuous movement of the hot zone results in fusion
of the deposited alumina particles and incorporation into the silica soot. The deposited alumina/silica
layers are then vitrified (in oxygen atmosphere) into transparent glassy material.
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Figure 3. The Al(acac)3 oxidation process via MCVD, where fine white particles (or alumina soot)
are deposited along the glass substrate tube while the Al(acac)3 vapor passes through the hot zone.
The figure also shows the ceramic heater used to prevent the condensation of Al(acac)3 vapor prior to
reaching the hot zone.

Figure 4a,b shows the refractive index profiles for P1 (TAl 175 ◦C) and P2 (TAl 185 ◦C),
respectively. Figure 4c,d displays the longitudinal uniformity values of P1 (average ∆n = 0.0036)
and P2 (average ∆n = 0.0124), respectively. As can be seen from the figure, P1 and P2 showed good
longitudinal uniformity with a slight variation in the refractive index difference (percent relative
standard deviation of index difference (%RSD) 1% and 2%, respectively). This good longitudinal
uniformity can be ascribed to the high total gas flow rate (QT) used and the short hot zone and
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residence time, which result in the production of fine and uniform alumina particles, as discussed
above. As is illustrated in Figure 5a–d, the core (dcore) and preform (dpreform) diameters for P1 were
1.2 mm (%RSD 2.4%) and 15.0 mm (%RSD 1.2%), respectively, whereas those for P2 were 1.44 mm
(%RSD 1.4%) and 15.4 mm (%RSD 1.0%), respectively. This shows that it is possible to fabricate
alumina-doped silica preforms with high uniformity of ∆n and core size using Al(acac)3 and a chelate
vapor delivery system.
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Figure 4. (a,b) show the refractive index profiles for P1 and P2 along the preform length; (c,d) illustrate
the longitudinal variation in the refractive index difference (∆n) for P1 and P2, respectively.
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Figure 5. (a,b) present the refractive index profiles for P1 and P2, respectively, obtained at the inlet
position and showing the measurements for dpreform and dcore; (c,d) present the longitudinal uniformity
of dpreform and dcore for P1 and P2, respectively.

For preform P3, the deposition of alumina was performed in both the downstream and upstream
directions. The upstream deposition mode is normally used to utilize a higher temperature without
sintering the produced soot [20,21]. In P3, it was observed that the downstream deposition showed
the same behavior as P2. In upstream deposition, however, more alumina with large particle size
distribution is produced. In this case, the alumina particles are deposited behind the moving burner
and are partially sintered since the burner is moving away towards the reactant inlet. In addition,
the upstream deposition mode provides higher temperature and a longer hot zone, which, in turn,
result in longer residence time and enhanced conversion or oxidation of Al(acac)3. This causes more
particle nucleation and agglomeration and, hence, larger particle size distribution in the produced
alumina soot [20]. In both P2 and P3, the effect of QT/αwas the same where the length of deposition
was observed to be long (i.e., taper region). It is worth mentioning that during the sintering process for
P3, a red glow with intensity increasing towards the exhaust tube was observed along the substrate
tube (Figure 6a). This is indicative of the high concentration of alumina and was manifest in the
collapsed preform where the core had an opaque center stretching from about the middle of the
preform to the outlet with increasing opacity towards the outlet (Figure 6b). This may be attributed
to the deposition of Al2O3 in the tiny spaces between silica soot particles. The high temperatures
encountered during sintering and collapse may then be enough to cause some aluminum diffusion
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into the silica, thereby producing regions of alumina-rich silicates. The slow cooling of the produced
materials as the burner moves away from these regions promotes solidification to a crystalline
(rather than an amorphous) phase, causing opacity of the core. Another explanation is the formation of
alumina-rich silicates by phase separation and crystallization. This may take place when the binary
oxide mixture (Al2O3/SiO2) encounters a suitable temperature during sintering or collapse, provided
that the aluminum concentration is high enough [22].
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Figure 6. (a) P3 sintering process with an oxygen flow rate of 1000 sccm, temperature of 2000–2100 ◦C,
and Vb of 125 mm/min. The red glow is an indicator of the high alumina content in the preform.
(b) shows the opaque regions in the core due to the presence of Al-rich aluminosilicate crystallites.

It should be pointed out that even though the upstream deposition yielded more alumina,
the uniformity in the longitudinal refractive index difference significantly deteriorated. However,
the uniformity could be improved with a cooling mechanism, as reported by Bubnov et al. [23]. Figure 7a
illustrates the refractive index profile for P3. The variation in the longitudinal refractive index difference
is rather small along the first 13 cm from the inlet (%RSD 4%, Figure 7b). It is, however, significantly
high along the full length of the preform. The highest core-to-cladding refractive index difference
was found to be 0.027 and was for the region of the preform adjacent to the outlet. It was noticed
that the opacity in the core was pronounced when the core-to-cladding refractive index difference
was greater than 0.015 (~6 mol.% Al2O3). This is consistent with the conclusion that the opaque
regions in the core of the preform are attributable to the formation of Al-rich aluminosilicate crystalline
phase. One possible aluminosilicate crystalline phase is mullite (3Al2O3.2SiO2). X-ray diffraction
and Raman spectroscopy analyses carried out by Abramov et al. [24] indicated that high-temperature
annealing of aluminosilicate fibers and preforms gives rise to the formation of crystalline mullite phase.
It should be mentioned that a rapid cooling rate may prevent crystallization in the core of the preform,
although such a rate is typically much higher than that achieved during the MCVD process.

The energy-dispersive X-ray spectroscopy (EDX) method was used to investigate the Al distribution
and content across the core of the preforms and fibers. The EDX point identification analyses were
carried out to support and complement the afore-discussed refractive index profile results. The EDX
results for preform P3 are illustrated in Figure 8a,b. As can be seen from Figure 8a, the Al distribution
across the core region is uniform and matches the RIP where the Al content gradually increases,
reaches a maximum, and then gradually decreases. The Al concentration is highest in the center of the
core and was found to range from 8.6 to 9.9 wt.%.
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Figure 8. (a) A contour plot of the Al concentration in the core region of preform P3. The EDX point
identification measurements were performed for 10 × 10 grid points covering an area of 2.0 × 2.0 mm.
The sample for EDX analysis was cut from the edge of the preform adjacent to the outlet. (b) The EDX
spectrum measured at the point with the highest Al concentration (9.9 wt.%). The inset table lists the
wt.% of Al, Si, and O.

Figure 9a–c shows contour plots of the Al distribution for fibers F1, F2, and F3, respectively,
that were drawn from preforms P1, P2, and P3, respectively. In general, the Al distributions for all
fibers show the same pattern, with the highest Al content being located at the center of the core area.
The maximum Al concentrations for fibers F1, F2, and F3 were 1.7, 4.3, and 3.2 wt.%, respectively.
This corresponds to alumina concentrations of 1.9, 4.9, and 3.7 mole% for F1, F2, and F3, respectively.
In the current study, the fabrication process efficiency was measured by dividing the alumina content
obtained from EDX analyses of fibers by that derived theoretically. For the fabricated fibers F1 and F2,
the process efficiency values were found to be 11 and 21%, respectively. These values indicate that the
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TAl
◦C is a critical factor; an increase in TAl

◦C of 10 ◦C resulted in a 3.3-fold increase in Al2O3 content.
The relationship between ∆n (obtained from RIP) and Al2O3 mol.% (obtained from EDX analysis) is
plotted in Figure 10. As can be observed from the figure, the refractive index of silica increased by
0.0025 per mol% of Al2O3. This is in line with the results obtained by Bubnov et al. [25], where the
authors used an MCVD vapor phase technique with AlCl3 as the precursor.
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Al concentrations detected in F1, F2, and F3 were 1.7, 4.3, and 3.2 wt.%, respectively. The 
corresponding concentrations of Al2O3 were 1.9, 4.9, and 3.7 mole% for fibers F1, F2, and F3, 
respectively. 

Figure 9. Contour plots of Al distribution across the core of fibers (a) F1, (b) F2, and (c) F3. The highest
Al concentrations detected in F1, F2, and F3 were 1.7, 4.3, and 3.2 wt.%, respectively. The corresponding
concentrations of Al2O3 were 1.9, 4.9, and 3.7 mole% for fibers F1, F2, and F3, respectively.
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4. Conclusions

Herein, we reported an initial study on alumina-doped silica preforms/fibers fabricated by an
MCVD vapor phase technique using Al(acac)3 as the precursor. The study, to the best of our knowledge,
indicates the highest possible concentration of Al2O3 using this approach. The Al(acac)3 sublimation
temperature and the deposition direction (i.e., downstream and upstream) were varied while keeping
other parameters, such as oxygen flow rate and deposition temperature, fixed. At a sublimation
temperature of 185 ◦C, the process efficiency was found to be 21%. For the downstream deposition,
the longitudinal uniformity for ∆n and core size was observed to be significantly higher than that for
the combined downstream/upstream deposition (%RSD values for ∆n and core size of <2% and <2.4%,
respectively, vs. 55% and 18%, respectively). We also reported on the refractive index change per mol%
of Al2O3, which was found to be 0.0025. The optical and spectroscopic properties of the fabricated
fibers are currently being thoroughly studied by our group.
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