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Featured Application: The study assessed the reduced carbon uptake (RCU) due to human
activities and highlighted the patterns of the impact on RCU from human-related driving forces
so that optimized grassland management policies could be implemented to achieve more carbon
sequestration from vegetation.

Abstract: The ever-rising concentration of atmospheric carbon is viewed as the primary cause for
global warming. To discontinue this trend, it is of urgent importance to either cut down human
carbon emissions or remove more carbon from the atmosphere. Grassland ecosystems occupy
the largest part of the global land area but maintain a relatively low carbon sequestration flux.
While numerous studies have confirmed the impacts on grassland vegetation growth from climate
changes and human activities, little work has been done to understand the driving forces for a
reduced carbon uptake (RCU)—a loss in vegetation carbon sequestration because of inappropriate
grassland management. This work focused on assessing RCU in the grassland of Inner Mongolia
and understanding the influential patterns of the selected variables (including grazing intensity,
road network, population, and vegetation productivity) related to RCU. Neighborhood analysis was
proposed to locate optimized grassland management practices from historical data and to map RCU.
Ordinary least squares (OLS) and geographically weighted regression (GWR) models were applied to
explore the driving forces for RCU. The results indicated that the human-related factors, including
stock grazing intensity, population density, and road network were likely to present a spatially varied
impact on RCU, which accounted for more than 1/4 of the total carbon sequestration.
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1. Introduction

Increased greenhouse gas (GHGs) emissions from human activities have caused significant
concerns around the world [1]. As the largest component in GHGs, more than 10 PgC (1PgC = 1015gC)
is released into the atmosphere each year from human-related activities such as fossil fuel combustion
and cement manufacture [2]. Green vegetation, on the other hand, absorbs carbon dioxide (CO2) through
a biotic process called photosynthesis, which sequesters CO2 out of the atmosphere [3,4]. However, a
significant increase in GHGs emissions in the past few decades has broken this emission–absorption
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balance and led to increased atmospheric CO2 concentration, which is believed to be the main cause for
global warming [5]. Facing such a challenge, international cooperation has been called for to cut down
carbon consumption and reduce carbon release into the atmosphere [6]. Unfortunately, the increasing
trend of the atmospheric CO2 concentration did not stop. Along this track, it is forecasted that the
global temperature would rise more than 3 ◦C by the end of the 21st century [6], which imposes a global
catastrophic risk to human living environments. Hence, innovative work must be done to address the
continuously accumulative CO2 in atmosphere due to the imbalanced emissions and absorptions in
GHGs. Improving carbon sequestration from vegetation may provide a prominent way to this goal.

The net carbon sequestration capacity from vegetation can be reflected from the dynamics of net
primary productivity (NPP), which is the net amount of solar energy converted to plant organic matter
through photosynthesis in a given period [3,7]. Terrestrial ecosystems are featured by vegetation
biomes capable of sequestering varied amounts of carbon. For example, forestry usually but not
necessarily produces more NPP than croplands given the same area [8]. Converting land-use types,
e.g., from farmlands to forests, may help secure carbon sequestration [9]. However, it is impractical
to resort to land-use transformation, because reduced farmland means less food supply, which is
not acceptable to sustain a local economy. Whether it is possible to improve vegetation productivity
without converting land cover use is a valuable topic that should be investigated. Furthermore, it is
meaningful to know the sensitive area that possesses the most potential in the enhancement of carbon
sequestration from vegetation.

Natural grasslands and savannas occupy nearly half of the terrestrial globe and provide important
economic and ecological services to modern societies [10]. Unfortunately, a considerable proportion
of the global grasslands shows degraded vegetation, e.g., reduced vegetation productivity [11], land
desertification [12], or loss of biodiversity [13]. This could be attributed to climate constraints (e.g.,
shortage of precipitation) [14], natural environmental constraints (e.g., soils with poor nutrients which
are required by vegetation growth) [15], and human activities (e.g., overgrazing) [16]. Historical data
recording carbon sequestration flux of grasslands with dependent variables such as the climatic and
environmental conditions and human footprint can be analyzed to assess the human-induced impact
on vegetation carbon sequestration. While the climatic constraints and environmental constraints are
difficult to be lifted in a short period of time, it is relatively easier to adjust human activities such
as an exclusion of grazing or the restoration of abandoned mining lands so that more carbon could
be sequestered. To measure the impact on vegetation carbon sequestration from human activities,
we proposed the concept of reduced carbon uptake (RCU)—the amount of carbon that should have
been sequestered but was actually not due to human impacts. Then, we assessed RCU and explored
the influential factors related to human activities on RCU, aiming at making informed grassland
management policies. To the best of our knowledge, the topic assessing RCU and modeling its driving
factors has been rarely studied. The main purpose of this work was to model RCU and to analyze its
driving factors linked to human activities.

2. Study Area, Methods, and Data Sources

2.1. Study Area

The Inner Mongolia Autonomous Region (IMAR) is an administrative region at the provincial
level situated in the north-most part of China. It is characterized as one of the most typical grasslands
in China and the world. Covering an area of ≈1.2 × 106 km2, 60% of the area is occupied by grassland
vegetation, and most of the area is characterized as arid and semi-arid regions. There are four main
grassland vegetation types [17]: meadow steppe (including Stipa baicalansis and Achnatherum splendens,
which occupy 13% of the total area), typical steppe (including Stipa grandis and Leymus chinensis,
which take 28% of the total area), desert steppe (including Stipa klemenzii, Sheep fescue, and Seriphidium
gracilescens, covering 12% of the total area) and steppe desert (mainly S. sareptana and S. glareosa,
covering 6% of the total area). The average temperature in the vegetation growing season (from April
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to September) fluctuates between 12.1 and 25.2 ◦C. The study region presents an increasing elevation
from east to west, ranging from 156 m below sea level to 2800 m above sea level, with significant local
variation. The annual precipitation varies spatially from less than 200 mm in the west to 600 mm in
the east. The western section in IMAR is commonly in severe shortage of water (annual precipitation
<200 mm) and is primarily a desert, while the middle to eastern part is a semi-arid region, which is
mainly covered by typical grasslands, steppes, or meadows.

Under the provincial administration level, IMAR is composed of 12 city-level administrative
regions and 103 county-level administrative regions under the city level. The capital city of IMAR, or
Huhehot, is located in the south-western part of the area (Figure 1a). The net primary productivity (NPP)
of the grassland vegetation from the NPP product of Moderate Resolution Imaging Spectroradiometer
(MODIS) 17A3 (MOD17A3) showed significant spatial variation in the past two decades in IMAR [18].
Generally, NPP distribution is consistent with the precipitation belts in that NPP decreases from the
east to the west. However, there is also a considerable local difference in NPP that cannot be simply
explained by climatic factors. Other impacts on NPP from natural environments and socio-economic
activities including grassland management practices could not be neglected. The natural environments
such as soil types, terrain features, and vegetation biomes types have been proved to affect NPP
significantly [19,20]. Human activities have a profound impact on NPP, both positively and negatively.
For example, grassland restoration projects and fenced grazing practices have proven effective in
improving NPP in some parts of the study area [21,22]; they could potentially be optimal grassland
management practices (OGMPs) and transferrable to other locations. OGMPs specifically refer to
any human-related management strategies that could produce high vegetation productivity and thus
sequester more carbon from vegetation. Conversely, some other activities such as over-grazing [23],
unplanned urbanization [24], or large-scale coal mining [25] may reduce NPP and should be avoided.
By implementing OGMPs at locations having lower NPP, RCU, which represents the loss of carbon
sequestration due to unimplemented OGMPs, could improve carbon sequestration in the future.
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Figure 1. Study area. Some administrative units (counties) in the west mainly covered by desert or
sandy areas or having very small vegetated area were excluded in the study. (a) Study area (Inner
Mongolia) with administrative boundaries at the county level, and (b) Averaged NPP during 2001–2018.

2.2. Data Sources

To assess the reduced carbon uptake (RCU hereafter), the data sources included a soil map,
digital elevation model (DEM), and vegetation cover, which were used to segment S-T-V patches, and
climate dataset and annual NPP from MODIS (Moderate Resolution Imaging Spectroradiometer) 17A3
(MOD17A3), which were used to compute RCU along with the segmented S-T-V patches. The climatic
variables were acquired from China’s climate data-sharing platform (http://cdc.cma.gov.cn). Both the
climate dataset and MODIS NPP were at an annual step in the time window during 2001–2018. RCU
was assessed for each year during the time window. The explanatory variables grazing and population

http://cdc.cma.gov.cn
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were compiled from yearbooks, and the road network was extracted from Open Street Map (OSM) [26].
All resultant raster layers were resampled to 1 km × 1 km if they were not at that resolution.

Vegetation cover types were extracted from the vegetation Atlas of China, which includes 55
vegetation types (http://www.nsii.org.cn/chinavegetaion). The non-vegetated area was excluded from
further analysis. The soil map came from the Harmonized World Soil Database (ver. 1.2), which is the
most up-to-date world soil map that incorporates data of 48,148 soil profile descriptions related to
various soils associated with each mapping unit at a spatial resolution of ≈1 km at the equator [27].
Topography was prepared from DEM SRTM30 (http://earthexplorer.usgs.gov), which was resampled
to the resolution at 1 km × 1 km and then reclassified to three groups, namely <500 m, 500–1500 m,
and >1500m. The three layers were overlaid to segment the study area into S-T-V patches. RCU was
assessed for each year during 2001–2018 based on the MOD17A3 time series and the climatic variables,
and it was temporally averaged in the end.

The data sources for the explanatory variables, including grazing intensity and population, were
compiled for 84 county-level administrative units (with the exclusion of those in sandy areas or
having a very small vegetated area) from the yearbook of IMAR for each year during 2001–2018.
This county-level yearbook covering the whole study area is the most consistent data available. The
grassland has multiple grazing animals, for example, sheep, horse, buffalo, camel, and donkey. To
uniformly measure grazing intensity, the impact from all other animals was converted into sheep units.
Specifically, one horse is equivalent to 6 sheep and thus was multiplied by 6 to transform into the
sheep unit. Similarly, cattle, camels, and donkeys were multiplied by 5, 7, and 3, respectively. The
converted numbers were summed up to make a total value of sheep units, which was then divided by
the vegetated area of each administrative unit to be grazing intensity. Similarly, population density
was computed to be the total population divided by the area of administrative unit. Both the processed
grazing intensity and population density were temporally averaged to represent an overall impact
from each of them during the study period. Road network density, in the form of total road length in a
square kilometer, was prepared using a line density algorithm with road network input from Open
Street Map (OSM) [28].

2.3. Methodology

The study schema is composed of two parts, i.e., assessing RCU by applying neighborhood
analysis and exploring the driving factors by the regression models through OLS and GWR (Figure 2).
Much work related to RCU has been detailed in the previous work [18]. Both parts in the workflow are
described in detail in this section.

2.3.1. Reduced Carbon Uptake by Neighborhood Analysis

Factors affecting carbon sequestration from vegetation are grouped into the following: (1) climatic
factors (e.g., precipitation and temperature), (2) non-climatic natural conditions, such as the provision
of nutrients from soil, topography, and vegetation types, and (3) human-related factors ranging
from vegetation disturbances to grassland management such as enclosure fencing, fertilizing, and
irrigation [18]. After deducting the impact on carbon sequestration from climatic and non-climatic
factors, the spatial variation in the carbon sequestration will be attributed to human-related factors
only. Accordingly, the flowchart for assessing RCU is designed as shown in Figure 2a. First, the study
area is segmented into areal patches considering soil (S), topography (T), and vegetation (V), so that
each S-V-T patch has no internal variations in terms of soil, terrain, and vegetation types; thus, there is
no significant difference in the impact on RCU from the natural conditions. Second, the impact from
the climatic factors (monthly precipitation and temperature) is rectified among the locations (pixels)
in each S-V-T patch using potential NPP (PNPP) from the Miami model, which is a widely applied
empirical NPP model driven by climate data [29]. The PNPP reflects the impact from the climatic
variables only, and the relative magnitude in PNPP reflects the contribution of the climatic factors on
NPP. By analyzing the spatial variation of PNPP in the S-V-T patch, the climate-rectified NPP (NPPCR)
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was derived from the observed NPP and PNPP. The variation of NPPCR within each S-V-T patch is
attributed solely to human impact. Lastly, the within-patch variation of NPPCR is analyzed using zonal
statistics to derive RCU and to locate the optimal grassland management practices (OGMPs) within
each S-T-V patch.
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The Miami NPP model, which is widely recognized as a benchmark for NPP models, is applied to
map grassland PNPP [29,30], in the form of,

PNPP = 0.45×min{
3000

1 + e1.315−0.119t , 3000×
(
1− e−0.000664r

)
} (1)

where t is the annual average temperature (◦C), r is the annual precipitation (mm), and the coefficient
0.45 converts the PNPP to a carbon unit (gC m−2 yr−1) from dry matter. The PNPP for arid regions
increases by 1.0 gC/m2 for every mm of precipitation, and productivity doubles every 10 ◦C between
−10 and 20 ◦C [31].

Then, given an S-T-V patch g, which contains a set of k pixels (locations) homogeneous in soil,
topography, and vegetation cover type, a relative contribution (RC) index at location i reflecting the
differed impact from the climatic factors is written as

RC(i,g) = PNPP(i,g) − PNPPMean(g) (2)

where PNPPMean(g) is the averaged PNPP in g, PNPP(i,g) is the PNPP at location i in g, and RC(i,g)
is the deviated PNPP at location i from the mean PNPP (PNPPMean(g)). A relatively more favorable
climatic condition (e.g., more precipitation or temperate temperature) will promote PNPP (higher
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PNPP), resulting a positive RC(i,g) at location i in g. Conversely, less favorable climate (shortage of
precipitation or high temperature) results in a negative RC(i,g). Clearly, the total RC(i,g) for all i (i = 1,
2, . . . , k) makes 0—that is,

∑k
i=1 RC(i, g) = 0 in g.

To level off the difference of climatic impact within an S-T-V patch g, climate-rectified NPP, or
termed as NPPCR, at location i in g is computed as

NPPCR(i,g) = NPP(i,g) − RC(i,g). (3)

The internal variation of NPPCR(i,g) in an S-T-V patch g will be attributed to human-related impact
only. Locations presenting the highest (target) NPPCR in the S-T-V patch are under optimal grassland
management practices (OGMPs); conversely, locations showing relatively lower NPPCR in the S-T-V
patch suggest that they experience RCU. By copying the OGMPs to locations presenting low NPPCR,
it is expected that NPPCR can also be promoted to the target level given that all the locations in an
S-T-V patch have similar natural (or non-climatic) environments. Here, the target level of NPPCR for
each S-T-V patch is computed by neighborhood analysis [32], which is a spatial analytical routine
finding a zonal statistic (e.g., maximum value) from a set of NPPCR inputs for locations within a
neighborhood, i.e., the S-T-V patch. Rather than computing a statistic of the maximum value from the
input data, we decided on a zonal statistic of 95% percentile (95%PCT), which may provide a more
robust estimation of the target NPP level within each S-T-V patch considering possible noise in the
patch segmentation [18]. Here, 95%PCT corresponds to an NPPCR value such that NPPCR out of 95%
cases is below the value, while 5% of the cases are above it. Therefore, by referencing 95%PCT as the
target NPPCR level, the RCU at any location i in an S-T-V patch g can be computed as,

RCU95%PCT(i,g) = Greatest{95%PCT(g) − NPPCR(i,g), 0} (4)

where RCU95%PCT(i,g) is the reduced carbon uptake at location i by using zonal statistic 95% percentile
(95%PCT) as the target NPPCR and Greatest is a function that selects a non-negative value for the gap
from the current NPPCR to the target (95%PCT). The locations having NPPCR over 95%PCT are to be
referenced for obtaining OGMPs in g.

2.3.2. Explanatory Factor Analysis Using GWR

Few studies have examined the factors that are related to the spatial variation in RCU. There are
several considerations in deciding the explanatory factors for RCU. Since the impacts from climatic
factors and environmental (non-climatic) factors have been excluded from RCU, our focus was on
the human-induced factors. Grazing has been identified as a key force degrading vegetation in the
study area [10,33]. Over-grazing accounts for 35% of the degraded grasslands in the world [34] and
has caused significant vegetation degradation and land desertification in the study area [35]. Urban
sprawl is another important human-related factor [14,36]. Urban sprawl is closely correlated to the
road network. In the rural areas, the road network may have an unneglectable impact on the grassland
vegetation. Thus, access to a road network was taken to indicate the impact on vegetation for urban
sprawl and to reflect the impact of road in rural areas. In vast grassland, the increase of population has
imposed some negative impact on grassland vegetation [37]. In this study, population density was
included as the third factor related to human activities. The listed factors may not be fully accountable
for the RCU variation across the region, but they represent the typical human-related factors in the
study area. Lastly, NPP was also taken as a variable in the explanatory factor analysis because RCU
is directly related to NPP. It can be seen from Equation (4) that RCU is computed based on NPP
distribution within an S-T-V patch (not only NPP at the current location but the NPPs located in the
S-T-V patch, which are used to infer 95%PCT or the target carbon NPPCR).

The flowchart analyzing the driving factors for RCU is shown in Figure 2b. Exploratory analysis
was conducted first to understand the spatial distribution pattern in RCU. Global Moran’s I is a useful
indicator to detect whether RCU is in a random or clustered pattern. A clustered pattern usually
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indicates there are underlying mechanisms explaining RCU clustering. Analytical models can be
applied to understand the impact from the selected explanatory variables on RCU. Ordinary least
square (OLS), or a global regression model, was adopted first to reveal the relationship between RCU
and the selected variables without reflecting the possibly spatial varied patterns in the relationships by
the function,

y = β0 +
∑p

k=1
βk·xk + ε (5)

where y is the observed outcome, β0, β1, . . . , βp are the fit model coefficients, xk are explanatory
variables k (k = 1, 2, . . . , p, where p is the number of explanatory variables), and ε is the residual
with zero mean and homogenous variance σ2. Geographically weighted regression (GWR) is a local
regression model that can estimate parameters to vary across regions to accommodate potential spatial
dependencies [38]. A GWR model takes the form of,

ys = β0(s) +
∑p

k=1
βk(s)·xk, s + εs (6)

where ys is the response variable (RCU) at location s, xk,s and βk(s) (k = 0, 1, 2, . . . , p, and p is the
number of variables) are the observed value and spatially varied coefficient for the kth variable at s,
respectively, and εs is a random error at location s. Compared to the global OLS, all the parameters
(coefficients) and the error term (ε) in the local regression model (GWR) are location dependent and
vary at different locations. Gaussian kernel using corrected Akaike Information Criterion (AICc) to
determine the optimal number of neighbors was specified for the model. Global Moran’s I on the
regression residuals was applied to test if they are spatially clustered or random, which is a necessary
step to verify that the GWR model is correctly specified.

Multicollinearity or strong correlation among the input variables should be avoided in either OLS
or a local model. The variance inflation factor (VIF) and condition number (CN) are indicators for
checking global multicollinearity and local multicollinearity, where a VIF greater than 7.5 in OLS or CN
greater than 30 indicates multicollinearity [39,40]. An adjusted coefficient of determination (adjusted
R2) and AICc can be taken to decide whether the global or local model interprets the data better. The
model with a higher adjusted R2 and lower AICc is a preferred one that better reveals the relationship
between the response variable and explanatory predictors. Both OLS and GWR were applied to fit the
relationship between RCU and the selected variables.

3. Results

3.1. Descriptive Analysis of the Carbon Gap and the Explanatory Factors

RCU was distributed unevenly across the study area. A high RCU appeared in the eastern part of
the study area, while a low RCU was observed mainly in the middle section of the area (Figure 3a).
RCU averaged 58.9 ± 2.3 gC m−2 yr−1 in flux during the years, which is more than 1/4 of the NPP
flux (averaged 195.6 gC m−2 yr−1). A high RCU means that there was more carbon loss, which could
have been sequestered from vegetation if given optimal grassland management practices (OGMPs); in
other words, the areas with high RCU should be given more attention because they presented high
potential in the carbon sequestration enhancement. The aggregated RCU at the administrative-unit
scale is shown in Figure 3b. The high global Moran’s I statistic (I = 0.31) indicates a significant spatial
clustering pattern in RCU distribution (p < 0.01). Thus, there might be explanatory factors that lead to
such non-random distribution in RCU.

There are variations in the spatial distribution of the four explanatory variables (Figure 4). The
intensive grazing (in sheep unit per square kilometer) scatters across the study area, particularly in the
south-eastern section (Figure 4a). Population density presents high in the south-eastern and southern
parts of the area (Figure 4b). Road network, as measured by total road length in a square kilometer, is
much denser in the south and west-southern parts of the region, particularly around some key cities
including the capital city Huhehot, as compared to the rest of the area (Figure 4c). In terms of the NPP,
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the north-eastern part has the highest NPP (Figure 4d); at the same time, this area also showed the
highest RCU (Figure 3).
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3.2. Model Result from OLS

The correlation matrix of the explanatory variables is shown in Table 1. The selected variables
show no significant correlation (α = 0.01). All the coefficients (β) of the variables except for that of the
grazing intensity show significance (p < 0.01), indicating that at the global scale, population density,
road network density, and NPP all imposed a significant impact on RCU (Table 2). The positive
coefficients from population and NPP reveal that a higher population density and NPP generally tend
to contribute RCU or more loss in vegetation carbon sequestration. The negative coefficient from
the road network density suggests that more road networks led to lower RCU or less carbon loss in
carbon sequestration. Grazing intensity has for a long time been regarded as a factor affecting the
grassland vegetation [41]. The positive coefficient (β = 0.65) of grazing intensity suggests that high
grazing generally reduced carbon sequestration from vegetation; at the same time, the insignificance (p
= 0.66) in the coefficient implies that the grazing might demonstrate local variation in the impact on
vegetation productivity. The variance inflation factors (VIFs) all showed low value (<7.5), suggesting
there is no problem of redundancy (multicollinearity) among the explanatory variables.

Table 1. Correlation matrix between the explanatory variables.

Variable # Population Road NPP Grazing

Population 1.00
Road 0.27 1.00
NPP 0.02 −0.17 1.00

Grazing −0.13 −0.06 −0.14 1.00

# Population = population density; Road = road network density; Grazing = grazing intensity.
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Table 2. Statistics of the regression coefficient for the explanatory variables from ordinary least square
(OLS) regression.

Variable Coef. (β) StdErr. t-Statistics Probability Robust_SE Robust_t Robust_Pr VIF

Intercept 51.49 43.80 1.17 0.24 45.80 1.12 0.27
Population 0.35 0.13 2.62 <0.01 * 0.13 2.67 <0.01 * 4.87

Road −0.91 0.44 −2.07 0.04 * 0.51 −1.79 0.08 4.82
NPP 0.30 0.08 3.95 <0.01 * 0.10 3.15 <0.01 * 1.04

Grazing 0.65 2.01 0.33 0.74 1.50 0.44 0.66 1.04

* Significance tested based on two-tailed hypothesis; VIF = variance inflation factor.

The overall performance of the OLS model is summarized in Table 3. The Jarque–Bera statistic,
which is a goodness-of-fit test of whether the data present skewness and kurtosis, shows non-significance
(p = 0.56), indicating that the residuals from the OLS model are not significantly different from normal
distribution. The Joint Wald statistic confirmed the model significance (p<0.01). However, a rather low
percentage, i.e., 21% (adjusted R2 = 0.21), of the variation in RCU is explained from the explanatory
variables by the OLS model. The significance of the Koenker (BP) Statistic (p < 0.01) suggests that a
local regression such as GWR may be a better model candidate.
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Table 3. The diagnostics from ordinary least square (OLS) regression.

Variable Value Probability Value

R2 0.25
Adjusted R2 0.21

AICc 961.7
Joint F-Statistic 6.71 Prob(>F), (4,79) DF <0.01

Joint Wald Statistic 22.66 Prob(>chi-squared), (4) DF <0.01
Koenker (BP) Statistic 9.01 Prob(>chi-squared), (4) DF <0.01
Jarque-Bera Statistic 1.17 Prob(>chi-squared), (2) DF 0.56

DF = degrees of freedom.

3.3. Model Result from GWR

Although the OLS regression captured the relationships between RCU and the explanatory
variables, nonstationary characteristics in the spatial RCU and the explanatory variables imply that the
global model may fail to highlight the spatially variant patterns in the relationship [42]. Therefore, RCU
was further analyzed by the GWR model, which is capable of reflecting the nonstationary characteristics
in the relationship. Table 4 describes the result from GWR with 58 optimal neighbors suggested by
the model. The improved performance, as opposed to that from the OLS model, confirmed that
nonstationary patterns do exist among the relationship between RCU and the explanatory variables.
For example, the adjusted R2 had a significant improvement, which was 0.53 from GWR compared to
0.21 in the OLS model. Furthermore, the corrected Akaike’s Information Criterion (AICc) is also a useful
way to evaluate the performance of a regression model, and lower AICc means model improvement.
The decrease of AICc to 951.6, as opposed to 961.7 from the OLS model, confirms that GWR is superior
to the OLS model in capturing the variation of the dependent variable. The model residuals from
the GWR regression did not show significant bias. In summary, it is evident that GWR improved the
model performance compared to that by OLS.

Table 4. Statistics from a geographically weighted model (GWR) for the carbon gap using the
explanatory variables.

#ID Statistical Item Value

0 Neighbors 58
1 Residual squares 274571.4
2 Effective number 15.5
3 Sigma 63.3
4 AICc 951.6
5 R-Squired (R2) 0.62
6 Adjusted R2 0.53
7 Depend variable Reduced carbon uptake (RCU)

8 Predictors

Grazing (intensity),
Road (network density),

Population (density),
NPP

AICc: Akaike’s Information Criterion, corrected. Global Moran’s I on residual map is 0.16, showing no significant
clustering pattern (p > 0.01).

The regression coefficient varied over the space, indicating a heterogeneous impact on the reduced
carbon uptake (RCU) from each of the variables (Figure 5). The four variables together explain 53% of
the variation in RCU (adjusted R2 = 0.53, Table 4). The model coefficients from the variables differed not
only in magnitude but also in directions (positive or negative). The positive coefficients of the grazing
intensity in most of the study area, particularly the middle part, confirms that increasing grazing
animals would increase RCU, which is a sign of negative impact on vegetation productivity; an opposite
impact from grazing animals was identified in the northern and north-eastern part of the area, where
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grazing showed an improving effect on vegetation (Figure 5a). The population shows a consistently
negative impact on RCU, meaning that a larger population would lead to more RCU (Figure 5b).
The impact from road network density shows a complicated pattern over the area (Figure 5c). The
coefficient distribution of the road network suggests that the impact of roads on RCU is closely related
to vegetation density; the sparsely covered vegetation, which dominates mainly the middle and west
part of the study area, is more likely to present RCU. This finding is consistent with the previous work
stating that roads led to vegetation degradation (increased RCU) at densely covered vegetation, while
convenient access to roads resulted in vegetation restoration when vegetation cover was sparse [43].
The coefficient distribution in NPP showed that for the majority of the study area, a higher RCU can be
observed in areas with higher NPP (Figure 5d). This finding seems contradictory to our common sense
that a higher NPP means more carbon sequestered and thus lower RCU. However, it is noteworthy
that the computed RCU was derived from neighborhood analysis, which took not only the NPPCR at a
currently examined location but also a target NPPCR statistic around it; i.e., RCU reflects the difference
from its current NPPCR to 95%PCT, or a target NPPCR level in the neighborhood (refer to Equation (4)).
Thus, a high RCU is usually observed in a neighborhood having a high 95%PCT, which also makes the
spatially aggregated RCU high at the administrative unit level. At the same time, RCU is negatively
related to the NPP itself, i.e., a location with higher NPPCR means a lower RCU (refer to Equation (4)),
which might be the case for the small part of the area having the minus NPP coefficient.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17 
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4. Discussions

4.1. Optimal Grassland Management Practices (OGMPs)

Optimal grassland management practices (OGMPs) refer to those grassland management strategies
that have produced relatively higher vegetation productivity. Previous study showed that human
activities could increase or decrease vegetation productivity [44], and adopting OGMPs means an
improvement in vegetation productivity and thus carbon sequestration. RCU measures the loss of
carbon sequestration from human impacts in the past or the potential of carbon sequestration to
increase under OGMPs in the future. The current work identifies OGMPs through the neighborhood
analysis; namely, OGMPs are referenced from the locations demonstrating high climate-rectified NPP
(NPPCR) within an S-T-V patch. It is advisable that OGMPs should be taken into account when making
grassland management policies.

There exists no OGMPs that are applicable to all locations. The identified OGMPs are
location-dependent and pertain to specific S-T-V patches. Taking grazing management as an example,
the exclusion or restriction of grazing resulted in a significant improvement in vegetation density in
Horqin sandy land located in the southeast of IMAR [45]. Rotational or nomadic grazing also helps
reduce the negative impact on grassland vegetation [46]. Thus, fenced grazing (exclusion of grazing)
and rotational grazing can be adopted as OGMPs for the S-T-V patches in those study regions. The
current study identified the locations presenting the desired target NPP level within each S-T-V patch,
and the locations with the target NPP should be extracted to build the candidate pool of OGMPs
suitable for the local climatic and natural contexts. In addition, some of the other forms of OGMPs are
listed in Table 5.

Table 5. Typical examples of optimal grassland management practices (OGMPs) in Inner Mongolia.

OGMPs Main Practices and Results Study Location References

Rotating grazing Grazing and protection rotationally
improved NPP Xilingol league in IMAR [46]

Fenced grazing Replacing direct grazing with
grass-cutting improved NPP

Xilingol league in IMAR;
Horqin sandy land in IMAR [35,45,46]

Protection zone/belt
against expansion of

road/urbanization

Densely distributed roads/urbanization
reduced NPP in areas with dense

vegetation and protection zone/belt is
recommended

Scattering across IMAR [43]

Restoration and recovery
projects

Restoration, recovery, and vegetation
rehabilitation projects improved soil
improvement, reduced erosion, and

thus improved NPP

Scattering across IMAR [37,47]

Vegetation protection
from coal mining

Heavy coal or metal mining activities
reduced NPP, and vegetation restoration

should be followed after mining
Eastern IMAR [25]

* Vegetation irrigation
and fertilizing

Certain amount of irrigation improved
NPP

Xilamuren grassland (in
middle to western IMAR) [48]

Maintain vegetation
health by pesticide

spaying

Pesticide application helped the
improvement of NPP in some parts of

the study area
Scattering across IMAR [49]

* Irrigation is related to rainfall (a climatic factor) but is listed here as one typical practice belonging to
human-related activities.

4.2. Driving Factors for Reduced Carbon Uptake (RCU)

The driving factors for RCU could be complex. In this study, along with NPP, the human-related
factors, including grazing intensity, population, and road network density, were taken to examine
their impact on RCU using both global (OLS) and local (GWR) regression models. As stated above,
heavily grazing could degrade vegetation productivity. However, a recent meta-analysis of stock
grazing on China’s grasslands concluded that light and medium grazing was actually beneficial to
grassland vegetation [50]. For example, light and moderate grazing could improve the top soil organic
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carbon, which is essential for vegetation growth [51]. The impact from grazing is also related to
vegetation status and terrain features [35]. The above findings suggest that grazing may impose
different effects on NPP under different local conditions. The current study verified that grazing
intensity showed a positive impact on NPP in the northern and north-eastern parts of the study area
(Figure 5a). Hence, optimal grazing intensity must be decided considering the location difference. The
population or the total number of human inhabitants reflects the socio-economic development of the
area. Densely distributed population was found to have reduced carbon sequestration from vegetation
(i.e., increased RCU) in some parts of the grassland; this is understandable, because more population
means a sprawl of human settlements and built-up areas, which could easily fragment and degrade
grassland vegetation [52]. Previous work verified that the impact of roads on grassland vegetation
depends on the nature of the resource (e.g., the density of vegetation cover) [43]. This study found
that the grassland vegetation responded differently to the impact from roads at various locations,
suggesting that the grassland management policy should reflect the location-dependent impact from
the road network. The current work reveals the associations between the selected variables and RCU,
but the patterns in the cause and effect need further field verification in the future.

This work is limited to examining the impact of some commonly recognized human-related factors
on RCU; however, they together only explain slightly over half of the variance in RCU (53%), which
could be further improved. There are other factors, including those human-related practices listed in
Table 5, which might be similarly important and preferably included in the driving factor analysis.
For example, rotating grazing, as a management practice recommended for improving vegetation
productivity [46], was not indicated in the variable of grazing intensity and thus not reflected in the
explained variance, although grazing rotationally or not could mean a significant difference on the
impact of RCU. Moreover, while the included human-related factors, RCU, and their relationships were
found to vary among administrative units, the analysis of the driving forces for RCU at the county level
may generalize the effect between the selected variables and RCU. This work was unable to take all the
key factors at a finer scale in the model because obtaining the fine-scale human-related factors require
extensive data synthesis and most likely conducting field experiments, which would be our next step.

4.3. Further Note for Understanding Reduced Carbon Uptake (RCU)

The factors affecting carbon sequestration from grassland vegetation have been classified into
three groups: climatic, non-climatic, and human-induced. After isolating the impact from climatic and
non-climatic factors, RCU is equivalent to the amount of carbon that should have been sequestered
from vegetation with appropriate grassland management practices and without negative human
disturbances. Quantifying and mapping the spatial distribution of RCU can help understand the
sensitive locations to human activities and thus informed policies regarding improving grassland
management can be made for the future. Improving grassland management or reducing human
disturbances improves vegetation photosynthesis. Adjusting human activities serves as a prominent
measure that can promote carbon sequestration from the atmosphere. The study revealed that over
1/4 more carbon is to be sequestered under optimal grassland management practices. The study area
presented high spatial variation in the distribution of RCU. Traditionally, severely degraded vegetation
is believed to hold much potential in carbon sequestration improvement and is given more attention in
terms of implementing new grassland management strategies. The study pointed out that grassland
vegetation with a high NPP might also possess high enhancement potential in carbon sequestration
and should be given sufficient attention.

We acknowledge there might be uncertainties in the result. The current work considers three
elements, namely, soil, topography, and vegetation cover types in S-T-V patch segmentation, which
may cover the most important factors differentiating grassland vegetation productivity in terms of the
growing (non-climatic) environments. It is assumed that within each S-T-V patch, there is no internal
variation in NPP attributed to the non-climatic conditions. Furthermore, the Miami model is taken to
capture the difference in NPP from the varied impact of the climatic factors within each S-T-V patch.
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Although the Miami model has been widely applied for deriving potential NPP, particularly in arid
and semi-arid regions, the accuracy of the rectification in this study was not strictly verified due to
unavailability of truth field data. With uncertainties in the computed variation of NPP from both the
climatic and non-climatic factors, it is inevitable to lead to uncertainty in the isolated NPP variation
from human activities. Thus, further work is needed to improve the accuracy of the contributed part
from climatic and non-climatic factors.

5. Conclusions

The current work has applied spatial analytical models to reveal the reduced carbon uptake
(RCU) from grassland vegetation due to inappropriate grassland management in the grassland of
Inner Mongolia. Our work estimated that every year, there is a significant amount of carbon, i.e.,
more than 1/4 of the total NPP, that is not sequestered from the grassland vegetation due to ineffective
grassland management. In other words, given improvement in the grassland management, the
grassland vegetation would be able to sequester significantly more carbon. Improving grassland
management strategies servers as a prominent measure to enhance the carbon sequestration service
from the grassland vegetation. To explore the driving factors for RCU, human-related activities
including grazing intensity, population density, and road network density along with vegetation
NPP were analyzed using global regression OLS and local regression GWR. Both models reveal the
patterns in the relationship between RCU and the variables, but GWR is superior to OLS in the model
performance. The spatial varying effects of the selected explanatory variables from GWR provide a
more useful guidance for making grassland management policies.
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